Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometry of numbers
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Application of geometry in number theory}} '''Geometry of numbers''' is the part of [[number theory]] which uses [[geometry]] for the study of [[algebraic number]]s. Typically, a [[ring of algebraic integers]] is viewed as a [[lattice (group)|lattice]] in <math>\mathbb R^n,</math> and the study of these lattices provides fundamental information on algebraic numbers.<ref>MSC classification, 2010, available at http://www.ams.org/msc/msc2010.html, Classification 11HXX.</ref> {{harvs|txt|authorlink=Hermann Minkowski|first=Hermann|last= Minkowski|year=1896|ref1=https://mathweb.ucsd.edu/~b3tran/cgm/Minkowski_SpaceAndTime_1909.pdf}} initiated this line of research at the age of 26 in his work ''The Geometry of Numbers''.<ref>{{Cite book |last=Minkowski |first=Hermann |url=https://books.google.com/books?id=D-J9AgAAQBAJ&dq=Space+and+Time+Minkowski%E2%80%99s+Papers+on+Relativity&pg=PA1 |title=Space and Time: Minkowski's papers on relativity |date=2013-08-27 |publisher=Minkowski Institute Press |isbn=978-0-9879871-1-2 |language=en}}</ref> {{Diophantine_approximation_graph.svg}} The geometry of numbers has a close relationship with other fields of mathematics, especially [[functional analysis]] and [[Diophantine approximation]], the problem of finding [[rational number]]s <!-- or vectors with rational coordinates SIMPLIFY --> that <!-- accurately --> approximate an [[irrational number|irrational quantity]].<ref>Schmidt's books. {{Cite Geometric Algorithms and Combinatorial Optimization}}</ref> ==Minkowski's results== {{Main article|Minkowski's theorem}} Suppose that <math>\Gamma</math> is a [[Lattice (group)|lattice]] in <math>n</math>-dimensional Euclidean space <math>\mathbb{R}^n</math> and <math>K</math> is a convex centrally symmetric body. [[Minkowski's theorem]], sometimes called Minkowski's first theorem, states that if <math>\operatorname{vol} (K)>2^n \operatorname{vol}(\mathbb{R}^n/\Gamma)</math>, then <math>K</math> contains a nonzero vector in <math>\Gamma</math>. {{Main article|Minkowski's second theorem}} The successive minimum <math>\lambda_k</math> is defined to be the [[Infimum|inf]] of the numbers <math>\lambda</math> such that <math>\lambda K</math> contains <math>k</math> linearly independent vectors of <math>\Gamma</math>. Minkowski's theorem on [[successive minima]], sometimes called [[Minkowski's second theorem]], is a strengthening of his first theorem and states that<ref>Cassels (1971) p. 203</ref> :<math>\lambda_1\lambda_2\cdots\lambda_n \operatorname{vol} (K)\le 2^n \operatorname{vol} (\mathbb{R}^n/\Gamma).</math> ==Later research in the geometry of numbers== In 1930–1960 research on the geometry of numbers was conducted by many [[number theorist]]s (including [[Louis Mordell]], [[Harold Davenport]] and [[Carl Ludwig Siegel]]). In recent years, Lenstra, Brion, and Barvinok have developed combinatorial theories that enumerate the lattice points in some convex bodies.<ref>Grötschel et al., Lovász et al., Lovász, and Beck and Robins.</ref> ===Subspace theorem of W. M. Schmidt=== {{Main article|Subspace theorem}} {{See also|Siegel's lemma|volume (mathematics)|determinant|parallelepiped}} In the geometry of numbers, the [[subspace theorem]] was obtained by [[Wolfgang M. Schmidt]] in 1972.<ref>Schmidt, Wolfgang M. ''Norm form equations.'' Ann. Math. (2) '''96''' (1972), pp. 526–551. See also Schmidt's books; compare Bombieri and Vaaler and also Bombieri and Gubler.</ref> It states that if ''n'' is a positive integer, and ''L''<sub>1</sub>,...,''L''<sub>''n''</sub> are [[linear independence|linearly independent]] [[linear]] [[algebraic form|forms]] in ''n'' variables with [[algebraic number|algebraic]] coefficients and if ε>0 is any given real number, then the non-zero integer points ''x'' in ''n'' coordinates with :<math>|L_1(x)\cdots L_n(x)|<|x|^{-\varepsilon}</math> lie in a finite number of [[linear subspace|proper subspaces]] of '''Q'''<sup>''n''</sup>. ==Influence on functional analysis== {{Main article|normed vector space}} {{See also|Banach space|F-space}} Minkowski's geometry of numbers had a profound influence on [[functional analysis]]. Minkowski proved that symmetric convex bodies induce [[normed space|norms]] in finite-dimensional vector spaces. Minkowski's theorem was generalized to [[topological vector space]]s by [[Kolmogorov]], whose theorem states that the symmetric convex sets that are closed and bounded generate the topology of a [[Banach space]].<ref>For Kolmogorov's normability theorem, see Walter Rudin's ''Functional Analysis''. For more results, see Schneider, and Thompson and see Kalton et al.</ref> Researchers continue to study generalizations to [[star-shaped set]]s and other [[convex set|non-convex set]]s.