Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Functional derivative
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Concept in calculus of variation}} In the [[calculus of variations]], a field of [[mathematical analysis]], the '''functional derivative''' (or '''variational derivative''')<ref name="GiaquintaHildebrandtP18">{{harvp|Giaquinta|Hildebrandt|1996|p=18}}</ref> relates a change in a [[Functional (mathematics)|functional]] (a functional in this sense is a function that acts on functions) to a change in a [[Function (mathematics)|function]] on which the functional depends. In the calculus of variations, functionals are usually expressed in terms of an [[integral]] of functions, their [[Argument of a function|arguments]], and their [[derivative]]s. In an integrand {{math|''L''}} of a functional, if a function {{math|''f''}} is varied by adding to it another function {{math|''δf''}} that is arbitrarily small, and the resulting integrand is expanded in powers of {{math|''δf''}}, the coefficient of {{math|''δf''}} in the first order term is called the functional derivative. For example, consider the functional <math display="block"> J[f] = \int_a^b L( \, x, f(x), f'{(x)} \, ) \, dx \, , </math> where {{math|''f'' ′(''x'') ≡ ''df''/''dx''}}. If {{math|''f''}} is varied by adding to it a function {{math|''δf''}}, and the resulting integrand {{math|''L''(''x'', ''f'' +''δf'', ''f'' ′+''δf'' ′)}} is expanded in powers of {{math|''δf''}}, then the change in the value of {{math|''J''}} to first order in {{math|''δf''}} can be expressed as follows:<ref name="GiaquintaHildebrandtP18" /><ref Group = 'Note'>According to {{Harvp|Giaquinta|Hildebrandt|1996|p=18}}, this notation is customary in [[Physics|physical]] literature.</ref> <math display="block">\begin{align} \delta J &= \int_a^b \left( \frac{\partial L}{\partial f} \delta f(x) + \frac{\partial L}{\partial f'} \frac{d}{dx} \delta f(x) \right) \, dx \, \\[1ex] &= \int_a^b \left( \frac{\partial L}{\partial f} - \frac{d}{dx} \frac{\partial L}{\partial f'} \right) \delta f(x) \, dx \, + \, \frac{\partial L}{\partial f'} (b) \delta f(b) \, - \, \frac{\partial L}{\partial f'} (a) \delta f(a) \end{align} </math> where the variation in the derivative, {{math|''δf'' ′}} was rewritten as the derivative of the variation {{math|(''δf'') ′}}, and [[integration by parts]] was used in these derivatives. ==Definition== In this section, the functional differential (or variation or first variation)<Ref Group = 'Note'> Called ''first variation'' in {{harv|Giaquinta|Hildebrandt|1996|p=3}}, ''variation'' or ''first variation'' in {{harv|Courant|Hilbert|1953|p=186}}, ''variation'' or ''differential'' in {{harv|Gelfand|Fomin|2000|loc= p. 11, § 3.2}} and ''differential'' in {{harv|Parr|Yang|1989|p=246}}.</ref> is defined. Then the functional derivative is defined in terms of the functional differential. ===Functional differential=== Suppose <math>B</math> is a [[Banach space]] and <math>F</math> is a [[Functional (mathematics)|functional]] defined on <math>B</math>. The differential of <math>F</math> at a point <math>\rho\in B</math> is the [[linear functional]] <math>\delta F[\rho,\cdot]</math> on <math>B</math> defined<ref name="GelfandFominp11">{{harvp|Gelfand|Fomin|2000|p=11}}.</ref> by the condition that, for all <math>\phi\in B</math>, <math display="block"> F[\rho+\phi] - F[\rho] = \delta F [\rho; \phi] + \varepsilon \left\|\phi\right\| </math> where <math>\varepsilon</math> is a real number that depends on <math>\|\phi\|</math> in such a way that <math>\varepsilon\to 0</math> as <math>\|\phi\|\to 0</math>. This means that <math>\delta F[\rho,\cdot]</math> is the [[Fréchet derivative]] of <math>F</math> at <math>\rho</math>. However, this notion of functional differential is so strong it may not exist,<ref name="GiaquintaHildebrandtP180">{{harvp|Giaquinta|Hildebrandt|1996|p=10}}.