Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Field norm
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Concept in field theory mathematics}} In [[mathematics]], the '''(field) norm''' is a particular mapping defined in [[field theory (mathematics)|field theory]], which maps elements of a larger field into a [[field extension|subfield]]. ==Formal definition== Let ''K'' be a [[field (mathematics)|field]] and ''L'' a [[Degree of a field extension|finite]] [[field extension|extension]] (and hence an [[algebraic extension]]) of ''K''. The field ''L'' is then a [[dimension (vector space)|finite-dimensional]] [[vector space]] over ''K''. Multiplication by ''α'', an element of ''L'', :<math>m_\alpha\colon L\to L</math> :<math>m_\alpha (x) = \alpha x</math>, is a ''K''-[[linear transformation]] of this vector space into itself. The '''norm''', '''N'''<sub>''L''/''K''</sub>(''α''), is defined as the [[determinant]] of this linear transformation.<ref name=ROT940>{{harvnb|Rotman|2002|loc=p. 940}}</ref> If ''L''/''K'' is a [[Galois extension]], one may compute the norm of ''α'' ∈ ''L'' as the product of all the [[Galois conjugate]]s of ''α'': :<math>\operatorname{N}_{L/K}(\alpha)=\prod_{\sigma\in\operatorname{Gal}(L/K)} \sigma(\alpha),</math> where Gal(''L''/''K'') denotes the [[Galois group]] of ''L''/''K''.<ref>{{harvnb|Rotman|2002|loc=p. 943}}</ref> (Note that there may be a repetition in the terms of the product.) For a general field extension ''L''/''K'', and nonzero ''α'' in ''L'', let ''σ''{{sub|1}}(''α''), ..., σ{{sub|''n''}}(''α'') be the [[root of a polynomial|roots]] of the [[minimal polynomial (field theory)|minimal polynomial]] of ''α'' over ''K'' (roots listed with multiplicity and lying in some extension field of ''L''); then :<math>\operatorname{N}_{L/K}(\alpha)=\left (\prod_{j=1}^n\sigma_j(\alpha) \right )^{[L:K(\alpha)]}</math>. If ''L''/''K'' is [[Separable extension|separable]], then each root appears only once in the product (though the exponent, the [[Degree of a field extension|degree]] [''L'':''K''(''α'')], may still be greater than 1). ==Examples== === Quadratic field extensions === One of the basic examples of norms comes from [[quadratic field]] extensions <math>\Q(\sqrt{a})/\Q</math> where <math>a</math> is a square-free integer. Then, the multiplication map by <math>\sqrt{a}</math> on an element <math>x + y \cdot \sqrt{a}</math> is :<math>\sqrt{a}\cdot (x + y\cdot\sqrt{a}) = y \cdot a + x \cdot \sqrt{a}.</math> The element <math>x + y \cdot \sqrt{a}</math> can be represented by the vector :<math>\begin{bmatrix}x \\ y\end{bmatrix},</math> since there is a direct sum decomposition <math>\Q(\sqrt{a}) = \Q\oplus \Q\cdot\sqrt{a}</math> as a <math>\Q</math>-vector space. The [[matrix (mathematics)|matrix]] of <math>m_\sqrt{a}</math> is then :<math>m_{\sqrt{a}} = \begin{bmatrix} 0 & a \\ 1 & 0 \end{bmatrix}</math> and the norm is <math>N_{\Q(\sqrt{a})/\Q}(\sqrt{a}) = -a</math>, since it is the determinant of this matrix. ==== Norm of Q(√2) ==== Consider the [[algebraic number field|number field]] <math>K=\Q(\sqrt{2})</math>. The Galois group of <math>K</math> over <math>\Q</math> has order <math>d = 2</math> and is generated by the element which sends <math>\sqrt{2}</math> to <math>-\sqrt{2}</math>. So the norm of <math>1+\sqrt{2}</math> is: :<math>(1+\sqrt{2})(1-\sqrt{2}) = -1.