Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generalized mean
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|N-th root of the arithmetic mean of the given numbers raised to the power n}} {{More citations needed|date=June 2020}} [[File:Generalized means of 1, x.svg|400px|thumb|right|Plot of several generalized means <math>M_p(1, x)</math>.]] In [[mathematics]], '''generalised means''' (or '''power mean''' or '''Hölder mean''' from [[Otto Hölder]])<ref name=sykora/> are a family of functions for aggregating sets of numbers. These include as special cases the [[Pythagorean means]] ([[arithmetic mean|arithmetic]], [[geometric mean|geometric]], and [[harmonic mean|harmonic]] [[mean]]s). ==Definition== If {{mvar|p}} is a non-zero [[real number]], and <math>x_1, \dots, x_n</math> are positive real numbers, then the '''generalized mean''' or '''power mean''' with exponent {{mvar|p}} of these positive real numbers is<ref name="Bullen1"/><ref name = "dC2016">{{cite journal|last=de Carvalho|first=Miguel|title=Mean, what do you Mean?|journal=[[The American Statistician]]|year=2016|volume=70|issue=3|pages=764‒776|doi=10.1080/00031305.2016.1148632|url=https://zenodo.org/record/895400|hdl=20.500.11820/fd7a8991-69a4-4fe5-876f-abcd2957a88c|hdl-access=free}}</ref> <math display=block>M_p(x_1,\dots,x_n) = \left( \frac{1}{n} \sum_{i=1}^n x_i^p \right)^{{1}/{p}} .</math> (See [[Norm (mathematics)#p-norm|{{mvar|p}}-norm]]). For {{math|1=''p'' = 0}} we set it equal to the geometric mean (which is the limit of means with exponents approaching zero, as proved below): <math display="block">M_0(x_1, \dots, x_n) = \left(\prod_{i=1}^n x_i\right)^{1/n} .</math> Furthermore, for a [[sequence]] of positive weights {{mvar|w<sub>i</sub>}} we define the '''weighted power mean''' as<ref name="Bullen1"/> <math display=block>M_p(x_1,\dots,x_n) = \left(\frac{\sum_{i=1}^n w_i x_i^p}{\sum_{i=1}^n w_i} \right)^{{1}/{p}}</math> and when {{math|1=''p'' = 0}}, it is equal to the [[weighted geometric mean]]: <math display=block>M_0(x_1,\dots,x_n) = \left(\prod_{i=1}^n x_i^{w_i}\right)^{1 / \sum_{i=1}^n w_i} .</math> The unweighted means correspond to setting all {{math|1=''w<sub>i</sub>'' = 1}}. == Special cases == A few particular values of {{mvar|p}} yield special cases with their own names:<ref name="mw">{{MathWorld|title=Power Mean|urlname=PowerMean}} (retrieved 2019-08-17)</ref> ;[[minimum]] :<math>M_{-\infty}(x_1,\dots,x_n) = \lim_{p\to-\infty} M_p(x_1,\dots,x_n) = \min \{x_1,\dots,x_n\}</math> ;[[Image:MathematicalMeans.svg|thumb|A visual depiction of some of the specified cases for {{math|1=''n'' = 2}} with {{math|1=''a'' = ''x''{{sub|1}} = ''M''{{sub|∞}}}} and {{math|1=''b'' = ''x''{{sub|2}} = ''M''{{sub|−∞}}}}: {{legend|magenta|harmonic mean, {{math|''H'' {{=}} ''M''{{sub|−1}}(''a'', ''b'')}},}} {{legend|blue|geometric mean, {{math|''G'' {{=}} ''M''{{sub|0}}(''a'', ''b'')}}}} {{legend|red|arithmetic mean, {{math|''A'' {{=}} ''M''{{sub|1}}(''a'', ''b'')}}}} {{legend|lime|quadratic mean, {{math|''Q'' {{=}} ''M''{{sub|2}}(''a'', ''b'')}}}}]][[harmonic mean]] :<math>M_{-1}(x_1,\dots,x_n) = \frac{n}{\frac{1}{x_1}+\dots+\frac{1}{x_n}}</math> ;[[geometric mean]] <math>M_0(x_1,\dots,x_n) = \lim_{p\to0} M_p(x_1,\dots,x_n) = \sqrt[n]{x_1\cdot\dots\cdot x_n}</math> ;[[arithmetic mean]] :<math>M_1(x_1,\dots,x_n) = \frac{x_1 + \dots + x_n}{n}</math> ;[[root mean square]]{{anchor|Quadratic}}<br/>or