Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Flipped SU(5)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Grand unified theory}} The '''Flipped SU(5) model''' is a [[grand unified theory]] (GUT) first contemplated by [[Stephen Barr]] in 1982,<ref>{{cite journal | last=Barr | first=S.M. | title=A new symmetry breaking pattern for SO(10) and proton decay | journal=Physics Letters B | volume=112 | issue=3 | year=1982 | doi=10.1016/0370-2693(82)90966-2 | pages=219–222}}</ref> and by [[Dimitri Nanopoulos]] and others in 1984.<ref>{{cite journal | last1=Derendinger | first1=J.-P. | last2=Kim | first2=Jihn E. | last3=Nanopoulos | first3=D.V. | title=Anti-Su(5) | journal=Physics Letters B | volume=139 | issue=3 | year=1984 | doi=10.1016/0370-2693(84)91238-3 | pages=170–176| url=https://cds.cern.ch/record/149877 }}</ref><ref>Stenger, Victor J., ''Quantum Gods: Creation, Chaos and the Search for Cosmic Consciousness'', Prometheus Books, 2009, 61. {{ISBN|978-1-59102-713-3}}</ref> [[Ignatios Antoniadis]], [[John Ellis (physicist, born 1946)|John Ellis]], [[John Hagelin]], and [[Dimitri Nanopoulos]] developed the supersymmetric flipped SU(5), derived from the deeper-level superstring.<ref>{{cite journal | last1=Antoniadis | first1=I. | last2=Ellis | first2=John | last3=Hagelin | first3=J.S. | last4=Nanopoulos | first4=D.V. | title=GUT model-building with fermionic four-dimensional strings | journal=Physics Letters B | volume=205 | issue=4 | year=1988 | doi=10.1016/0370-2693(88)90978-1 | pages=459–465| osti=1448495 | url=https://cds.cern.ch/record/184491 }}</ref><ref>Freedman, D. H. "The new theory of everything", ''Discover'', 1991, 54–61.</ref> In 2010, efforts to explain the theoretical underpinnings for observed neutrino masses were being developed in the context of supersymmetric flipped {{math|SU(5)}}.<ref>{{cite journal | last1=Rizos | first1=J. | last2=Tamvakis | first2=K. | title=Hierarchical neutrino masses and mixing in flipped-SU(5) | journal=Physics Letters B | volume=685 | issue=1 | year=2010 | issn=0370-2693 | doi=10.1016/j.physletb.2010.01.038 | pages=67–71|arxiv=0912.3997| s2cid=119210871 }}</ref> Flipped {{math|SU(5)}} is not a fully unified model, because the {{math|U(1)<sub>Y</sub>}} factor of the [[Standard Model]] gauge group is within the {{math|U(1)}} factor of the GUT group. The addition of states below ''M''x in this model, while solving certain threshold correction issues in [[string theory]], makes the model merely descriptive, rather than predictive.<ref>[https://books.google.com/books?id=p8hs0QHxk_oC&pg=PA194 Barcow, Timothy ''et al.'', ''Electroweak symmetry breaking and new physics at the TeV scale''] World Scientific, 1996, 194. {{ISBN|978-981-02-2631-2}}</ref> ==The model== The flipped {{math|SU(5)}} model states that the [[gauge group]] is: :{{math|([[Special unitary group|SU(5)]] × [[Unitary group|U(1)]]<sub>''χ''</sub>)/'''Z'''<sub>5</sub>}} Fermions form three families, each consisting of the [[Representations of Lie groups/algebras|representations]] :{{math|{{overline|'''5'''}}<sub>−3</sub>}} for the lepton doublet, L, and the up quarks {{mvar|u<sup>c</sup>}}; :{{math|'''10'''<sub>1</sub>}} for the quark doublet, Q, the down quark, {{mvar|d<sup>c</sup>}} and the right-handed neutrino, {{math|N}}; :{{math|'''1'''<sub>5</sub>}} for the charged leptons, {{mvar|e<sup>c</sup>}}. This assignment includes three right-handed neutrinos, which have never been observed, but are often postulated to