</ref> and in those cases a weaker notion, like the [[Gateaux derivative]] is preferred. In many practical cases, the functional differential is defined<ref name="GiaquintaHildebrandtP3">{{harvp|Giaquinta|Hildebrandt|1996|p=10}}.</ref> as the directional derivative <math display="block"> \begin{align} \delta F[\rho,\phi] &= \lim_{\varepsilon\to 0}\frac{F[\rho+\varepsilon \phi]-F[\rho]}{\varepsilon} \\[1ex] &= \left [ \frac{d}{d\varepsilon}F[\rho+\varepsilon \phi]\right ]_{\varepsilon=0}. \end{align} </math> Note that this notion of the functional differential can even be defined without a norm. ===Functional derivative=== In many applications, the domain of the functional <math>F</math> is a space of differentiable functions <math>\rho</math> defined on some space <math>\Omega</math> and <math>F</math> is of the form <math display="block"> F[\rho] = \int_\Omega L(x,\rho(x),D\rho(x))\,dx </math> for some function <math>L(x,\rho(x),D\rho(x))</math> that may depend on <math>x</math>, the value <math>\rho(x)</math> and the derivative <math>D\rho(x)</math>. If this is the case and, moreover, <math>\delta F[\rho,\phi]</math> can be written as the integral of <math>\phi</math> times another function (denoted {{math|''δF''/''δρ''}}) <math display="block">\delta F [\rho, \phi] = \int_\Omega \frac {\delta F} {\delta \rho}(x) \ \phi(x) \ dx</math> then this function {{math|''δF''/''δρ''}} is called the '''functional derivative''' of {{math|''F''}} at {{math|''ρ''}}.<ref name=ParrYangP246A.2>{{harvp|Parr|Yang|1989|loc= p. 246, Eq. A.2}}.</ref><ref name=GreinerReinhardtP36.2>{{harvp|Greiner|Reinhardt|1996|p=36,37}}.</ref> If <math>F</math> is restricted to only certain functions <math>\rho</math> (for example, if there are some boundary conditions imposed) then <math>\phi</math> is restricted to functions such that <math>\rho+\varepsilon\phi</math> continues to satisfy these conditions. Heuristically, <math>\phi</math> is the change in <math>\rho</math>, so we 'formally' have <math>\phi = \delta\rho</math>, and then this is similar in form to the [[total differential]] of a function <math>F(\rho_1,\rho_2,\dots,\rho_n)</math>, <math display="block"> dF = \sum_{i=1} ^n \frac {\partial F} {\partial \rho_i} \ d\rho_i ,</math> where <math>\rho_1,\rho_2,\dots,\rho_n</math> are independent variables. Comparing the last two equations, the functional derivative <math>\delta F/\delta\rho(x)</math> has a role similar to that of the partial derivative <math>\partial F/\partial\rho_i</math>, where the variable of integration <math>x</math> is like a continuous version of the summation index <math>i</math>.<ref name=ParrYangP246>{{harvp|Parr|Yang|1989|p=246}}.</ref> One thinks of {{math|''δF''/''δρ''}} as the gradient of {{math|''F''}} at the point {{math|''ρ''}}, so the value {{math|''δF''/''δρ(x)''}} measures how much the functional {{math|''F''}} will change if the function {{math|''ρ''}} is changed at the point {{math|''x''}}. Hence the formula <math display="block">\int \frac{\delta F}{\delta\rho}(x) \phi(x) \; dx</math> is regarded as the directional derivative at point <math>\rho</math> in the direction of <math>\phi</math>. This is analogous to vector calculus, where the inner product of a vector <math>v</math> with the gradient gives the directional derivative in the direction of <math>v</math>. ==Properties== Like the derivative of a function, the functional derivative satisfies the following properties, where {{math|''F''[''ρ'']}} and {{math|''G''[''ρ'']}} are functionals:<ref group="Note"> Here the notation <math display="block">\frac{\delta{F}}{\delta\rho}(x) \equiv \frac{\delta{F}}{\delta\rho(x)}</math> is introduced. </ref> * Linearity:<ref name=ParrYangP247A.3>{{harvp|Parr|Yang|1989|loc= p. 247, Eq. A.3}}.