Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Field trace
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{other uses|Trace (disambiguation)}} In [[mathematics]], the '''field trace''' is a particular [[function (mathematics)|function]] defined with respect to a [[finite extension|finite]] [[field extension]] ''L''/''K'', which is a [[linear map|''K''-linear map]] from ''L'' onto ''K''. ==Definition== Let ''K'' be a [[field (mathematics)|field]] and ''L'' a finite extension (and hence an [[algebraic extension]]) of ''K''. ''L'' can be viewed as a [[vector space]] over ''K''. Multiplication by ''α'', an element of ''L'', :<math>m_\alpha:L\to L \text{ given by } m_\alpha (x) = \alpha x</math>, is a ''K''-[[linear transformation]] of this vector space into itself. The ''trace'', '''Tr'''<sub>''L''/''K''</sub>(''α''), is defined as the [[Trace (linear algebra)|trace]] (in the [[linear algebra]] sense) of this linear transformation.<ref name=ROT940>{{harvnb|Rotman|2002|loc=p. 940}}</ref> For ''α'' in ''L'', let ''σ''{{sub|1}}(''α''), ..., ''σ''{{sub|''n''}}(''α'') be the [[root of a polynomial|roots]] (counted with multiplicity) of the [[minimal polynomial (field theory)|minimal polynomial]] of ''α'' over ''K'' (in some extension field of ''K''). Then :<math>\operatorname{Tr}_{L/K}(\alpha) = [L:K(\alpha)]\sum_{j=1}^n\sigma_j(\alpha).</math> If ''L''/''K'' is [[separable extension|separable]] then each root appears only once<ref>{{harvnb|Rotman|2002|loc=p. 941}}</ref> (however this does not mean the coefficient above is one; for example if ''α'' is the identity element 1 of ''K'' then the trace is [''L'':''K''] times 1). More particularly, if ''L''/''K'' is a [[Galois extension]] and ''α'' is in ''L'', then the trace of ''α'' is the sum of all the [[Galois conjugate]]s of ''α'',<ref name="ROT940" /> i.e., :<math>\operatorname{Tr}_{L/K}(\alpha)=\sum_{\sigma\in\operatorname{Gal}(L/K)}\sigma(\alpha),</math> where Gal(''L''/''K'') denotes the [[Galois group]] of ''L''/''K''. ==Example== Let <math>L = \mathbb{Q}(\sqrt{d})</math> be a [[quadratic extension]] of <math>\mathbb{Q}</math>. Then a [[basis (linear algebra)|basis]] of <math>L/\mathbb{Q}</math> is <math>\{1, \sqrt{d}\}.</math> If <math>\alpha = a + b\sqrt{d}</math> then the [[matrix (mathematics)|matrix]] of <math>m_{\alpha}</math> is: :<math>\left [ \begin{matrix} a & bd \\ b & a \end{matrix} \right ]</math>, and so, <math>\operatorname{Tr}_{L/\mathbb{Q}}(\alpha) = [L:\mathbb{Q}(\alpha)]\left( \sigma_1(\alpha) + \sigma_2(\alpha)\right) = 1\times \left( \sigma_1(\alpha) + \overline{\sigma_1}(\alpha)\right) = a+b\sqrt{d} + a-b\sqrt{d} = 2a</math>.<ref name=ROT940/> The minimal polynomial of ''α'' is {{nowrap|''X''{{i sup|2}} − 2''a'' ''X'' + (''a''<sup>2</sup> − ''db''<sup>2</sup>)}}. ==Properties of the trace== Several properties of the trace function hold for any finite extension.<ref>{{harvnb|Roman|2006|p=151}}</ref> The trace {{nowrap|Tr{{sub|''L''/''K''}} : ''L'' → ''K''}} is a ''K''-[[linear map]] (a ''K''-linear functional), that is :<math>\operatorname{Tr}_{L/K}(\alpha a + \beta b) = \alpha \operatorname{Tr}_{L/K}(a)+ \beta \operatorname{Tr}_{L/K}(b) \text{ for all }\alpha, \beta \in K</math>. If {{nowrap|''α'' ∈ ''K''}} then <math>\operatorname{Tr}_{L/K}(\alpha) = [L:K] \alpha.