explain the lightness of the observed neutrinos and [[neutrino oscillation]]s. There is also a {{math|[[Representations of Lie groups/algebras|'''10'''<sub>1</sub>]]}} and/or {{math|{{overline|'''10'''}}<sub>−1</sub>}} called the Higgs fields which acquire a [[VEV]], yielding the [[spontaneous symmetry breaking]] :{{math|(SU(5) × U(1)<sub>''χ''</sub>)/'''Z'''<sub>5</sub> → (SU(3) × SU(2) × U(1)<sub>Y</sub>)/'''Z'''<sub>6</sub>}} The {{math|SU(5)}} representations [[restricted representation|transform under this subgroup]] as the reducible representation as follows: :<math>\bar{5}_{-3}\to (\bar{3},1)_{-\frac{2}{3}}\oplus (1,2)_{-\frac{1}{2}}</math> (u<sup>c</sup> and l) :<math>10_{1}\to (3,2)_{\frac{1}{6}}\oplus (\bar{3},1)_{\frac{1}{3}}\oplus (1,1)_0</math> (q, d<sup>c</sup> and ν<sup>c</sup>) :<math>1_{5}\to (1,1)_1</math> (e<sup>c</sup>) :<math>24_0\to (8,1)_0\oplus (1,3)_0\oplus (1,1)_0\oplus (3,2)_{\frac{1}{6}}\oplus (\bar{3},2)_{-\frac{1}{6}}</math>. ==Comparison with the standard SU(5)== The name "flipped" {{math|SU(5)}} arose in comparison to the "standard" {{math|SU(5)}} [[Georgi–Glashow model]], in which {{mvar|u<sup>c</sup>}} and {{mvar|d<sup>c</sup>}} quark are respectively assigned to the {{math|'''10'''}} and {{math|'''5'''}} representation. In comparison with the standard {{math|SU(5)}}, the flipped {{math|SU(5)}} can accomplish the spontaneous symmetry breaking using Higgs fields of dimension 10, while the standard {{math|SU(5)}} typically requires a 24-dimensional Higgs.<ref>L.~F.~Li, ``[https://inspirehep.net/files/74d321cb7f023581a5311642aacb7711 Group Theory of the Spontaneously Broken Gauge Symmetries],'' Phys. Rev. D 9, 1723-1739 (1974) [https://doi.org/10.1103/PhysRevD.9.1723 doi:10.1103/PhysRevD.9.1723]</ref> The [[sign convention]] for {{math|U(1)<sub>''χ''</sub>}} varies from article/book to article. The hypercharge Y/2 is a linear combination (sum) of the following: :<math>\begin{pmatrix}{1 \over 15}&0&0&0&0\\0&{1 \over 15}&0&0&0\\0&0&{1 \over 15}&0&0\\0&0&0&-{1 \over 10}&0\\0&0&0&0&-{1 \over 10}\end{pmatrix}\in \text{SU}(5), \qquad \chi/5.</math> There are also the additional fields {{math|'''5'''<sub>−2</sub>}} and {{math|{{overline|'''5'''}}<sub>2</sub>}} containing the [[electroweak]] [[Higgs doublet]]s. Calling the [[Representations of Lie groups/algebras|representations]] for example, {{math|{{overline|'''5'''}}<sub>−3</sub>}} and {{math|'''24'''<sub>0</sub>}} is purely a physicist's convention, not a mathematician's convention, where representations are either labelled by [[Young tableau]]x or [[Dynkin diagram]]s with numbers on their vertices, and is a standard used by GUT theorists. Since the [[homotopy group]] :<math>\pi_2\left(\frac{[SU(5)\times U(1)_\chi]/\mathbf{Z}_5}{[SU(3)\times SU(2)\times U(1)_Y]/\mathbf{Z}_6}\right)=0</math> this model does not predict [[Magnetic monopole|monopoles]]. See [['t Hooft–Polyakov monopole]]. [[File:proton decay3.svg|left|frame|Dimension 6 proton decay mediated by the {{mvar|X}} boson <math>(3,2)_{\frac{1}{6}}</math> in flipped {{math|SU(5)}} GUT]] ==Minimal supersymmetric flipped SU(5)== ===Spacetime=== The {{math|''N'' {{=}} 1}} superspace extension of {{math|3 + 1}} Minkowski spacetime ===Spatial symmetry=== {{math|''N'' {{=}} 1}} SUSY over {{math|3 + 1}} Minkowski spacetime with [[R-symmetry]] ===Gauge symmetry group=== {{math|(SU(5) × U(1)<sub>χ</sub>)/'''Z'''<sub>5</sub>}} ===Global internal symmetry=== {{math|'''Z'''<sub>2</sub>}} (matter