Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gell-Mann matrices
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|A basis for the SU(3) Lie algebra}} The '''Gell-Mann matrices''', developed by [[Murray Gell-Mann]], are a set of eight [[Linear independence|linearly independent]] 3×3 [[matrix trace|traceless]] [[Hermitian matrices]] used in the study of the [[strong interaction]] in [[particle physics]]. They span the [[Lie group#The Lie algebra associated with a Lie group|Lie algebra]] of the [[Special_unitary_group#SU(3)|SU(3)]] group in the defining representation. ==Matrices== :{| border="0" cellpadding="8" cellspacing="0" |<math>\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}</math> |<math>\lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}</math> |<math>\lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}</math> |- |<math>\lambda_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}</math> |<math>\lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}</math> | |- |<math>\lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}</math> |<math>\lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}</math> |<math>\lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} .</math> |} ==Properties== {{main|Generalizations of Pauli matrices}} These matrices are [[traceless]], [[Hermitian matrix|Hermitian]], and obey the extra trace orthonormality relation, so they can generate [[unitary matrix]] group elements of [[SU(3)]] through [[Matrix exponential|exponentiation]].<ref name="Scherer-Schindler">{{cite arXiv |author=Stefan Scherer |author2=Matthias R. Schindler |title=A Chiral Perturbation Theory Primer|eprint=hep-ph/0505265|date=31 May 2005|page=1–2}}</ref> These properties were chosen by Gell-Mann because they then naturally generalize the [[Pauli matrices]] for [[SU(2)]] to SU(3), which formed the basis for Gell-Mann's [[quark model]].<ref>{{cite book|author=David Griffiths|title=Introduction to Elementary Particles (2nd ed.)|publisher=[[John Wiley & Sons]]|isbn=978-3-527-40601-2|date=2008|pages=283–288,366–369}}</ref> Gell-Mann's generalization further [[Generalizations of Pauli matrices#Construction|extends to general SU(''n'')]]. For their connection to the [[Root system|standard basis]] of Lie algebras, see the [[Clebsch–Gordan coefficients for SU(3)#Standard basis|Weyl–Cartan basis]]. ===Trace orthonormality=== In mathematics, orthonormality typically implies a norm which has a value of unity (1). Gell-Mann matrices, however, are normalized to a value of 2. Thus, the [[trace (linear algebra)|trace]] of the pairwise product results in the ortho-normalization condition :<math>\operatorname{tr}(\lambda_i \lambda_j) = 2\delta_{ij},</math> where <math>\delta_{ij}</math> is the [[Kronecker delta]]. This is so the embedded Pauli matrices corresponding to the three embedded subalgebras of ''SU''(2) are conventionally normalized. In this three-dimensional matrix representation, the [[Cartan subalgebra]] is the set of linear combinations (with real coefficients) of the two matrices <math>\lambda_3</math> and <math>\lambda_8</math>, which commute with each other. There are three [[Clebsch–Gordan_coefficients_for_SU(3)#Standard_basis|significant]] [[SU(2)]] subalgebras: *<math>\{\lambda_1, \lambda_2, \lambda_3\}</math> *<math>\{\lambda_4, \lambda_5, x\},</math> and *<math>\{\lambda_6, \lambda_7, y\},</math> where the {{mvar|x}} and {{mvar|y}} are linear combinations of <math>\lambda_3</math> and <math>\lambda_8</math>. The SU(2) Casimirs of these subalgebras mutually commute. However, any unitary similarity transformation of these subalgebras will yield SU(2) subalgebras. There is an uncountable number of such transformations. ===Commutation relations=== The 8 generators of SU(3) satisfy the [[commutator|commutation and anti-commutation relations]]<ref name="gellmann17">{{cite web |last1=Haber |first1=Howard |title=Properties of the Gell-Mann matrices |url=http://scipp.ucsc.edu/~haber/ph251/gellmann17.pdf |website=Physics 251 Group Theory and Modern Physics |publisher=U.C. Santa Cruz |access-date=1 April 2019}}</ref> : <math> \begin{align} \left[ \lambda_a, \lambda_b \right] &= 2 i \sum_c f^{abc} \lambda_c, \\ \{ \lambda_a, \lambda_b \} &= \frac{4}{3} \delta_{ab} I + 2 \sum_c d^{abc} \lambda_c, \end{align} </math> with the [[structure constant]]s : <math> \begin{align} f^{abc} &= -\frac{1}{4} i \operatorname{tr}(\lambda_a [ \lambda_b, \lambda_c ]), \\ d^{abc} &= \frac{1}{4} \operatorname{tr}(\lambda_a \{ \lambda_b, \lambda_c \}). \end{align} </math> The [[structure constant]]s <math>d^{abc}</math> are completely symmetric in the three indices. The [[structure constant]]s <math>f^{abc}</math> are completely antisymmetric in the three indices, generalizing the antisymmetry of the [[Levi-Civita symbol]] <math>\epsilon_{jkl}</math> of {{math|''SU''(2)}}. For the present order of Gell-Mann matrices they take the values :<math>f^{123} = 1 \ , \quad f^{147} = f^{165} = f^{246} = f^{257} = f^{345} = f^{376} = \frac{1}{2} \ , \quad f^{458} = f^{678} = \frac{\sqrt{3}}{2} \ . </math> In general, they evaluate to zero, unless they contain an odd count of indices from the set {2,5,7}, corresponding to the antisymmetric (imaginary) {{mvar|λ}}s. Using these commutation relations, the product of Gell-Mann matrices can be written as : <math> \lambda_a \lambda_b = \frac{1}{2} ([\lambda_a,\lambda_b] + \{\lambda_a,\lambda_b\}) = \frac{2}{3} \delta_{ab} I + \sum_c \left(d^{abc} + i f^{abc}\right) \lambda_c , </math> where {{mvar|I}} is the identity matrix. ===Fierz completeness relations=== Since the eight matrices and the identity are a complete trace-orthogonal set spanning all 3×3 matrices, it is straightforward to find two Fierz '''''completeness relations''''', (Li & Cheng, 4.134), analogous to that [[Pauli matrices#Completeness relation 2|satisfied by the Pauli matrices]]. Namely, using the dot to sum over the eight matrices and using Greek indices for their row/column indices, the following identities hold, :<math>\delta^\alpha _\beta \delta^\gamma _\delta = \frac{1}{3} \delta^\alpha_\delta \delta^\gamma _\beta +\frac{1}{2} \lambda^\alpha _\delta \cdot \lambda^\gamma _\beta </math> and :<math>\lambda^\alpha _\beta \cdot \lambda^\gamma _\delta = \frac{16}{9} \delta^\alpha_\delta \delta^\gamma _\beta -\frac{1}{3} \lambda^\alpha _\delta \cdot \lambda^\gamma _\beta ~.</math> One may prefer the recast version, resulting from a linear combination of the above, :<math>\lambda^\alpha _\beta \cdot \lambda^\gamma _\delta = 2 \delta^\alpha_\delta \delta^\gamma _\beta -\frac{2}{3} \delta^\alpha_\beta \delta^\gamma _\delta ~.</math> ==Representation theory== {{main|Clebsch–Gordan coefficients for SU(3)}} A particular choice of matrices is called a [[group representation]], because any element of SU(3) can be written in the form <math>\mathrm{exp}(i \theta^j g_j)</math> using the [[Einstein notation]], where the eight <math>\theta^j</math> are real numbers and a sum over the index {{mvar|j}} is implied. Given one representation, an equivalent one may be obtained by an arbitrary unitary similarity transformation, since that leaves the commutator unchanged. The matrices can be realized as a representation of the [[Lie group#The Lie algebra associated with a Lie group|infinitesimal generator]]s of the [[special unitary group]] called [[Special_unitary_group#The_group_SU(3)|SU(3)]]. The [[Lie algebra]] of this group (a real Lie algebra in fact) has dimension eight and therefore it has some set with eight [[Linear independence|linearly independent]] generators, which can be written as <math>g_i</math>, with ''i'' taking values from 1 to 8.<ref name="Scherer-Schindler"/> ===Casimir operators and invariants=== The squared sum of the Gell-Mann matrices gives the quadratic [[Casimir operator]], a group invariant, :<math> C = \sum_{i=1}^8 \lambda_i \lambda_i = \frac{16} 3 I </math> where <math> I\, </math>is 3×3 identity matrix. There is another, independent, [[Clebsch–Gordan coefficients for SU(3)#Casimir operators|cubic Casimir operator]], as well. ==Application to quantum chromodynamics== {{main|Color charge|Quantum chromodynamics}} These matrices serve to study the internal (color) rotations of the [[gluon field]]s associated with the coloured quarks of [[quantum chromodynamics]] (cf. [[Gluon#Eight gluon colours|colours of the gluon]]). A gauge colour rotation is a spacetime-dependent SU(3) group element <math>\; U = \exp \left(\frac{\ i\ }{2}\ \theta^k({\mathbf r},t)\ \lambda_k\right) \;,</math> where summation over the eight indices {{mvar|k}} is implied. {{See also | Clebsch–Gordan coefficients for SU(3)}} ==See also== * [[Casimir element]] * [[Clebsch–Gordan coefficients for SU(3)]] * [[Generalizations of Pauli matrices]] * [[Group representation]]s * [[Killing form]] * [[Pauli matrices]] * [[Qutrit]] * [[Special unitary group#The group SU(3)|SU(3)]] ==References== {{reflist}} * {{cite journal | last=Gell-Mann | first=Murray | title=Symmetries of Baryons and Mesons | journal=Physical Review | publisher=American Physical Society (APS) | volume=125 | issue=3 | date=1962-02-01 | issn=0031-899X | doi=10.1103/physrev.125.1067 | pages=1067–1084| bibcode=1962PhRv..125.1067G |doi-access=free}} *{{cite book |first1=T.-P. |last1=Cheng |first2=L.-F. |last2=Li |title=Gauge Theory of Elementary Particle Physics |publisher=[[Oxford University Press]] |year=1983 |isbn=0-19-851961-3 }} * {{cite book |last=Georgi |first=H. |year=1999 |title=Lie Algebras in Particle Physics |edition=2nd |publisher=[[Westview Press]] |isbn=978-0-7382-0233-4 }} * {{cite book |last1=Arfken |first1=G. B. |last2=Weber |first2=H. J. |last3=Harris |first3=F. E. |year=2000 |title=Mathematical Methods for Physicists |edition=7th |publisher=[[Academic Press]] |isbn=978-0-12-384654-9 }} * {{cite book |last=Kokkedee |first=J. J. J. |year=1969 |title=The Quark Model |url=https://archive.org/details/quarkmodel0000kokk |url-access=registration |publisher=[[W. A. Benjamin]] |lccn=69014391 }} {{Matrix classes}} [[Category:Matrices (mathematics)]] [[Category:Quantum chromodynamics]] [[Category:Mathematical physics]] [[Category:Lie algebras]] [[Category:Representation theory of Lie algebras]] [[Category:Murray Gell-Mann]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:Matrix classes
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)