quadratic mean<ref>{{cite book |last1=Thompson |first1=Sylvanus P. |title=Calculus Made Easy |date=1965 |publisher=Macmillan International Higher Education |isbn=9781349004874 |page=185 |url=https://books.google.com/books?id=6VJdDwAAQBAJ&pg=PA185 |access-date=5 July 2020 }}{{Dead link|date=May 2024 |bot=InternetArchiveBot |fix-attempted=yes }}</ref><ref>{{cite book |last1=Jones |first1=Alan R. |title=Probability, Statistics and Other Frightening Stuff |date=2018 |publisher=Routledge |isbn=9781351661386 |page=48 |url=https://books.google.com/books?id=OvtsDwAAQBAJ&pg=PA48 |access-date=5 July 2020}}</ref> :<math>M_2(x_1,\dots,x_n) = \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}}</math> ;[[cubic mean]] :<math>M_3(x_1,\dots,x_n) = \sqrt[3]{\frac{x_1^3 + \dots + x_n^3}{n}}</math> ;[[maximum]] :<math>M_{+\infty}(x_1,\dots,x_n) = \lim_{p\to\infty} M_p(x_1,\dots,x_n) = \max \{x_1,\dots,x_n\}</math> {{Math proof|title=Proof of <math display="inline"> \lim_{p \to 0} M_p = M_0 </math> (geometric mean)|proof=For the purpose of the proof, we will assume without loss of generality that <math display="block"> w_i \in [0,1] </math> and <math display="block"> \sum_{i=1}^n w_i = 1. </math> We can rewrite the definition of <math>M_p</math> using the exponential function as <math display=block>M_p(x_1,\dots,x_n) = \exp{\left( \ln{\left[\left(\sum_{i=1}^n w_ix_{i}^p \right)^{1/p}\right]} \right) } = \exp{\left( \frac{\ln{\left(\sum_{i=1}^n w_ix_{i}^p \right)}}{p} \right) }</math> In the limit {{math|''p'' → 0}}, we can apply [[L'Hôpital's rule]] to the argument of the exponential function. We assume that <math>p \isin \mathbb{R}</math> but {{math|''p'' ≠ 0}}, and that the sum of {{mvar|w<sub>i</sub>}} is equal to 1 (without loss in generality);<ref>{{Cite book |title=Handbook of Means and Their Inequalities (Mathematics and Its Applications)}}</ref> Differentiating the numerator and denominator with respect to {{mvar|p}}, we have <math display=block>\begin{align} \lim_{p \to 0} \frac{\ln{\left(\sum_{i=1}^n w_ix_{i}^p \right)}}{p} &= \lim_{p \to 0} \frac{\frac{\sum_{i=1}^n w_i x_i^p \ln{x_i}}{\sum_{j=1}^n w_j x_j^p}}{1} \\ &= \lim_{p \to 0} \frac{\sum_{i=1}^n w_i x_i^p \ln{x_i}}{\sum_{j=1}^n w_j x_j^p} \\ &= \frac{\sum_{i=1}^n w_i \ln{x_i}}{\sum_{j=1}^n w_j} \\ &= \sum_{i=1}^n w_i \ln{x_i} \\ &= \ln{\left(\prod_{i=1}^n x_i^{w_i} \right)} \end{align}</math> By the continuity of the exponential function, we can substitute back into the above relation to obtain <math display=block>\lim_{p \to 0} M_p(x_1,\dots,x_n) = \exp{\left( \ln{\left(\prod_{i=1}^n x_i^{w_i} \right)} \right)} = \prod_{i=1}^n x_i^{w_i} = M_0(x_1,\dots,x_n)</math> as desired.<ref name="Bullen1">P. S. Bullen: ''Handbook of Means and Their Inequalities''. Dordrecht, Netherlands: Kluwer, 2003, pp. 175-177</ref>}} {{Proof|title= Proof of <math display="inline">\lim_{p \to \infty} M_p = M_\infty</math> and <math display="inline">\lim_{p \to -\infty} M_p = M_{-\infty}</math> |proof= Assume (possibly after relabeling and combining terms together) that <math>x_1 \geq \dots \geq x_n</math>. Then <math display=block>\begin{align} \lim_{p \to \infty} M_p(x_1,\dots,x_n) &= \lim_{p \to \infty} \left( \sum_{i=1}^n w_i x_i^p \right)^{1/p} \\ &= x_1 \lim_{p \to \infty} \left( \sum_{i=1}^n w_i \left( \frac{x_i}{x_1} \right)^p \right)^{1/p} \\ &= x_1 = M_\infty (x_1,\dots,x_n). \end{align}</math> The formula for <math>M_{-\infty}</math> follows from <math display="block">M_{-\infty} (x_1,\dots,x_n) = \frac{1}{M_\infty (1/x_1,\dots,1/x_n)} = x_n.