</ref> <math display="block">\frac{\delta(\lambda F + \mu G)[\rho ]}{\delta \rho(x)} = \lambda \frac{\delta F[\rho]}{\delta \rho(x)} + \mu \frac{\delta G[\rho]}{\delta \rho(x)},</math> where {{math|''λ'', ''μ''}} are constants. * Product rule:<ref name=ParrYangP247A.4>{{harvp|Parr|Yang|1989|loc= p. 247, Eq. A.4}}.</ref> <math display="block">\frac{\delta(FG)[\rho]}{\delta \rho(x)} = \frac{\delta F[\rho]}{\delta \rho(x)} G[\rho] + F[\rho] \frac{\delta G[\rho]}{\delta \rho(x)} \, , </math> * Chain rules: **If {{math|''F''}} is a functional and {{math|''G''}} another functional, then<ref>{{harvp|Greiner|Reinhardt|1996|loc=p. 38, Eq. 6}}.</ref> <math display="block">\frac{\delta F[G[\rho]] }{\delta\rho(y)} = \int dx \frac{\delta F[G]}{\delta G(x)}_{G = G[\rho]}\cdot\frac {\delta G[\rho](x)} {\delta\rho(y)} \ . </math> **If {{math|''G''}} is an ordinary differentiable function (local functional) {{math|''g''}}, then this reduces to<ref>{{harvp|Greiner|Reinhardt|1996|loc=p. 38, Eq. 7}}.</ref> <math display="block">\frac{\delta F[g(\rho)] }{\delta\rho(y)} = \frac{\delta F[g(\rho)]}{\delta g[\rho(y) ]} \ \frac {dg(\rho)} {d\rho(y)} \ . </math> ==Determining functional derivatives== A formula to determine functional derivatives for a common class of functionals can be written as the integral of a function and its derivatives. This is a generalization of the [[Euler–Lagrange equation]]: indeed, the functional derivative was introduced in [[physics]] within the derivation of the [[Joseph-Louis Lagrange|Lagrange]] equation of the second kind from the [[principle of least action]] in [[Lagrangian mechanics]] (18th century). The first three examples below are taken from [[density functional theory]] (20th century), the fourth from [[statistical mechanics]] (19th century). ===Formula=== Given a functional <math display="block">F[\rho] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}) )\, d\boldsymbol{r},</math> and a function <math>\phi(\boldsymbol{r})</math> that vanishes on the boundary of the region of integration, from a previous section [[#Definition|Definition]], <math display="block">\begin{align} \int \frac{\delta F}{\delta\rho(\boldsymbol{r})} \, \phi(\boldsymbol{r}) \, d\boldsymbol{r} & = \left [ \frac{d}{d\varepsilon} \int f( \boldsymbol{r}, \rho + \varepsilon \phi, \nabla\rho+\varepsilon\nabla\phi )\, d\boldsymbol{r} \right ]_{\varepsilon=0} \\ & = \int \left( \frac{\partial f}{\partial\rho} \, \phi + \frac{\partial f}{\partial\nabla\rho} \cdot \nabla\phi \right) d\boldsymbol{r} \\ & = \int \left[ \frac{\partial f}{\partial\rho} \, \phi + \nabla \cdot \left( \frac{\partial f}{\partial\nabla\rho} \, \phi \right) - \left( \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi \right] d\boldsymbol{r} \\ & = \int \left[ \frac{\partial f}{\partial\rho} \, \phi - \left( \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi \right] d\boldsymbol{r} \\ & = \int \left( \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi(\boldsymbol{r}) \ d\boldsymbol{r} \, . \end{align}</math> The second line is obtained using the [[total derivative]], where {{math|''∂f'' /''∂∇ρ''}} is a [[Matrix calculus#Scalar-by-vector|derivative of a scalar with respect to a vector]].