Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Galois extension
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Algebraic field extension}} In [[mathematics]], a '''Galois extension''' is an [[Algebraic extension|algebraic]] [[field extension]] ''E''/''F'' that is [[normal extension|normal]] and [[separable extension|separable]];{{sfn|Lang|2002|p=262}} or equivalently, ''E''/''F'' is algebraic, and the [[Fixed field|field fixed]] by the [[automorphism group]] Aut(''E''/''F'') is precisely the base [[Field (mathematics)|field]] ''F''. The significance of being a Galois extension is that the extension has a [[Galois group]] and obeys the [[fundamental theorem of Galois theory]].{{efn|See the article [[Galois group]] for definitions of some of these terms and some examples.}} A result of [[Emil Artin]] allows one to construct Galois extensions as follows: If ''E'' is a given field, and ''G'' is a finite group of automorphisms of ''E'' with fixed field ''F'', then ''E''/''F'' is a Galois extension.{{sfn|Lang|2002|p=264|loc=Theorem 1.8}} The property of an extension being Galois behaves well with respect to [[Composite field (mathematics)| field composition and intersection]].{{sfn|Milne|2022|p=40f|loc=ch. 3 and 7}} ==Characterization of Galois extensions== An important theorem of [[Emil Artin]] states that for a [[finite extension]] <math>E/F,</math> each of the following statements is equivalent to the statement that <math>E/F</math> is Galois: *<math>E/F</math> is a [[normal extension]] and a [[separable extension]]. *<math>E</math> is a [[splitting field]] of a [[separable polynomial]] with coefficients in <math>F.</math> *<math>|\!\operatorname{Aut}(E/F)| = [E:F],</math> that is, the number of automorphisms equals the [[degree (field theory)|degree]] of the extension. Other equivalent statements are: *Every irreducible polynomial in <math>F[x]</math> with at least one root in <math>E</math> splits over <math>E</math> and is separable. *<math>|\!\operatorname{Aut}(E/F)| \geq [E:F],</math> that is, the number of automorphisms is at least the degree of the extension. *<math>F</math> is the fixed field of a subgroup of <math>\operatorname{Aut}(E).</math> *<math>F</math> is the fixed field of <math>\operatorname{Aut}(E/F).</math> *There is a one-to-one [[Fundamental theorem of Galois theory#Explicit description of the correspondence|correspondence]] between subfields of <math>E/F</math> and subgroups of <math>\operatorname{Aut}(E/F).</math> An infinite field extension <math>E/F</math> is Galois if and only if <math>E</math> is the union of finite Galois subextensions <math>E_i/F</math> indexed by an (infinite) index set <math>I</math>, i.e. <math>E=\bigcup_{i\in I}E_i</math> and the Galois group is an [[inverse limit]] <math>\operatorname{Aut}(E/F)=\varprojlim_{i\in I}{\operatorname{Aut}(E_i/F)}</math> where the inverse system is ordered by field inclusion <math>E_i\subset E_j</math>.{{sfn|Milne|2022|p=102|loc=example 7.26}} ==Examples== There are two basic ways to construct examples of Galois extensions. * Take any field <math>E</math>, any finite subgroup of <math>\operatorname{Aut}(E)</math>, and let <math>F</math> be the fixed field. * Take any field <math>F</math>, any separable polynomial in <math>F[x]</math>, and let <math>E</math> be its [[splitting field]]. [[Adjunction (field theory)|Adjoining]] to the [[rational number field]] the [[square root of 2]] gives a Galois extension, while adjoining the cubic root of 2 gives a non-Galois extension. Both these extensions are separable, because they have [[characteristic zero]]. The first of them is the splitting field of <math>x^2 -2</math>; the second has [[Normal extension|normal closure]] that includes the complex [[Root_of_unity | cubic roots of unity]], and so is not a splitting field. In fact, it has no automorphism other than the identity, because it is contained in the real numbers and <math>x^3 -2</math> has just one real root. For more detailed examples, see the page on the [[fundamental theorem of Galois theory]]. An [[algebraic closure]] <math>\bar K</math> of an arbitrary field <math>K</math> is Galois over <math>K</math> if and only if <math>K</math> is a [[perfect field]]. == Notes == {{Notelist}} == Citations == {{reflist}} == References == {{refbegin}} *{{Lang