</math> The field norm can also be obtained without the Galois group. Fix a <math>\Q</math>-basis of <math>\Q(\sqrt{2})</math>, say: :<math>\{1,\sqrt{2}\}</math>. Then multiplication by the number <math>1+\sqrt{2}</math> sends :1 to <math>1+\sqrt{2}</math> and :<math>\sqrt{2}</math> to <math>2+\sqrt{2}</math>. So the determinant of "multiplying by <math>1+\sqrt{2}</math>" is the determinant of the matrix which sends the vector :<math>\begin{bmatrix}1 \\ 0\end{bmatrix}</math> (corresponding to the first basis element, i.e., 1) to <math>\begin{bmatrix}1 \\ 1\end{bmatrix}</math>, :<math>\begin{bmatrix}0 \\ 1\end{bmatrix}</math> (corresponding to the second basis element, i.e., <math>\sqrt{2}</math>) to <math>\begin{bmatrix}2 \\ 1\end{bmatrix}</math>, viz.: :<math>\begin{bmatrix}1 & 2 \\1 & 1 \end{bmatrix}.</math> The determinant of this matrix is −1. === ''p''-th root field extensions === Another easy class of examples comes from field extensions of the form <math>\mathbb{Q}(\sqrt[p]{a})/\mathbb{Q}</math> where the prime factorization of <math>a \in \mathbb{Q} </math> contains no <math>p</math>-th powers, for <math>p</math> a fixed odd prime. The multiplication map by <math>\sqrt[p]{a}</math> of an element is<blockquote><math>\begin{align} m_{\sqrt[p]{a}}(x) &= \sqrt[p]{a} \cdot (a_0 + a_1\sqrt[p]{a} + a_2\sqrt[p]{a^2} + \cdots + a_{p-1}\sqrt[p]{a^{p-1}} )\\ &= a_0\sqrt[p]{a} + a_1\sqrt[p]{a^2} + a_2\sqrt[p]{a^3} + \cdots + a_{p-1}a \end{align}</math></blockquote>giving the matrix<blockquote><math>\begin{bmatrix} 0 & 0 & \cdots & 0 & a \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}</math></blockquote>The determinant gives the norm :<math>N_{\mathbb{Q}(\sqrt[p]{a})/\mathbb{Q}}(\sqrt[p]{a}) = (-1)^{p-1} a = a.</math> === Complex numbers over the reals === The field norm from the [[complex number]]s to the [[real number]]s sends : {{nowrap|''x'' + ''iy''}} to : {{nowrap|''x''<sup>2</sup> + ''y''<sup>2</sup>}}, because the Galois group of <math>\Complex</math> over <math>\R</math> has two elements, * the identity element and * complex conjugation, and taking the product yields {{nowrap|1=(''x'' + ''iy'')(''x'' − ''iy'') = ''x''<sup>2</sup> + ''y''<sup>2</sup>}}. === Finite fields === Let ''L'' = GF(''q''<sup>''n''</sup>) be a finite extension of a [[finite field]] ''K'' = GF(''q''). Since ''L''/''K'' is a Galois extension, if ''α'' is in ''L'', then the norm of ''α'' is the product of all the Galois conjugates of ''α'', i.e.<ref name="LN57">{{harvnb|Lidl|Niederreiter|1997|loc=p. 57}}</ref> : <math> \operatorname{N}_{L/K}(\alpha)=\alpha \cdot \alpha^q \cdot \alpha^{q^2} \cdots \alpha^{q^{n-1}} = \alpha^{(q^n - 1)/(q-1)}. </math> In this setting we have the additional properties,<ref>{{harvnb|Mullen|Panario|2013|loc=p. 21}}</ref> *<math>\forall \alpha \in L, \quad \operatorname{N}_{L/K}(\alpha^q) = \operatorname{N}_{L/K}(\alpha) </math> *<math>\forall a \in K, \quad \operatorname{N}_{L/K}(a) = a^n.</math> ==Properties of the norm== Several properties of the norm function hold for any finite extension.<ref>{{harvnb|Roman|2006|p=151}}</ref><ref name=":0" /> === Group homomorphism === The norm '''N'''{{sub|''L''/''K''}} : ''L''* → ''K''* is a [[group homomorphism]] from the multiplicative group of ''L'' to the multiplicative group of ''K'', that is :<math>\operatorname{N}_{L/K}(\alpha \beta) = \operatorname{N}_{L/K}(\alpha) \operatorname{N}_{L/K}(\beta) \text{ for all }\alpha, \beta \in L^*.</math> Furthermore, if ''a'' in ''K'': :<math>\operatorname{N}_{L/K}(a \alpha) = a^{[L:K]} \operatorname{N}_{L/K}(\alpha) \text{ for all }\alpha \in L.</math> If ''a'' ∈ ''K'' then <math>\operatorname{N}_{L/K}(a) = a^{[L:K]}.</math> === Composition with field extensions === Additionally, the norm behaves well in [[tower of fields|towers of fields]]: if ''M'' is a finite extension of ''L'', then the norm from ''M'' to ''K'' is just the composition of the norm from ''M'' to ''L'' with the norm from ''L'' to ''K'', i.e. :<math>\operatorname{N}_{M/K}=\operatorname{N}_{L/K}\circ\operatorname{N}_{M/L}.