<ref group="Note">For a three-dimensional Cartesian coordinate system, <math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math> where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref> The third line was obtained by use of a [[Divergence#Properties|product rule for divergence]]. The fourth line was obtained using the [[divergence theorem]] and the condition that <math>\phi=0</math> on the boundary of the region of integration. Since <math>\phi</math> is also an arbitrary function, applying the [[fundamental lemma of calculus of variations]] to the last line, the functional derivative is <math display="block">\frac{\delta F}{\delta\rho(\boldsymbol{r})} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} </math> where {{math|1=''ρ'' = ''ρ''('''''r''''')}} and {{math|1=''f'' = ''f'' ('''''r''''', ''ρ'', ∇''ρ'')}}. This formula is for the case of the functional form given by {{math|''F''[''ρ'']}} at the beginning of this section. For other functional forms, the definition of the functional derivative can be used as the starting point for its determination. (See the example [[#Coulomb potential energy functional|Coulomb potential energy functional]].) The above equation for the functional derivative can be generalized to the case that includes higher dimensions and higher order derivatives. The functional would be, <math display="block">F[\rho(\boldsymbol{r})] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}), \nabla^{(2)}\rho(\boldsymbol{r}), \dots, \nabla^{(N)}\rho(\boldsymbol{r}))\, d\boldsymbol{r},</math> where the vector {{math|'''''r''''' ∈ '''R'''<sup>''n''</sup>}}, and {{math|∇<sup>(''i'')</sup>}} is a tensor whose {{math|''n<sup>i</sup>''}} components are partial derivative operators of order {{math|''i''}}, <math display="block"> \left [ \nabla^{(i)} \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial^{\, i}} {\partial r_{\alpha_1} \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \qquad \qquad \text{where} \quad \alpha_1, \alpha_2, \dots, \alpha_i = 1, 2, \dots , n \ . </math><ref group="Note">For example, for the case of three dimensions ({{math|1=''n'' = 3}}) and second order derivatives ({{math|1=''i'' = 2}}), the tensor {{math|∇<sup>(2)</sup>}} has components, <math display="block"> \left [ \nabla^{(2)} \right ]_{\alpha \beta} = \frac {\partial^{\,2}} {\partial r_{\alpha} \, \partial r_{\beta}} </math>where <math>\alpha</math> and <math>\beta</math> can be <math>1,2,3</math>.</ref> An analogous application of the definition of the functional derivative yields <math display="block">\begin{align} \frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} + \dots + (-1)^N \nabla^{(N)} \cdot \frac{\partial f}{\partial\left(\nabla^{(N)}\rho\right)} \\ &{} = \frac{\partial f}{\partial\rho} + \sum_{i=1}^N (-1)^{i}\nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} \ . \end{align}</math> In the last two equations, the {{math|''n<sup>i</sup>''}} components of the tensor <math> \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} </math> are partial derivatives of {{math|''f''}} with respect to partial derivatives of ''ρ'', <math display="block"> \left [ \frac {\partial f} {\partial \left (\nabla^{(i)}\rho \right ) } \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } </math> where <math> \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} \equiv \frac {\partial^{\,i}\rho} {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } </math>, and the tensor scalar product is, <math display="block"> \nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} = \sum_{\alpha_1, \alpha_2, \cdots, \alpha_i = 1}^n \ \frac {\partial^{\, i} } {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \ . </math> <ref group="Note">For example, for the case {{math|1=''n'' = 3}} and {{math|1=''i'' = 2}}, the tensor scalar product is, <math display="block"> \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} = \sum_{\alpha, \beta = 1}^3 \ \frac {\partial^{\, 2} } {\partial r_{\alpha} \, \partial r_{\beta} } \, \frac {\partial f} {\partial \rho_{\alpha \beta} } , </math>where <math>\rho_{\alpha \beta} \equiv \frac {\partial^{\, 2}\rho} {\partial r_{\alpha} \, \partial r_{\beta} }</math>.</ref> ===Examples=== ====Thomas–Fermi kinetic energy functional==== The [[Thomas–Fermi model]] of 1927 used a kinetic energy functional for a noninteracting uniform [[free electron model|electron gas]] in a first attempt of [[density-functional theory]] of electronic structure: <math display="block">T_\mathrm{TF}[\rho] = C_\mathrm{F} \int \rho^{5/3}(\mathbf{r}) \, d\mathbf{r} \, .</math> Since the integrand of {{math|''T''<sub>TF</sub>[''ρ'']}} does not involve derivatives of {{math|''ρ''('''''r''''')}}, the functional derivative of {{math|''T''<sub>TF</sub>[''ρ'']}} is,<ref name=ParrYangP247A.6>{{harvp|Parr|Yang|1989|loc=p. 247, Eq. A.6}}.</ref> <math display="block">\frac{\delta T_{\mathrm{TF}}}{\delta \rho (\boldsymbol{r}) } = C_\mathrm{F} \frac{\partial \rho^{5/3}(\mathbf{r})}{\partial \rho(\mathbf{r})} = \frac{5}{3} C_\mathrm{F} \rho^{2/3}(\mathbf{r}) \, .</math> ====Coulomb potential energy functional==== The '''electron-nucleus''' potential energy is <math display="block">V[\rho] = \int \frac{\rho(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r}.</math> Applying the definition of functional derivative, <math display="block">\begin{align} \int \frac{\delta V}{\delta \rho(\boldsymbol{r})} \ \phi(\boldsymbol{r}) \ d\boldsymbol{r} & {} = \left [ \frac{d}{d\varepsilon} \int \frac{\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r} \right ]_{\varepsilon=0} \\[1ex] & {} = \int \frac {\phi(\boldsymbol{r})} {|\boldsymbol{r}|} \ d\boldsymbol{r} \, . \end{align}</math> So, <math display="block"> \frac{\delta V}{\delta \rho(\boldsymbol{r})} = \frac{1}{|\boldsymbol{r}|} \ . </math> The functional derivative of the classical part of the '''electron-electron interaction''' (often called Hartree energy) is <math display="block">J[\rho] = \frac{1}{2}\iint \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |}\, d\mathbf{r} d\mathbf{r}' \, .</math> From the [[#Functional derivative|definition of the functional derivative]], <math display="block">\begin{align} \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} & {} = \left [ \frac {d \ }{d\varepsilon} \, J[\rho + \varepsilon\phi] \right ]_{\varepsilon = 0} \\ & {} = \left [ \frac {d \ }{d\varepsilon} \, \left ( \frac{1}{2}\iint \frac {[\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})] \, [\rho(\boldsymbol{r}') + \varepsilon \phi(\boldsymbol{r}')] }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \right ) \right ]_{\varepsilon = 0} \\ & {} = \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}') \phi(\boldsymbol{r}) }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' + \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}) \phi(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \\ \end{align}</math> The first and second terms on the right hand side of the last equation are equal, since {{math|'''''r'''''}} and {{math|'''''r′'''''}} in the second term can be interchanged without changing the value of the integral. Therefore, <math display="block"> \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} = \int \left ( \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \right ) \phi(\boldsymbol{r}) d\boldsymbol{r} </math> and the functional derivative of the electron-electron Coulomb potential energy functional {{math|''J''}}[''ρ''] is,<ref name=ParrYangP248A.11>{{harvp|Parr|Yang|1989|loc=p. 248, Eq. A.11}}.