</math> }} ==Properties== Let <math>x_1, \dots, x_n</math> be a sequence of positive real numbers, then the following properties hold:<ref name=sykora>{{cite journal|last=Sýkora|first=Stanislav|year=2009|title=Mathematical means and averages: basic properties|journal=Stan's Library |location=Castano Primo, Italy|volume=III |doi=10.3247/SL3Math09.001 }}</ref> #<math>\min(x_1, \dots, x_n) \le M_p(x_1, \dots, x_n) \le \max(x_1, \dots, x_n)</math>.<!-- -->{{block indent|left=1|text= Each generalized mean always lies between the smallest and largest of the {{mvar|x}} values.}} #<math>M_p(x_1, \dots, x_n) = M_p(P(x_1, \dots, x_n))</math>, where <math>P</math> is a permutation operator.<!-- -->{{block indent|left=1|text= Each generalized mean is a symmetric function of its arguments; permuting the arguments of a generalized mean does not change its value.}} #<math>M_p(b x_1, \dots, b x_n) = b \cdot M_p(x_1, \dots, x_n)</math>.<!-- -->{{block indent|left=1|text= Like most [[Mean#Properties|mean]]s, the generalized mean is a [[homogeneous function]] of its arguments {{math|''x''<sub>1</sub>, ..., ''x<sub>n</sub>''}}. That is, if {{mvar|b}} is a positive real number, then the generalized mean with exponent {{mvar|p}} of the numbers <math>b\cdot x_1,\dots, b\cdot x_n</math> is equal to {{mvar|b}} times the generalized mean of the numbers {{math|''x''<sub>1</sub>, ..., ''x<sub>n</sub>''}}.}} #<math>M_p(x_1, \dots, x_{n \cdot k}) = M_p\left[M_p(x_1, \dots, x_{k}), M_p(x_{k + 1}, \dots, x_{2 \cdot k}), \dots, M_p(x_{(n - 1) \cdot k + 1}, \dots, x_{n \cdot k})\right]</math>.<!-- -->{{block indent|left=1|text= Like the [[quasi-arithmetic mean]]s, the computation of the mean can be split into computations of equal sized sub-blocks. This enables use of a [[divide and conquer algorithm]] to calculate the means, when desirable.}} === Generalized mean inequality === {{QM_AM_GM_HM_inequality_visual_proof.svg}} In general, if {{math|''p'' < ''q''}}, then <math display=block>M_p(x_1, \dots, x_n) \le M_q(x_1, \dots, x_n)</math> and the two means are equal if and only if {{math|1= ''x''<sub>1</sub> = ''x''<sub>2</sub> = ... = ''x<sub>n</sub>''}}. The inequality is true for real values of {{mvar|p}} and {{mvar|q}}, as well as positive and negative infinity values. It follows from the fact that, for all real {{mvar|p}}, <math display=block>\frac{\partial}{\partial p}M_p(x_1, \dots, x_n) \geq 0</math> which can be proved using [[Jensen's inequality]]. In particular, for {{mvar|p}} in {{math|{−1, 0, 1}<nowiki/>}}, the generalized mean inequality implies the [[Pythagorean means]] inequality as well as the [[inequality of arithmetic and geometric means]]. ==Proof of the weighted inequality== We will prove the weighted power mean inequality. For the purpose of the proof we will assume the following without loss of generality: <math display=block>\begin{align} w_i \in [0, 1] \\ \sum_{i=1}^nw_i = 1 \end{align}</math> The proof for unweighted power means can be easily obtained by substituting {{math|1= ''w<sub>i</sub>'' = 1/''n''}}. ===Equivalence of inequalities between means of opposite signs=== Suppose an average between power means with exponents {{mvar|p}} and {{mvar|q}} holds: <math display="block">\left(\sum_{i=1}^n w_i x_i^p\right)^{1/p} \geq \left(\sum_{i=1}^n w_i