</math> === Reduction of the norm === The norm of an element in an arbitrary field extension can be reduced to an easier computation if the degree of the field extension is already known. This is<blockquote><math>N_{L/K}(\alpha) = N_{K(\alpha)/K}(\alpha)^{[L:K(\alpha)]}</math><ref name=":0">{{Cite book|last=Oggier|url=http://www1.spms.ntu.edu.sg/~frederique/ANT10.pdf|title=Introduction to Algebraic Number Theory|pages=15|access-date=2020-03-28|archive-date=2014-10-23|archive-url=https://web.archive.org/web/20141023023935/http://www1.spms.ntu.edu.sg/~frederique/ANT10.pdf|url-status=dead}}</ref></blockquote>For example, for <math>\alpha = \sqrt{2}</math> in the field extension <math>L = \mathbb{Q}(\sqrt{2},\zeta_3), K =\mathbb{Q}</math>, the norm of <math>\alpha</math> is<blockquote><math>\begin{align} N_{\mathbb{Q}(\sqrt{2},\zeta_3)/\mathbb{Q}}(\sqrt{2}) &= N_{\mathbb{Q}(\sqrt{2})/\mathbb{Q}}(\sqrt{2})^{[\mathbb{Q}(\sqrt{2},\zeta_3):\mathbb{Q}(\sqrt{2})]}\\ &= (-2)^{2}\\ &= 4 \end{align}</math></blockquote>since the degree of the field extension <math>L/K(\alpha)</math> is <math>2</math>. === Detection of units === For <math>\mathcal{O}_K</math> the [[ring of integers]] of an [[algebraic number field]] <math>K</math>, an element <math>\alpha \in \mathcal{O}_K</math> is a unit if and only if <math>N_{K/\mathbb{Q}}(\alpha) = \pm 1</math>. For instance :<math>N_{\mathbb{Q}(\zeta_3)/\mathbb{Q}}(\zeta_3) = 1</math> where :<math>\zeta_3^3 = 1</math>. Thus, any number field <math>K</math> whose ring of integers <math>\mathcal{O}_K</math> contains <math>\zeta_3</math> has it as a unit. ==Further properties== The norm of an [[algebraic integer]] is again an integer, because it is equal (up to sign) to the constant term of the characteristic polynomial. In [[algebraic number theory]] one defines also norms for [[ideal (ring theory)|ideal]]s. This is done in such a way that if ''I'' is a nonzero ideal of ''O''<sub>''K''</sub>, the ring of integers of the number field ''K'', '''N'''(''I'') is the number of residue classes in <math>O_K / I</math> – i.e. the cardinality of this [[finite ring]]. Hence this [[ideal norm]] is always a positive integer. When ''I'' is a [[principal ideal]] ''αO<sub>K</sub>'' then '''N'''(''I'') is equal to the [[absolute value]] of the norm to ''Q'' of ''α'', for ''α'' an [[algebraic integer]]. ==See also== * [[Field trace]] * [[Ideal norm]] * [[Norm form]] ==Notes== {{reflist|3}} ==References== * {{citation | first1=Rudolf | last1=Lidl | first2=Harald | last2=Niederreiter | author2-link=Harald Niederreiter | title=Finite Fields | series=Encyclopedia of Mathematics and its Applications | volume=20 | year=1997 | orig-year=1983 | edition=Second | publisher=[[Cambridge University Press]] | isbn=0-521-39231-4 | zbl=0866.11069 | url-access=registration | url=https://archive.org/details/finitefields0000lidl_a8r3 }} * {{citation|first1=Gary L.|last1=Mullen|first2=Daniel|last2=Panario|title=Handbook of Finite Fields|year=2013|publisher=CRC Press|isbn=978-1-4398-7378-6}} * {{citation | last=Roman | first=Steven | title=Field theory | edition=Second | year=2006 | publisher=Springer | series=[[Graduate Texts in Mathematics]] | volume=158 | at=Chapter 8 | isbn=978-0-387-27677-9 | zbl=1172.12001 }} * {{citation|first=Joseph J.|last=Rotman|title=Advanced Modern Algebra|year=2002|publisher=Prentice Hall|isbn=978-0-13-087868-7}} [[Category:Algebraic number theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Harvnb
(
edit
)
Template:Nowrap
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Sub
(
edit
)