<ref>Kalton et al. Gardner</ref> ==References== {{Reflist|2}} ==Bibliography== * Matthias Beck, Sinai Robins. ''[[Computing the Continuous Discretely|Computing the continuous discretely: Integer-point enumeration in polyhedra]]'', [[Undergraduate Texts in Mathematics]], Springer, 2007. * {{cite journal|author=Enrico Bombieri|author-link=Enrico Bombieri|author2=Vaaler, J.|title = On Siegel's lemma|journal = Inventiones Mathematicae|volume = 73|issue = 1|date = Feb 1983|pages = 11–32|doi = 10.1007/BF01393823|bibcode=1983InMat..73...11B|s2cid=121274024}} * {{cite book |author=Enrico Bombieri |author-link=Enrico Bombieri |author2=Walter Gubler |name-list-style=amp |title=Heights in Diophantine Geometry |publisher=Cambridge U. P. |year=2006}} * [[J. W. S. Cassels]]. ''An Introduction to the Geometry of Numbers''. Springer Classics in Mathematics, Springer-Verlag 1997 (reprint of 1959 and 1971 Springer-Verlag editions). * [[John Horton Conway]] and [[Neil Sloane|N. J. A. Sloane]], ''Sphere Packings, Lattices and Groups'', Springer-Verlag, NY, 3rd ed., 1998. * R. J. Gardner, ''Geometric tomography,'' Cambridge University Press, New York, 1995. Second edition: 2006. * [[Peter M. Gruber|P. M. Gruber]], ''Convex and discrete geometry,'' Springer-Verlag, New York, 2007. * P. M. Gruber, J. M. Wills (editors), ''Handbook of convex geometry. Vol. A. B,'' North-Holland, Amsterdam, 1993. * [[Martin Grötschel|M. Grötschel]], [[László Lovász|Lovász, L.]], [[Alexander Schrijver|A. Schrijver]]: ''Geometric Algorithms and Combinatorial Optimization'', Springer, 1988 * {{cite book | author = Hancock, Harris | title = Development of the Minkowski Geometry of Numbers | year = 1939 | publisher = Macmillan}} (Republished in 1964 by Dover.) * [[Edmund Hlawka]], Johannes Schoißengeier, Rudolf Taschner. ''Geometric and Analytic Number Theory''. Universitext. Springer-Verlag, 1991. * {{citation |last1=Kalton|first1=Nigel J.|author1-link=Nigel Kalton |last2=Peck|first2=N. Tenney |last3=Roberts|first3=James W. | title = An F-space sampler | series = London Mathematical Society Lecture Note Series, 89 | publisher = Cambridge University Press| location = Cambridge | year = 1984| pages = xii+240| isbn = 0-521-27585-7 | mr = 0808777}} * [[Gerrit Lekkerkerker|C. G. Lekkerkererker]]. ''Geometry of Numbers''. Wolters-Noordhoff, North Holland, Wiley. 1969. * {{cite journal | author = Lenstra, A. K. | author-link = Arjen Lenstra | author2 = Lenstra, H. W. Jr. | author2-link = Hendrik Lenstra | author3 = Lovász, L. | author3-link = László Lovász | title = Factoring polynomials with rational coefficients | journal = [[Mathematische Annalen]] | volume = 261 | year = 1982 | issue = 4 | pages = 515–534 | hdl = 1887/3810 | doi = 10.1007/BF01457454 | mr = 0682664| s2cid = 5701340 | url = http://infoscience.epfl.ch/record/164484/files/nscan4.PDF }} * [[László Lovász|Lovász, L.]]: ''An Algorithmic Theory of Numbers, Graphs, and Convexity'', CBMS-NSF Regional Conference Series in Applied Mathematics 50, SIAM, Philadelphia, Pennsylvania, 1986 * {{Springer|id=G/g044350|title=Geometry of numbers|first=A.V. |last=Malyshev}} * {{Citation | last1=Minkowski | first1=Hermann | author1-link=Hermann Minkowski | title=Geometrie der Zahlen | url=https://archive.org/details/geometriederzahl00minkrich | publisher=R. G. Teubner | location=Leipzig and Berlin | mr=0249269 | year=1910 | jfm=41.0239.03 | access-date=2016-02-28}} * [[Wolfgang M. Schmidt]]. ''Diophantine approximation''. Lecture Notes in Mathematics 785. Springer. (1980 [1996 with minor corrections]) * {{cite book | last=Schmidt | first=Wolfgang M. | author-link=Wolfgang M. Schmidt | title=Diophantine approximations and Diophantine equations | series=Lecture Notes in Mathematics | volume=1467 | publisher=[[Springer-Verlag]] | year=1996 | edition=2nd | isbn=3-540-54058-X | zbl=0754.11020}} * {{cite book | author = Siegel, Carl Ludwig | author-link = Carl Ludwig Siegel | title = Lectures on the Geometry of Numbers | url = https://archive.org/details/lecturesongeomet0000sieg | url-access = registration | year = 1989 | publisher = [[Springer-Verlag]]}} * Rolf Schneider, ''Convex bodies: the Brunn-Minkowski theory,'' Cambridge University Press, Cambridge, 1993. * Anthony C. Thompson, ''Minkowski geometry,'' Cambridge University Press, Cambridge, 1996. * [[Hermann Weyl]]. Theory of reduction for arithmetical equivalence . Trans. Amer. Math. Soc. 48 (1940) 126–164. {{doi|10.1090/S0002-9947-1940-0002345-2}} * Hermann Weyl. Theory of reduction for arithmetical equivalence. II . Trans. Amer. Math. Soc. 51 (1942) 203–231. {{doi|10.2307/1989946}} {{Number theory-footer}} [[Category:Geometry of numbers| ]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite Geometric Algorithms and Combinatorial Optimization
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Diophantine approximation graph.svg
(
edit
)
Template:Doi
(
edit
)
Template:Harvs
(
edit
)
Template:Main article
(
edit
)
Template:Number theory-footer
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)