x_i^q\right)^{1/q}</math> applying this, then: <math display="block">\left(\sum_{i=1}^n\frac{w_i}{x_i^p}\right)^{1/p} \geq \left(\sum_{i=1}^n\frac{w_i}{x_i^q}\right)^{1/q}</math> We raise both sides to the power of −1 (strictly decreasing function in positive reals): <math display="block">\left(\sum_{i=1}^nw_ix_i^{-p}\right)^{-1/p} = \left(\frac{1}{\sum_{i=1}^nw_i\frac{1}{x_i^p}}\right)^{1/p} \leq \left(\frac{1}{\sum_{i=1}^nw_i\frac{1}{x_i^q}}\right)^{1/q} = \left(\sum_{i=1}^nw_ix_i^{-q}\right)^{-1/q}</math> We get the inequality for means with exponents {{math|−''p''}} and {{math|−''q''}}, and we can use the same reasoning backwards, thus proving the inequalities to be equivalent, which will be used in some of the later proofs. ===Geometric mean=== For any {{math|''q'' > 0}} and non-negative weights summing to 1, the following inequality holds: <math display="block">\left(\sum_{i=1}^n w_i x_i^{-q}\right)^{-1/q} \leq \prod_{i=1}^n x_i^{w_i} \leq \left(\sum_{i=1}^n w_i x_i^q\right)^{1/q}.</math> The proof follows from [[Jensen's inequality]], making use of the fact the [[logarithm]] is concave: <math display=block>\log \prod_{i=1}^n x_i^{w_i} = \sum_{i=1}^n w_i\log x_i \leq \log \sum_{i=1}^n w_i x_i.</math> By applying the [[exponential function]] to both sides and observing that as a strictly increasing function it preserves the sign of the inequality, we get <math display=block>\prod_{i=1}^n x_i^{w_i} \leq \sum_{i=1}^n w_i x_i.</math> Taking {{mvar|q}}-th powers of the {{mvar|x<sub>i</sub>}} yields <math display=block>\begin{align} &\prod_{i=1}^n x_i^{q{\cdot}w_i} \leq \sum_{i=1}^n w_i x_i^q \\ &\prod_{i=1}^n x_i^{w_i} \leq \left(\sum_{i=1}^n w_i x_i^q\right)^{1/q}.\end{align}</math> Thus, we are done for the inequality with positive {{mvar|q}}; the case for negatives is identical but for the swapped signs in the last step: <math display=block>\prod_{i=1}^n x_i^{-q{\cdot}w_i} \leq \sum_{i=1}^n w_i x_i^{-q}.</math> Of course, taking each side to the power of a negative number {{math|-1/''q''}} swaps the direction of the inequality. <math display=block>\prod_{i=1}^n x_i^{w_i} \geq \left(\sum_{i=1}^n w_i x_i^{-q}\right)^{-1/q}.</math> ===Inequality between any two power means=== We are to prove that for any {{math|''p'' < ''q''}} the following inequality holds: <math display="block">\left(\sum_{i=1}^n w_i x_i^p\right)^{1/p} \leq \left(\sum_{i=1}^nw_ix_i^q\right)^{1/q}</math> if {{mvar|p}} is negative, and {{mvar|q}} is positive, the inequality is equivalent to the one proved above: <math display="block">\left(\sum_{i=1}^nw_i x_i^p\right)^{1/p} \leq \prod_{i=1}^n x_i^{w_i} \leq \left(\sum_{i=1}^n w_i x_i^q\right)^{1/q}</math> The proof for positive {{mvar|p}} and {{mvar|q}} is as follows: Define the following function: {{math|''f'' : '''R'''<sub>+</sub> → '''R'''<sub>+</sub>}} <math>f(x)=x^{\frac{q}{p}}</math>. {{mvar|f}} is a power function, so it does have a second derivative: <math display="block">f''(x) = \left(\frac{q}{p} \right) \left( \frac{q}{p}-1 \right)x^{\frac{q}{p}-2}</math> which is strictly positive within the domain of {{mvar|f}}, since {{math|''q'' > ''p''}}, so we know {{mvar|f}} is convex. Using this, and the Jensen's inequality we get: <math display="block">\begin{align} f \left( \sum_{i=1}^nw_ix_i^p \right) &\leq \sum_{i=1}^nw_if(x_i^p) \\[3pt] \left(\sum_{i=1}^n w_i x_i^p\right)^{q/p} &\leq \sum_{i=1}^nw_ix_i^q \end{align}</math> after raising both