</math> Additionally, trace behaves well in [[tower of fields|towers of fields]]: if ''M'' is a finite extension of ''L'', then the trace from ''M'' to ''K'' is just the [[function composition|composition]] of the trace from ''M'' to ''L'' with the trace from ''L'' to ''K'', i.e. :<math>\operatorname{Tr}_{M/K}=\operatorname{Tr}_{L/K}\circ\operatorname{Tr}_{M/L}</math>. ==Finite fields== Let ''L'' = GF(''q''<sup>''n''</sup>) be a finite extension of a [[finite field]] ''K'' = GF(''q''). Since ''L''/''K'' is a [[Galois extension]], if ''α'' is in ''L'', then the trace of ''α'' is the sum of all the [[Galois conjugate]]s of ''α'', i.e.<ref name=LN54>{{harvnb|Lidl|Niederreiter|1997|loc=p.54}}</ref> :<math>\operatorname{Tr}_{L/K}(\alpha)=\alpha + \alpha^q + \cdots + \alpha^{q^{n-1}}.</math> In this setting we have the additional properties:<ref>{{harvnb|Mullen|Panario|2013|loc=p. 21}}</ref> * <math>\operatorname{Tr}_{L/K}(a^q) = \operatorname{Tr}_{L/K}(a) \text{ for } a \in L</math>. * For any <math>\alpha \in K</math>, there are exactly <math> q^{n-1}</math> elements <math>b\in L</math> with <math>\operatorname{Tr}_{L/K}(b) = \alpha</math>. ''Theorem''.<ref name=LN56>{{harvnb|Lidl|Niederreiter|1997|loc=p.56}}</ref> For ''b'' ∈ ''L'', let ''F''<sub>''b''</sub> be the map <math>a \mapsto \operatorname{Tr}_{L/K}(ba).</math> Then {{nowrap|''F''<sub>''b''</sub> ≠ ''F''<sub>''c''</sub>}} if {{nowrap|''b'' ≠ ''c''}}. Moreover, the ''K''-linear transformations from ''L'' to ''K'' are exactly the maps of the form ''F''<sub>''b''</sub> as ''b'' varies over the field ''L''. When ''K'' is the [[prime subfield]] of ''L'', the trace is called the ''absolute trace'' and otherwise it is a ''relative trace''.<ref name=LN54/> ===Application=== A [[quadratic equation]], {{nowrap|1=''ax''{{i sup|2}} + ''bx'' + ''c'' = 0}} with ''a'' ≠ 0, and coefficients in the finite field <math>\operatorname{GF}(q) = \mathbb{F}_q</math> has either 0, 1 or 2 roots in GF(''q'') (and two roots, counted with multiplicity, in the quadratic extension GF(''q''<sup>2</sup>)). If the [[characteristic (algebra)|characteristic]] of GF(''q'') is [[parity (mathematics)|odd]], the [[discriminant]] {{nowrap|1=Δ = ''b''<sup>2</sup> − 4''ac''}} indicates the number of roots in GF(''q'') and the classical [[quadratic formula]] gives the roots. However, when GF(''q'') has [[parity (mathematics)|even]] characteristic (i.e., {{nowrap|1=''q'' = 2<sup>''h''</sup>}} for some positive [[integer]] ''h''), these formulas are no longer applicable. Consider the quadratic equation {{nowrap|1=''ax''{{i sup|2}} + ''bx'' + c = 0}} with coefficients in the finite field GF(2<sup>''h''</sup>).<ref>{{harvnb|Hirschfeld|1979|loc=pp. 3-4}}</ref> If ''b'' = 0 then this equation has the unique solution <math>x = \sqrt{\frac{c}{a}}</math> in GF(''q''). If {{nowrap|''b'' ≠ 0}} then the substitution {{nowrap|1=''y'' = ''ax''/''b''}} converts the quadratic equation to the form: :<math>y^2 + y + \delta = 0, \text { where } \delta = \frac{ac}{b^2}.</math> This equation has two solutions in GF(''q'') [[if and only if]] the absolute trace <math>\operatorname{Tr}_{GF(q)/GF(2)}(\delta) = 0.</math> In this case, if ''y'' = ''s'' is one of the solutions, then ''y'' = ''s'' + 1 is the other. Let ''k'' be any element of GF(''q'') with <math>\operatorname{Tr}_{GF(q)/GF(2)}(k) = 1.</math> Then a solution to the equation is given by: :<math> y = s = k \delta^2 + (k + k^2)\delta^4 + \ldots + (k + k^2 + \ldots + k^{2^{h-2}})\delta^{2^{h-1}}.