</ref> <math display="block"> \frac{\delta J}{\delta\rho(\boldsymbol{r})} = \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \, . </math> The second functional derivative is <math display="block">\frac{\delta^2 J[\rho]}{\delta \rho(\mathbf{r}')\delta\rho(\mathbf{r})} = \frac{\partial}{\partial \rho(\mathbf{r}')} \left ( \frac{\rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |} \right ) = \frac{1}{| \mathbf{r}-\mathbf{r}' |}.</math> ====von Weizsäcker kinetic energy functional==== In 1935 [[Carl Friedrich von Weizsacker|von Weizsäcker]] proposed to add a gradient correction to the Thomas-Fermi kinetic energy functional to make it better suit a molecular electron cloud: <math display="block">T_\mathrm{W}[\rho] = \frac{1}{8} \int \frac{\nabla\rho(\mathbf{r}) \cdot \nabla\rho(\mathbf{r})}{ \rho(\mathbf{r}) } d\mathbf{r} = \int t_\mathrm{W}(\mathbf{r}) \ d\mathbf{r} \, ,</math> where <math display="block"> t_\mathrm{W} \equiv \frac{1}{8} \frac{\nabla\rho \cdot \nabla\rho}{ \rho } \qquad \text{and} \ \ \rho = \rho(\boldsymbol{r}) \ . </math> Using a previously derived [[#Formula|formula]] for the functional derivative, <math display="block">\begin{align} \frac{\delta T_\mathrm{W}}{\delta \rho} & = \frac{\partial t_\mathrm{W}}{\partial \rho} - \nabla\cdot\frac{\partial t_\mathrm{W}}{\partial \nabla \rho} \\ & = -\frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \left ( \frac {1}{4} \frac {\nabla^2\rho} {\rho} - \frac {1}{4} \frac {\nabla\rho \cdot \nabla\rho} {\rho^2} \right ) \qquad \text{where} \ \ \nabla^2 = \nabla \cdot \nabla \ , \end{align}</math> and the result is,<ref name=ParrYangP247A.9>{{harvp|Parr|Yang|1989|loc= p. 247, Eq. A.9}}.</ref> <math display="block"> \frac{\delta T_\mathrm{W}}{\delta \rho} = \ \ \, \frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \frac{1}{4}\frac{\nabla^2\rho}{\rho} \ . </math> ====Entropy==== The [[information entropy|entropy]] of a discrete [[random variable]] is a functional of the [[probability mass function]]. <math display="block">H[p(x)] = -\sum_x p(x) \log p(x)</math> Thus, <math display="block">\begin{align} \sum_x \frac{\delta H}{\delta p(x)} \, \phi(x) & {} = \left[ \frac{d}{d\varepsilon} H[p(x) + \varepsilon\phi(x)] \right]_{\varepsilon=0}\\ & {} = \left [- \, \frac{d}{d\varepsilon} \sum_x \, [p(x) + \varepsilon\phi(x)] \ \log [p(x) + \varepsilon\phi(x)] \right]_{\varepsilon=0} \\ & {} = -\sum_x \, [1+\log p(x)] \ \phi(x) \, . \end{align}</math> Thus, <math display="block">\frac{\delta H}{\delta p(x)} = -1-\log p(x).</math> ==== Exponential ==== Let <math display="block"> F[\varphi(x)]= e^{\int \varphi(x) g(x)dx}.</math> Using the delta function as a test function, <math display="block">\begin{align} \frac{\delta F[\varphi(x)]}{\delta \varphi(y)} & {} = \lim_{\varepsilon\to 0}\frac{F[\varphi(x)+\varepsilon\delta(x-y)]-F[\varphi(x)]}{\varepsilon}\\ & {} = \lim_{\varepsilon\to 0}\frac{e^{\int (\varphi(x)+\varepsilon\delta(x-y)) g(x)dx}-e^{\int \varphi(x) g(x)dx}}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}\lim_{\varepsilon\to 0}\frac{e^{\varepsilon \int \delta(x-y) g(x)dx}-1}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}\lim_{\varepsilon\to 0}\frac{e^{\varepsilon