Algebra|3rd}} {{refend}} == Further reading == {{refbegin|2}} *{{cite book|last=Artin | first=Emil | title=Galois Theory | publisher=Dover Publications | year=1998 | orig-year=1944 | isbn=0-486-62342-4 | authorlink=Emil Artin | mr=1616156 | location=Mineola, NY | others=Edited and with a supplemental chapter by Arthur N. Milgram}} *{{cite book|first=Jörg | last=Bewersdorff | authorlink=Jörg Bewersdorff|title=Galois theory for beginners | others=Translated from the second German (2004) edition by David Kramer | publisher=American Mathematical Society | year=2006 | isbn=0-8218-3817-2 | mr=2251389 | series=Student Mathematical Library | volume=35|doi=10.1090/stml/035| s2cid=118256821 }} *{{cite book | first=Harold M. | last=Edwards | authorlink=Harold Edwards (mathematician) | title=Galois Theory | publisher=Springer-Verlag | location=New York | year=1984 | isbn=0-387-90980-X | mr=0743418 | series=[[Graduate Texts in Mathematics]] | volume=101 | url-access=registration | url=https://archive.org/details/galoistheory00edwa_0 }} ''(Galois' original paper, with extensive background and commentary.)'' *{{cite journal|first= H. Gray | last=Funkhouser | authorlink = Howard G. Funkhouser | title=A short account of the history of symmetric functions of roots of equations | journal=American Mathematical Monthly | year=1930 | volume= 37 | issue=7 | pages=357–365 | doi=10.2307/2299273| publisher= The American Mathematical Monthly, Vol. 37, No. 7| jstor= 2299273 }} *{{springer|title=Galois theory|id=p/g043160}} * {{cite book| first=Nathan | last=Jacobson| title=Basic Algebra I | edition=2nd | publisher=W.H. Freeman and Company | year=1985 | isbn=0-7167-1480-9 | authorlink=Nathan Jacobson}} ''(Chapter 4 gives an introduction to the field-theoretic approach to Galois theory.)'' *{{Cite book| last1=Janelidze | first1=G. | last2=Borceux | first2=Francis | title=Galois theories | publisher=[[Cambridge University Press]] | isbn= 978-0-521-80309-0 | year=2001 }} (This book introduces the reader to the Galois theory of [[Grothendieck]], and some generalisations, leading to Galois [[groupoids]].) *{{Cite book|last1=Lang | first1=Serge | author1-link=Serge Lang | title=Algebraic Number Theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-94225-4 | year=1994 | mr=1282723 | series=Graduate Texts in Mathematics | volume=110 | edition=Second | doi= 10.1007/978-1-4612-0853-2}} *{{cite book|first=Mikhail Mikhaĭlovich | last=Postnikov | title=Foundations of Galois Theory | others=With a foreword by P. J. Hilton. Reprint of the 1962 edition. Translated from the 1960 Russian original by Ann Swinfen | publisher=Dover Publications | year = 2004 | isbn=0-486-43518-0 | mr=2043554}} *{{cite book |last=Milne |first=James S. |date=2022 |title=Fields and Galois Theory (v5.10) |url=https://www.jmilne.org/math/CourseNotes/ft.html}} *{{cite book|first=Joseph | last=Rotman | title =Galois Theory | series=Universitext | edition=Second | publisher=Springer| year=1998 | isbn=0-387-98541-7 | mr=1645586 | doi=10.1007/978-1-4612-0617-0}} *{{Cite book | last1=Völklein | first1=Helmut | title=Groups as Galois groups: an introduction | publisher=[[Cambridge University Press]] | isbn=978-0-521-56280-5 | year=1996 | series=Cambridge Studies in Advanced Mathematics | volume=53 | mr=1405612 | doi=10.1017/CBO9780511471117 | url-access=registration | url=https://archive.org/details/groupsasgaloisgr0000volk }} *{{Cite book| last1=van der Waerden | first1=Bartel Leendert | author1-link=Bartel Leendert van der Waerden | title=Moderne Algebra |language= German | publisher=Springer | year=1931 | location=Berlin }}. '''English translation''' (of 2nd revised edition): {{Cite book | title = Modern algebra | publisher=Frederick Ungar |location= New York |year= 1949}} ''(Later republished in English by Springer under the title "Algebra".)'' *{{Cite web|title=(Some) New Trends in Galois Theory and Arithmetic |first=Florian |last=Pop |authorlink=Florian Pop|url=http://www.math.upenn.edu/~pop/Research/files-Res/Japan01.pdf |year=2001 }} {{refend}} {{DEFAULTSORT:Galois Extension}} [[Category:Galois theory]] [[Category:Algebraic number theory]] [[Category:Field extensions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Efn
(
edit
)
Template:Lang Algebra
(
edit
)
Template:Notelist
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)