Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gibbs–Helmholtz equation
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|A thermodynamic equation}} The '''Gibbs–Helmholtz equation''' is a [[thermodynamics|thermodynamic]] [[equation]] used to calculate changes in the [[Gibbs free energy]] of a system as a function of [[temperature]]. It was originally presented in an 1882 paper entitled "[[Thermodynamik chemischer Vorgänge|Die Thermodynamik chemischer Vorgänge]]" by [[Hermann von Helmholtz]]. It describes how the Gibbs free energy, which was presented originally by [[Josiah Willard Gibbs]], varies with temperature.<ref>{{cite journal |last1=von Helmholtz |first1=Hermann |title=Die Thermodynamik chemischer Vorgange |journal=Ber. KGL. Preuss. Akad. Wiss. Berlin |date=1882 |volume=I |pages=22–39}}</ref> It was derived by [[Hermann von Helmholtz|Helmholtz]] first, and Gibbs derived it only 6 years later.<ref>{{Cite journal |last=Jensen |first=William B. |date=2016-01-27 |title=Vignettes in the history of chemistry. 1. What is the origin of the Gibbs–Helmholtz equation? |url=https://doi.org/10.1007/s40828-015-0019-8 |journal=ChemTexts |language=en |volume=2 |issue=1 |pages=1 |doi=10.1007/s40828-015-0019-8 |issn=2199-3793|doi-access=free }}</ref> The attribution to Gibbs goes back to [[Wilhelm Ostwald]], who first translated [[On the Equilibrium of Heterogeneous Substances|Gibbs' monograph]] into German and promoted it in Europe.<ref>At the last paragraph on page 638, of Bancroft, W. D. (1927). ''[https://books.google.com/books?id=umdGAQAAIAAJ&dq=%22Helmholtz+did+deduce+and+which+Gibbs+could+have%22&pg=PA638 Review of: Thermodynamics for Students of Chemistry. By C. N. Hinshelwood]''. The Journal of Physical Chemistry, 31, 635-638.</ref><ref>{{Cite journal |last=Daub |first=Edward E. |date=December 1976 |title=Gibbs phase rule: A centenary retrospect |url=https://pubs.acs.org/doi/abs/10.1021/ed053p747 |journal=Journal of Chemical Education |language=en |volume=53 |issue=12 |pages=747 |doi=10.1021/ed053p747 |issn=0021-9584|url-access=subscription }}</ref> The equation is:<ref name="P">Physical chemistry, [[P. W. Atkins]], Oxford University Press, 1978, {{ISBN|0-19-855148-7}}</ref> {{Equation box 1 |indent =: |equation = <math>\left( \frac{\partial \left( \frac{G} {T} \right) } {\partial T} \right)_p = - \frac {H} {T^2},</math> |border colour = #50C878 |background colour = #ECFCF4 }} where ''H'' is the [[enthalpy]], ''T'' the [[absolute temperature]] and ''G'' the [[Gibbs free energy]] of the system, all at constant [[pressure]] ''p''. The equation states that the change in the ''G/T'' ratio at constant pressure as a result of an [[infinitesimally]] small change in temperature is a factor ''H/T''<sup>2</sup>. Similar equations include<ref>{{Cite book |last=Pippard |first=Alfred B. |title=Elements of classical thermodynamics: for advanced students of physics |date=1981 |publisher=Univ. Pr |isbn=978-0-521-09101-5 |edition=Repr |location=Cambridge |chapter=5: Useful ideas}}</ref> {| class="wikitable" |+ | |<math display="inline">U = -T^2\left(\frac{\partial}{\partial T}\frac FT\right)_V</math> | |<math display="inline">F = -S^2\left(\frac{\partial}{\partial S}\frac US\right)_V</math> | |- |<math>U = -P^2\left(\frac{\partial}{\partial P}\frac{H}{P}\right)_S</math> |<math>U</math> |<math>\leftrightarrow U-F = TS</math> |<math>F</math> |<math display="inline">F = -P^2\left(\frac{\partial}{\partial P}\frac GP\right)_T</math> |- | |<math>\updownarrow U-H = -PV</math> | |<math>\updownarrow G-F = PV</math> | |- |<math display="inline">H = -V^2\left(\frac{\partial}{\partial V}\frac UV\right)_S</math> |<math>H</math> |<math>\leftrightarrow G-H = -TS</math> |<math>G</math> |<math display="inline">G = -V^2\left(\frac{\partial}{\partial V}\frac{F}{V}\right)_T</math> |- | |<math display="inline">H = -T^2\left(\frac{\partial}{\partial T}\frac GT\right)_P</math> | |<math display="inline">G = -S^2\left(\frac{\partial}{\partial S}\frac{H}{S}\right)_p</math> | |} ==Chemical reactions and work== {{Main|Thermochemistry}} The typical applications of this equation are to [[chemical reaction]]s. The equation reads:<ref>Chemical Thermodynamics, D.J.G. Ives, University Chemistry, Macdonald Technical and Scientific, 1971, {{ISBN|0-356-03736-3}}</ref> :<math>\left( \frac{\partial ( \Delta G^\ominus/T ) } {\partial T} \right)_p = - \frac {\Delta H^\ominus} {T^2}</math> with Δ''G'' as the change in Gibbs energy due to reaction, and Δ''H'' as the [[enthalpy of reaction]] (often, but not necessarily, assumed to be independent of temperature). The <s>o</s> denotes the use of [[Standard state|standard states]], and particularly the choice of a particular standard pressure (1 bar), to calculate Δ''G'' and Δ''H''. Integrating with respect to ''T'' (again ''p'' is constant) yields: :<math> \frac{\Delta G^\ominus(T_2)}{T_2} - \frac{\Delta G^\ominus(T_1)}{T_1} = \Delta H^\ominus \left(\frac{1}{T_2} - \frac{1}{T_1}\right) </math> This equation quickly enables the calculation of the Gibbs free energy change for a chemical reaction at any temperature ''T''<sub>2</sub> with knowledge of just the [[standard Gibbs free energy change of formation]] and the [[standard enthalpy change of formation]] for the individual components. Also, using the reaction isotherm equation,<ref>Chemistry, Matter, and the Universe, R.E. Dickerson, I. Geis, W.A. Benjamin Inc. (USA), 1976, {{ISBN|0-19-855148-7}}</ref> that is :<math>\frac{\Delta G^\ominus}{T} = -R \ln K </math> which relates the Gibbs energy to a chemical [[equilibrium constant]], the [[van 't Hoff equation]] can be derived.