parity) not related to {{math|U(1)<sub>R</sub>}} in any way for this particular model ===Vector superfields=== Those associated with the {{math|SU(5) × U(1)<sub>''χ''</sub>}} gauge symmetry ===Chiral superfields=== As complex representations: {| class="wikitable sortable" !label||description||multiplicity||{{math|SU(5) × U(1)<sub>''χ''</sub>}} rep||{{math|'''Z'''<sub>2</sub>}} rep||{{math|U(1)<sub>R</sub>}} |- align=center |{{math|'''10'''<sub>H</sub>}}||GUT Higgs field||{{math|1}}||{{math|'''10'''<sub>1</sub>}}||+||{{math|0}} |- align=center |{{math|{{overline|'''10'''}}<sub>H</sub>}}||GUT Higgs field||{{math|1}}||{{math|{{overline|'''10'''}}<sub>−1</sub>}}||+||{{math|0}} |- align=center |{{math|H<sub>u</sub>}}||electroweak Higgs field||{{math|1}}||{{math|{{overline|'''5'''}}<sub>2</sub>}}||+||{{math|2}} |- align=center |{{math|H<sub>d</sub>}}||electroweak Higgs field||{{math|1}}||{{math|'''5'''<sub>−2</sub>}}||+||{{math|2}} |- align=center |{{math|{{overline|'''5'''}}}}||matter fields||{{math|3}}||{{math|{{overline|'''5'''}}<sub>−3</sub>}}||-||{{math|0}} |- align=center |{{math|'''10'''}}||matter fields||{{math|3}}||{{math|'''10'''<sub>1</sub>}}||-||{{math|0}} |- align=center |{{math|'''1'''}}||left-handed positron||{{math|3}}||{{math|'''1'''<sub>5</sub>}}||-||{{math|0}} |- align=center |{{mvar|φ}}||sterile neutrino (optional)||{{math|3}}||{{math|'''1'''<sub>0</sub>}}||-||{{math|2}} |- align=center |{{mvar|S}}||singlet||{{math|1}}||{{math|'''1'''<sub>0</sub>}}||+||{{math|2}} |} ===Superpotential=== A generic invariant renormalizable superpotential is a (complex) {{math|SU(5) × U(1)<sub>''χ''</sub> × '''Z'''<sub>2</sub>}} invariant cubic polynomial in the superfields which has an {{math|R}}-charge of 2. It is a linear combination of the following terms: <math>\begin{matrix} S&S\\ S 10_H \overline{10}_H & S 10_H^{\alpha\beta} \overline{10}_{H\alpha\beta}\\ 10_H 10_H H_d&\epsilon_{\alpha\beta\gamma\delta\epsilon}10_H^{\alpha\beta}10_H^{\gamma\delta} H_d^{\epsilon}\\ \overline{10}_H\overline{10}_H H_u&\epsilon^{\alpha\beta\gamma\delta\epsilon}\overline{10}_{H\alpha\beta}\overline{10}_{H\gamma\delta}H_{u\epsilon}\\ H_d 10 10&\epsilon_{\alpha\beta\gamma\delta\epsilon}H_d^{\alpha}10_i^{\beta\gamma}10_j^{\delta\epsilon}\\ H_d \bar{5} 1 &H_d^\alpha \bar{5}_{i\alpha} 1_j\\ H_u 10 \bar{5}&H_{u\alpha} 10_i^{\alpha\beta} \bar{5}_{j\beta}\\ \overline{10}_H 10 \phi&\overline{10}_{H\alpha\beta} 10_i^{\alpha\beta} \phi_j\\ \end{matrix} </math> The second column expands each term in index notation (neglecting the proper normalization coefficient). {{mvar|i}} and {{mvar|j}} are the generation indices. The coupling {{math|H<sub>d</sub> '''10'''<sub>''i''</sub> '''10'''<sub>''j''</sub>}} has coefficients which are symmetric in {{mvar|i}} and {{mvar|j}}. In those models without the optional {{mvar|φ}} sterile neutrinos, we add the [[nonrenormalizable]] couplings instead. <math>\begin{matrix} (\overline{10}_H 10)(\overline{10}_H 10)&\overline{10}_{H\alpha\beta}10^{\alpha\beta}_i \overline{10}_{H\gamma\delta} 10^{\gamma\delta}_j\\ \overline{10}_H 10 \overline{10}_H 10&\overline{10}_{H\alpha\beta}10^{\beta\gamma}_i\overline{10}_{H\gamma\delta}10^{\delta\alpha}_j \end{matrix}</math> These couplings do break the R-symmetry. ==See also== * [[Flipped SO(10)]] == References == {{Reflist}} {{DEFAULTSORT:Flipped Su(5)}} [[Category:Grand Unified Theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:ISBN
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)