Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generalised logistic function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function}} [[Image:Generalized logistic function A0 K1 B1.5 Q0.5 ν0.5 M0.5.png|thumb|right|A=M=0, K=C=1, B=3, ν=0.5, Q=0.5]] [[File:GeneralizedLogisticA.svg|thumb|right|Effect of varying parameter A. All other parameters are 1.]] [[File:GeneralizedLogisticB.svg|thumb|right|Effect of varying parameter B. A = 0, all other parameters are 1.]] [[File:GeneralizedLogisticC.svg|thumb|right|Effect of varying parameter C. A = 0, all other parameters are 1.]] [[File:GeneralizedLogisticK.svg|thumb|right|Effect of varying parameter K. A = 0, all other parameters are 1.]] [[File:GeneralizedLogisticQ.svg|thumb|right|Effect of varying parameter Q. A = 0, all other parameters are 1.]] [[File:GeneralizedLogisticNu.svg|thumb|right|Effect of varying parameter <math>\nu</math>. A = 0, all other parameters are 1.]] The '''generalized logistic function''' or '''curve''' is an extension of the [[logistic function|logistic]] or [[sigmoid function|sigmoid]] functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named '''Richards's curve''' after [[Francis John Richards|F.{{nbsp}}J.{{nbsp}}Richards]], who proposed the general form for the family of models in 1959. ==Definition== Richards's curve has the following form: :<math>Y(t) = A + { K-A \over (C + Q e^{-B t}) ^ {1 / \nu} }</math> where <math>Y</math> = weight, height, size etc., and <math>t</math> = time. It has six parameters: *<math>A</math>: the left horizontal asymptote; *<math>K</math>: the right horizontal asymptote when <math>C=1</math>. If <math>A=0</math> and <math>C=1</math> then <math>K</math> is called the [[carrying capacity]]; *<math>B</math>: the growth rate; *<math>\nu > 0</math> : affects near which asymptote maximum growth occurs. *<math>Q</math>: is related to the value <math>Y(0)</math> *<math>C</math>: typically takes a value of 1. Otherwise, the upper asymptote is <math>A + {K - A \over C^{\, 1 / \nu}}</math> The equation can also be written: :<math>Y(t) = A + { K-A \over (C + e^{-B(t - M)}) ^ {1 / \nu} }</math> where <math>M</math> can be thought of as a starting time, at which <math>Y(M) = A + { K-A \over (C+1) ^ {1 / \nu} }</math>. Including both <math>Q</math> and <math>M</math> can be convenient: :<math>Y(t) = A + { K-A \over (C + Q e^{-B(t - M)}) ^ {1 / \nu} }</math> this representation simplifies the setting of both a starting time and the value of <math>Y</math> at that time. The [[logistic function]], with maximum growth rate at time <math>M</math>, is the case where <math>Q = \nu = 1</math>. ==Generalised logistic differential equation== A particular case of the generalised logistic function is: :<math>Y(t) = { K \over (1 + Q e^{- \alpha \nu (t - t_0)}) ^ {1 / \nu} }</math> which is the solution of the Richards's differential equation (RDE): :<math>Y^{\prime}(t) = \alpha \left(1 - \left(\frac{Y}{K} \right)^{\nu} \right)Y </math> with initial condition :<math>Y(t_0) = Y_0 </math> where :<math>Q = -1 + \left(\frac {K}{Y_0} \right)^{\nu}</math> provided that <math>\nu > 0</math> and <math>\alpha > 0</math> The classical logistic differential equation is a particular case of the above equation, with <math>\nu =1</math>, whereas the [[Gompertz curve]] can be recovered in the limit <math>\nu \rightarrow 0^+</math> provided that: :<math>\alpha = O\left(\frac{1}{\nu}\right)</math> In fact, for small <math>\nu</math> it is :<math>Y^{\prime}(t) = Y r \frac{1-\exp\left(\nu \ln\left(\frac{Y}{K}\right) \right)}{\nu} \approx r Y \ln\left(\frac{Y}{K}\right) </math> The RDE models many growth phenomena, arising in fields such as oncology and epidemiology. == Gradient of generalized logistic function == When estimating parameters from data, it is often necessary to compute the partial derivatives of the logistic function with respect to parameters at a given data point <math>t</math> (see<ref name=fekedulegn1999parameter>{{cite journal|last=Fekedulegn|first=Desta|author2=Mairitin P. Mac Siurtain|author3=Jim J. Colbert|title=Parameter Estimation of Nonlinear Growth Models in Forestry|journal=Silva Fennica|year=1999|volume=33|issue=4|pages=327–336|doi=10.14214/sf.653|url=http://www.metla.fi/silvafennica/full/sf33/sf334327.pdf|access-date=2011-05-31|archive-url=https://web.archive.org/web/20110929005929/http://www.metla.fi/silvafennica/full/sf33/sf334327.pdf|archive-date=2011-09-29|url-status=dead}}</ref>). For the case where <math>C = 1</math>, :<math> \begin{align} \\ \frac{\partial Y}{\partial A} &= 1 - (1 + Qe^{-B(t-M)})^{-1/\nu}\\ \\ \frac{\partial Y}{\partial K} &= (1 + Qe^{-B(t-M)})^{-1/\nu}\\ \\ \frac{\partial Y}{\partial B} &= \frac{(K-A)(t-M)Qe^{-B(t-M)}}{\nu(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}+1}}\\ \\ \frac{\partial Y}{\partial \nu} &= \frac{(K-A)\ln(1 + Qe^{-B(t-M)})}{\nu^2(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}}}\\ \\ \frac{\partial Y}{\partial Q} &= -\frac{(K-A)e^{-B(t-M)}}{\nu(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}+1}}\\ \\ \frac{\partial Y}{\partial M} &= -\frac{(K-A)QBe^{-B(t-M)}}{\nu(1 + Qe^{-B(t-M)})^{\frac{1}{\nu}+1}} \\ \end{align} </math><!-- DY/dt missing .... --> ==Special cases== The following functions are specific cases of Richards's curves: * [[Logistic function]] * [[Gompertz curve]] * [[Von Bertalanffy function]] * Monomolecular curve ==Footnotes== {{reflist}} ==References== *{{cite journal |last=Richards |first=F. J. |year=1959 |title=A Flexible Growth Function for Empirical Use |journal=[[Journal of Experimental Botany]] |volume=10 |issue=2 |pages=290–300 |doi=10.1093/jxb/10.2.290 }} *{{cite journal |last1=Pella |first1=J. S. |first2=P. K. |last2=Tomlinson |year=1969 |title=A Generalised Stock-Production Model |journal=Bull. Inter-Am. Trop. Tuna Comm |volume=13 |pages=421–496 }} *{{cite journal |last1=Lei |first1=Y. C. |last2=Zhang |first2=S. Y. |year=2004 |title=Features and Partial Derivatives of Bertalanffy–Richards Growth Model in Forestry |journal=Nonlinear Analysis: Modelling and Control |volume=9 |issue=1 |pages=65–73 |doi=10.15388/NA.2004.9.1.15171 }} [[Category:Growth curves]] [[Category:Mathematical modeling]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:Nbsp
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)