g(y)}-1}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}g(y). \end{align}</math> Thus, <math display="block"> \frac{\delta F[\varphi(x)]}{\delta \varphi(y)} = g(y) F[\varphi(x)]. </math> This is particularly useful in calculating the [[Correlation function (quantum field theory)|correlation functions]] from the [[Partition function (quantum field theory)|partition function]] in [[quantum field theory]]. ====Functional derivative of a function==== A function can be written in the form of an integral like a functional. For example, <math display="block">\rho(\boldsymbol{r}) = F[\rho] = \int \rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')\, d\boldsymbol{r}'.</math> Since the integrand does not depend on derivatives of ''ρ'', the functional derivative of ''ρ''{{math|('''''r''''')}} is, <math display="block">\frac {\delta \rho(\boldsymbol{r})} {\delta\rho(\boldsymbol{r}')} \equiv \frac {\delta F} {\delta\rho(\boldsymbol{r}')} = \frac{\partial \ \ }{\partial \rho(\boldsymbol{r}')} \, [\rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')] = \delta(\boldsymbol{r}-\boldsymbol{r}').</math> ==== Functional derivative of iterated function==== The functional derivative of the iterated function <math>f(f(x))</math> is given by: <math display="block">\frac{\delta f(f(x))}{\delta f(y) } = f'(f(x))\delta(x-y) + \delta(f(x)-y)</math> and <math display="block">\frac{\delta f(f(f(x)))}{\delta f(y) } = f'(f(f(x))(f'(f(x))\delta(x-y) + \delta(f(x)-y)) + \delta(f(f(x))-y)</math> In general: <math display="block">\frac{\delta f^N(x)}{\delta f(y)} = f'( f^{N-1}(x) ) \frac{ \delta f^{N-1}(x)}{\delta f(y)} + \delta( f^{N-1}(x) - y ) </math> Putting in {{math|1=''N'' = 0}} gives: <math display="block"> \frac{\delta f^{-1}(x)}{\delta f(y) } = - \frac{ \delta(f^{-1}(x)-y ) }{ f'(f^{-1}(x)) }</math> ==Using the delta function as a test function== In physics, it is common to use the [[Dirac delta function]] <math>\delta(x-y)</math> in place of a generic test function <math>\phi(x)</math>, for yielding the functional derivative at the point <math>y</math> (this is a point of the whole functional derivative as a [[partial derivative]] is a component of the gradient):<ref>{{harvp|Greiner|Reinhardt|1996|p=37}}</ref> <math display="block">\frac{\delta F[\rho(x)]}{\delta \rho(y)}=\lim_{\varepsilon\to 0}\frac{F[\rho(x)+\varepsilon\delta(x-y)]-F[\rho(x)]}{\varepsilon}.</math> This works in cases when <math>F[\rho(x)+\varepsilon f(x)]</math> formally can be expanded as a series (or at least up to first order) in <math>\varepsilon</math>. The formula is however not mathematically rigorous, since <math>F[\rho(x)+\varepsilon\delta(x-y)]</math> is usually not even defined. The definition given in a previous section is based on a relationship that holds for all test functions <math>\phi(x)</math>, so one might think that it should hold also when <math>\phi(x)</math> is chosen to be a specific function such as the [[Dirac delta function|delta function]]. However, the latter is not a valid test function (it is not even a proper function). In the definition, the functional derivative describes how the functional <math>F[\rho(x)]</math> changes as a result of a small change in the entire function <math>\rho(x)</math>. The particular form of the change in <math>\rho(x)</math> is not specified, but it should stretch over the whole interval on which <math>x</math> is defined. Employing the particular form of the perturbation given by the delta function has the meaning that <math>\rho(x)</math> is varied only in the point <math>y</math>. Except for this point, there is no variation in <math>\rho(x)</math>. ==Notes== {{Reflist|group=Note}} ==Footnotes== {{reflist|29em}} ==References== *{{cite book | last1=Courant | first1=Richard | author-link1=Richard Courant | last2=Hilbert | first2=David | author-link2=David Hilbert | title = Methods of Mathematical Physics | volume = I | edition = First English | publisher = [[Interscience Publishers]], Inc | year = 1953 | location = New York, New York | chapter = Chapter IV. The Calculus of Variations | pages = 164–274 | isbn = 978-0471504474| mr = 0065391 | zbl = 0001.00501}}. *{{Citation | last1 = Frigyik | first1 = Béla A. | last2 = Srivastava | first2 = Santosh | last3 = Gupta | first3 = Maya R. | title = Introduction to Functional Derivatives | place = Seattle, WA | publisher = Department of Electrical Engineering at the University of Washington | series = UWEE Tech Report | volume = UWEETR-2008-0001 | date = January 2008 | pages = 7 | url = https://www.ee.washington.edu/techsite/papers/documents/UWEETR-2008-0001.pdf | access-date = 2013-10-23 | archive-url = https://web.archive.org/web/20170217025324/https://www2.ee.washington.edu/techsite/papers/documents/UWEETR-2008-0001.pdf | archive-date = 2017-02-17 | url-status = dead }}. *{{Citation | last1 = Gelfand | first1 = I. M. | author-link = Israel Gelfand | last2 = Fomin | first2 = S. V. | author2-link = Sergei Fomin | title = Calculus of variations | place = Mineola, N.Y. | publisher = [[Dover Publications]] | series = translated and edited by Richard A. Silverman | orig-year = 1963 | year = 2000 | edition = Revised English | url = http://store.doverpublications.com/0486414485.html | isbn = 978-0486414485 | mr = 0160139 | zbl = 0127.05402 }}. *{{Citation | last1 = Giaquinta | first1 = Mariano | author-link = Mariano Giaquinta | last2 = Hildebrandt | first2 = Stefan | title = Calculus of Variations 1. The Lagrangian Formalism | place = Berlin | publisher = [[Springer-Verlag]] | series = Grundlehren der Mathematischen Wissenschaften | volume = 310 | year = 1996 | edition = 1st | isbn = 3-540-50625-X | mr = 1368401 | zbl = 0853.49001 }}. *{{Citation | last1 = Greiner | first1 = Walter | author-link1 = Walter Greiner | last2 = Reinhardt | first2 = Joachim | title = Field quantization | place = Berlin–Heidelberg–New York | publisher = Springer-Verlag | series = With a foreword by D. A. Bromley | year = 1996 | chapter = Section 2.3 – Functional derivatives | pages = [https://archive.org/details/fieldquantizatio0000grei/page/36 36–38] | chapter-url = https://archive.org/details/fieldquantizatio0000grei/page/36 | isbn = 3-540-59179-6 | mr = 1383589 | zbl = 0844.00006 }}. *{{cite book |first1=R. G.|last1=Parr|first2=W.|last2=Yang| title = Density-Functional Theory of Atoms and Molecules | chapter = Appendix A, Functionals | pages = 246–254 | publisher = Oxford University Press | year = 1989 |location=New York| url = https://books.google.com/books?id=mGOpScSIwU4C&q=Density-Functional+Theory+of+Atoms+and+Molecules | isbn = 978-0195042795}} ==External links== * {{springer|title=Functional derivative|id=p/f042040}} {{Functional analysis}} {{Analysis in topological vector spaces}} [[Category:Calculus of variations]] [[Category:Differential calculus]] [[Category:Differential operators]] [[Category:Topological vector spaces]] [[Category:Variational analysis]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Analysis in topological vector spaces
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Functional analysis
(
edit
)
Template:Harv
(
edit
)
Template:Harvp
(
edit
)
Template:Math
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)