</math> When ''h'' = 2''m''' + 1, a solution is given by the simpler expression: :<math> y = s = \delta + \delta^{2^2} + \delta^{2^4} + \ldots + \delta^{2^{2m}}.</math> ==Trace form== When ''L''/''K'' is separable, the trace provides a [[duality theory]] via the '''trace form''': the map from {{nowrap|''L'' × ''L''}} to ''K'' sending {{nowrap|(''x'', ''y'')}} to Tr{{sub|''L''/''K''}}(''xy'') is a [[nondegenerate form|nondegenerate]], [[symmetric bilinear form]] called the trace form. If ''L''/''K'' is a Galois extension, the trace form is invariant with respect to the Galois group. The trace form is used in [[algebraic number theory]] in the theory of the [[different ideal]]. The trace form for a finite degree field extension ''L''/''K'' has non-negative [[Signature (quadratic form)|signature]] for any [[field ordering]] of ''K''.<ref name=L38/> The [[converse (logic)|converse]], that every [[Witt ring (forms)|Witt equivalence]] class with non-negative signature contains a trace form, is true for [[algebraic number field]]s ''K''.<ref name=L38>Lorenz (2008) p.38</ref> If ''L''/''K'' is an [[inseparable extension]], then the trace form is identically 0.<ref>{{harvnb|Isaacs|1994|loc=p. 369}} as footnoted in {{harvnb|Rotman|2002|loc=p. 943}}</ref> ==See also== * [[Field norm]] * [[Reduced trace]] ==Notes== {{reflist|3}} ==References== * {{citation|first=J.W.P.|last=Hirschfeld|year=1979|title=Projective Geometries over Finite Fields|series=Oxford Mathematical Monographs|publisher=Oxford University Press|isbn=0-19-853526-0|url-access=registration|url=https://archive.org/details/projectivegeomet0000hirs}} * {{citation|first=I.M.|last=Isaacs|title=Algebra, A Graduate Course|year=1994|publisher=Brooks/Cole Publishing}} * {{citation | first1=Rudolf | last1=Lidl | first2=Harald | last2=Niederreiter | author2-link=Harald Niederreiter | title=Finite Fields | series=Encyclopedia of Mathematics and its Applications | volume=20 | year=1997 | origyear=1983 | edition=Second | publisher=[[Cambridge University Press]] | isbn=0-521-39231-4 | zbl=0866.11069 | url-access=registration | url=https://archive.org/details/finitefields0000lidl_a8r3 }} * {{cite book | first=Falko | last=Lorenz | title=Algebra. Volume II: Fields with Structure, Algebras and Advanced Topics | year=2008 | publisher=Springer | isbn=978-0-387-72487-4 | zbl=1130.12001 }} * {{citation|first1=Gary L.|last1=Mullen|first2=Daniel|last2=Panario|title=Handbook of Finite Fields|year=2013|publisher=CRC Press|isbn=978-1-4398-7378-6}} * {{citation | last=Roman | first=Steven | title=Field theory | edition=Second | year=2006 | publisher=Springer | series=Graduate Texts in Mathematics | volume=158 | at=Chapter 8 | isbn=978-0-387-27677-9 | zbl=1172.12001 }} * {{citation|first=Joseph J.|last=Rotman|title=Advanced Modern Algebra|year=2002|publisher=Prentice Hall|isbn=978-0-13-087868-7}} ==Further reading== * {{cite book | first1=P.E. | last1=Conner | first2=R. | last2=Perlis | title=A Survey of Trace Forms of Algebraic Number Fields | series=Series in Pure Mathematics | volume=2 | publisher=World Scientific | year=1984 | isbn=9971-966-05-0 | zbl=0551.10017 }} * Section VI.5 of {{Lang Algebra|edition=3r}} {{DEFAULTSORT:Field Trace}} [[Category:Field (mathematics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Harvnb
(
edit
)
Template:Lang Algebra
(
edit
)
Template:Nowrap
(
edit
)
Template:Other uses
(
edit
)
Template:Reflist
(
edit
)
Template:Sub
(
edit
)