Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Forward rate
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Future yield on a bond}} {{distinguish|forward price|forward exchange rate}} The '''forward rate''' is the future yield on a [[bond (finance)|bond]]. It is calculated using the [[yield curve]]. For example, the yield on a three-month [[Treasury bill]] six months from now is a ''forward rate''.<ref>{{Citation |last=Fabozzi |first=Vamsi.K|title=The Handbook of Fixed Income Securities |edition=Seventh |location=New York |publisher=kvrv |year=2012 |isbn=978-0-07-144099-8 |page=148 }}.</ref> ==Forward rate calculation== To extract the forward rate, we need the [[Zero-coupon bond|zero-coupon]] [[yield curve]]. We are trying to find the future interest rate <math>r_{1,2}</math> for time period <math>(t_1, t_2)</math>, <math>t_1</math> and <math>t_2</math> expressed in '''years''', given the rate <math>r_1</math> for time period <math>(0, t_1)</math> and rate <math>r_2</math> for time period <math>(0, t_2)</math>. To do this, we use the property that the proceeds from investing at rate <math>r_1</math> for time period <math>(0, t_1)</math> and then '''reinvesting''' those proceeds at rate <math>r_{1,2}</math> for time period <math>(t_1, t_2)</math> is equal to the proceeds from investing at rate <math>r_2</math> for time period <math>(0, t_2)</math>. <math>r_{1,2}</math> depends on the rate calculation mode ('''simple''', '''yearly compounded''' or '''continuously compounded'''), which yields three different results. Mathematically it reads as follows: ===Simple rate=== : <math>(1+r_1t_1)(1+ r_{1,2}(t_2-t_1)) = 1+r_2t_2</math> Solving for <math>r_{1,2}</math> yields: Thus <math>r_{1,2} = \frac{1}{t_2-t_1}\left(\frac{1+r_2t_2}{1+r_1t_1}-1\right)</math> The discount factor formula for period (0, t) <math>\Delta_t</math> expressed in years, and rate <math>r_t</math> for this period being <math>DF(0, t)=\frac{1}{(1+r_t \, \Delta_t)}</math>, the forward rate can be expressed in terms of discount factors: <math>r_{1,2} = \frac{1}{t_2-t_1}\left(\frac{DF(0, t_1)}{DF(0, t_2)}-1\right)</math> ===Yearly compounded rate=== : <math>(1+r_1)^{t_1}(1+r_{1,2})^{t_2-t_1} = (1+r_2)^{t_2}</math> Solving for <math>r_{1,2}</math> yields : : <math>r_{1,2} = \left(\frac{(1+r_2)^{t_2}}{(1+r_1)^{t_1}}\right)^{1/(t_2-t_1)} - 1</math> The discount factor formula for period (0,''t'') <math>\Delta_t</math> expressed in years, and rate <math>r_t</math> for this period being <math>DF(0, t)=\frac{1}{(1+r_t)^{\Delta_t}}</math>, the forward rate can be expressed in terms of discount factors: : <math>r_{1,2}=\left(\frac{DF(0, t_1)}{DF(0, t_2)}\right)^{1/(t_2-t_1)}-1</math> ===Continuously compounded rate=== :<math>e^{r_2 \cdot t_2} = e^{r_1 \cdot t_1} \cdot \ e^{r_{1,2} \cdot \left(t_2 - t_1 \right)}</math> Solving for <math>r_{1,2}</math> yields: :'''STEP 1β''' <math>e^{r_2 \cdot t_2} = e^{r_1 \cdot t_1 + r_{1,2} \cdot \left(t_2 - t_1 \right)}</math> :'''STEP 2β''' <math>\ln \left(e^{r_2 \cdot t_2} \right) = \ln \left(e^{r_1 \cdot t_1 + r_{1,2} \cdot \left(t_2 - t_1 \right)}\right)</math> :'''STEP 3β''' <math>r_2 \cdot t_2 = r_1 \cdot t_1 + r_{1,2} \cdot \left(t_2 - t_1 \right)</math> :'''STEP 4β''' <math>r_{1,2} \cdot \left(t_2 - t_1 \right) = r_2 \cdot t_2 - r_1 \cdot t_1</math> :'''STEP 5β''' <math>r_{1,2} = \frac{ r_2 \cdot t_2 - r_1 \cdot t_1}{t_2 - t_1}</math> The discount factor formula for period (0,''t'') <math>\Delta_t</math> expressed in years, and rate <math>r_t</math> for this period being <math>DF(0, t)=e^{-r_t\,\Delta_t}</math>, the forward rate can be expressed in terms of discount factors: : <math>r_{1,2} = \frac{\ln \left(DF \left(0, t_1 \right)\right) - \ln \left(DF \left(0, t_2 \right)\right)}{t_2 - t_1} = \frac{- \ln \left( \frac{ DF \left(0, t_2 \right)}{ DF \left(0, t_1 \right)} \right)}{t_2 - t_1} </math> <math>r_{1,2} </math> is the forward rate between time <math> t_1 </math> and time <math> t_2 </math>, <math> r_k </math> is the zero-coupon yield for the time period <math> (0, t_k) </math>, (''k'' = 1,2). == Related instruments == * [[Forward rate agreement]] * [[Floating rate note]] == See also == *[[Forward price]] *[[Spot rate]] == References == {{Reflist}} [[Category:Financial economics]] [[Category:Swaps (finance)]] [[Category:Fixed income analysis]] [[Category:Interest rates]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Distinguish
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)