<ref>Chemical Thermodynamics, D.J.G. Ives, University Chemistry, Macdonald Technical and Scientific, 1971, {{ISBN|0-356-03736-3}}</ref> Since the change in a system's Gibbs energy is equal to the maximum amount of non-expansion work that the system can do in a process, the Gibbs–Helmholtz equation may be used to estimate how much non-expansion work can be done by a chemical process as a function of temperature.<ref name="P Chem 1">{{cite book |last1=Gerasimov |first1=Ya |title=Physical Chemistry Volume 1 |date=1978 |publisher=MIR Publishers |location=Moscow |page=118 |edition=1st}}</ref> For example, the capacity of rechargeable electric batteries can be estimated as a function of temperature using the Gibbs–Helmholtz equation.<ref name="P Chem 2">{{cite book |last1=Gerasimov |first1=Ya |title=Physical Chemistry Volume 2 |date=1978 |publisher=MIR Publishers |location=Moscow |page=497 |edition=1st}}</ref> ==Derivation== ===Background=== {{main|Defining equation (physical chemistry)|Enthalpy|Thermodynamic potential}} The definition of the Gibbs function is <math display="block">H = G + ST </math> where {{mvar|H}} is the enthalpy defined by: <math display="block">H = U + pV </math> Taking [[differential of a function|differentials]] of each definition to find {{math|''dH''}} and {{math|''dG''}}, then using the [[fundamental thermodynamic relation]] (always true for [[Reversible process (thermodynamics)|reversible]] or [[Irreversible process|irreversible]] [[thermodynamic process|processes]]): <math display="block">dU = T\,dS - p\,dV </math> where {{mvar|S}} is the [[entropy]], {{mvar|V}} is [[volume]], (minus sign due to reversibility, in which {{math|1=''dU'' = 0}}: work other than pressure-volume may be done and is equal to {{math|−''pV''}}) leads to the "reversed" form of the initial fundamental relation into a new master equation: <math display="block">dG = - S\,dT + V\,dp </math> This is the [[Gibbs free energy]] for a closed system. The Gibbs–Helmholtz equation can be derived by this second master equation, and the [[chain rule]] for [[partial derivatives]].<ref name="P" /> {{math proof|title=Derivation |proof= Starting from the equation <math display="block">dG = - S\,dT + V\,dp</math> for the differential of ''G'', and remembering <math display="block">H = G + T\,S ,</math> one computes the differential of the ratio {{math|''G''/''T''}} by applying the [[product rule]] of [[Differentiation (mathematics)|differentiation]] in the version for differentials: <math display="block">\begin{align} d\left(\frac{G}{T}\right) &= \frac{T\, dG - G\, dT}{T^2} = \frac{T\, (-S \,dT + V \, dp) - G\, dT}{T^2} \\ &= \frac{-T\, S \,dT -G\,dT + T\, V \, dp}{T^2} = \frac{-(G + T\,S)\,dT + T\, V \, dp}{T^2} \\ &= \frac{-H \,dT + T\,V\,dp}{T^2} \end{align}\,\!</math> Therefore, <math display="block">d\left(\frac{G}{T}\right) = -\frac{H}{T^2}\, dT + \frac{V}{T}\, dp \,\!</math> A comparison with the general expression for a total differential <math display="block">d\left(\frac{G}{T}\right) = \left( \frac{\partial(G/T)}{\partial T} \right)_p \, dT + \left( \frac{\partial(G/T)}{\partial p} \right)_T \, dp</math> gives the change of {{math|''G''/''T''}} with respect to {{mvar|T}} at constant [[pressure]] (i.e. when {{math|1=''dp'' = 0}}), the Gibbs–Helmholtz equation: <math display="block">\left( \frac{\partial(G/T)}{\partial T} \right)_p = -\frac{H}{T^2} </math> }} ==Sources== {{reflist}} ==External links== * [https://web.archive.org/web/20151007133812/http://www.chem.arizona.edu/~salzmanr/480a/480ants/gibshelm/gibshelm.html Gibbs–Helmholtz equation, by W. R. Salzman (2004)]. * [https://carnotcycle.wordpress.com/2013/12/01/the-gibbs-helmholtz-equation/#:~:text=The%20Gibbs%2DHelmholtz%20equation%20was,the%20Thermodynamics%20of%20Chemical%20Processes Gibbs-Helmholtz Equation, by P. Mander (2013)] {{DEFAULTSORT:Gibbs-Helmholtz equation}} [[Category:Thermodynamic equations]] [[Category:Hermann von Helmholtz]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Equation box 1
(
edit
)
Template:ISBN
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:Math proof
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)