side to the power of {{math|1/''q''}} (an increasing function, since {{math|1/''q''}} is positive) we get the inequality which was to be proven: <math display="block">\left(\sum_{i=1}^n w_i x_i^p\right)^{1/p} \leq \left(\sum_{i=1}^n w_i x_i^q\right)^{1/q}</math> Using the previously shown equivalence we can prove the inequality for negative {{mvar|p}} and {{mvar|q}} by replacing them with {{mvar|−q}} and {{mvar|−p}}, respectively. == Generalized ''f''-mean == {{Main|Generalized f-mean|l1=Generalized {{mvar|f}}-mean}} The power mean could be generalized further to the [[generalized f-mean|generalized {{mvar|f}}-mean]]: <math display=block> M_f(x_1,\dots,x_n) = f^{-1} \left({\frac{1}{n}\cdot\sum_{i=1}^n{f(x_i)}}\right) </math> This covers the geometric mean without using a limit with {{math|1= ''f''(''x'') {{=}} log(''x'')}}. The power mean is obtained for {{mvar|1= ''f''(''x'') {{=}} ''x<sup>p</sup>''}}. Properties of these means are studied in de Carvalho (2016).<ref name = "dC2016"/> == Applications == ===Signal processing=== A power mean serves a non-linear [[moving average]] which is shifted towards small signal values for small {{mvar|p}} and emphasizes big signal values for big {{mvar|p}}. Given an efficient implementation of a [[lowpass|moving arithmetic mean]] called <code>smooth</code> one can implement a moving power mean according to the following [[Haskell (programming language)|Haskell]] code. <syntaxhighlight lang="haskell"> powerSmooth :: Floating a => ([a] -> [a]) -> a -> [a] -> [a] powerSmooth smooth p = map (** recip p) . smooth . map (**p) </syntaxhighlight> * For big {{mvar|p}} it can serve as an [[envelope detector]] on a [[rectifier|rectified]] signal. * For small {{mvar|p}} it can serve as a [[Baseline (spectrometry)|baseline detector]] on a [[mass spectrum]]. ==See also== {{cols|colwidth=26em}} * [[Arithmetic–geometric mean]] * [[Average]] * [[Heronian mean]] * [[Inequality of arithmetic and geometric means]] * [[Lehmer mean]] – also a mean related to [[Power (mathematics)|powers]] * [[Minkowski distance]] * [[Quasi-arithmetic mean]] – another name for the [[generalized f-mean]] mentioned above * [[Root mean square]] {{colend}} == Notes == {{notelist}} {{reflist|group=note}} == References == {{reflist}} == Further reading == * {{cite book|first1=P. S. |last1=Bullen|title=Handbook of Means and Their Inequalities|location=Dordrecht, Netherlands|publisher=Kluwer|year=2003|chapter=Chapter III - The Power Means|pages=175–265}} ==External links== *[http://mathworld.wolfram.com/PowerMean.html Power mean at MathWorld] *[http://people.revoledu.com/kardi/tutorial/BasicMath/Average/Generalized%20mean.html Examples of Generalized Mean] *A [https://planetmath.org/ProofOfGeneralMeansInequality proof of the Generalized Mean] on [[PlanetMath]] [[Category:Means]] [[Category:Inequalities (mathematics)]] [[Category:Articles with example Haskell code]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Anchor
(
edit
)
Template:Block indent
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Colend
(
edit
)
Template:Cols
(
edit
)
Template:Dead link
(
edit
)
Template:Legend
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Math proof
(
edit
)
Template:More citations needed
(
edit
)
Template:Mvar
(
edit
)
Template:Notelist
(
edit
)
Template:Proof
(
edit
)
Template:QM AM GM HM inequality visual proof.svg
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)