Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gram–Schmidt process
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Orthonormalization of a set of vectors}} [[File:Gram–Schmidt process.svg|right|frame|The first two steps of the Gram–Schmidt process]] In [[mathematics]], particularly [[linear algebra]] and [[numerical analysis]], the '''Gram–Schmidt process''' or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other. By technical definition, it is a method of constructing an [[orthonormal basis]] from a set of [[vector (geometry)|vectors]] in an [[inner product space]], most commonly the [[Euclidean space]] <math>\mathbb{R}^n</math> equipped with the [[standard inner product]]. The Gram–Schmidt process takes a [[finite set|finite]], [[linearly independent]] set of vectors <math>S = \{ \mathbf{v}_1, \ldots , \mathbf{v}_k \}</math> for {{math|''k'' ≤ ''n''}} and generates an [[orthogonal set]] <math>S' = \{ \mathbf{u}_1 , \ldots , \mathbf{u}_k \}</math> that spans the same <math>k</math>-dimensional subspace of <math>\mathbb{R}^n</math> as <math>S</math>. The method is named after [[Jørgen Pedersen Gram]] and [[Erhard Schmidt]], but [[Pierre-Simon Laplace]] had been familiar with it before Gram and Schmidt.<ref>{{cite book |last1=Cheney |first1=Ward |last2=Kincaid |first2=David |title=Linear Algebra: Theory and Applications |location=Sudbury, Ma |publisher=Jones and Bartlett |year=2009 |url={{Google books |plainurl=yes |id=Gg3Uj1GkHK8C |page=544 }} |isbn=978-0-7637-5020-6 |pages=544, 558 }}</ref> In the theory of [[Lie group decompositions]], it is generalized by the [[Iwasawa decomposition]]. The application of the Gram–Schmidt process to the column vectors of a full column [[rank (linear algebra)|rank]] [[matrix (mathematics)|matrix]] yields the [[QR decomposition]] (it is decomposed into an [[orthogonal matrix|orthogonal]] and a [[triangular matrix]]). == The Gram–Schmidt process == [[File:Gram-Schmidt orthonormalization process.gif|thumb|400px|The modified Gram-Schmidt process being executed on three linearly independent, non-orthogonal vectors of a basis for <math>\mathbb{R}^3</math>. Click on image for details. Modification is explained in the Numerical Stability section of this article.]] The [[vector projection]] of a vector <math>\mathbf v</math> on a nonzero vector <math>\mathbf u</math> is defined as<ref group="note">In the complex case, this assumes that the inner product is linear in the first argument and conjugate-linear in the second. In physics a more common convention is linearity in the second argument, in which case we define <math display="block">\operatorname{proj}_{\mathbf u} (\mathbf{v}) = \frac{\langle \mathbf{u}, \mathbf{v}\rangle}{\langle \mathbf{u}, \mathbf{u}\rangle} \,\mathbf{u}. </math></ref> <math display="block">\operatorname{proj}_{\mathbf u} (\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{u}\rangle}{\langle \mathbf{u}, \mathbf{u}\rangle} \,\mathbf{u} , </math> where <math>\langle \mathbf{v}, \mathbf{u}\rangle</math> denotes the [[inner product]] of the vectors <math>\mathbf u</math> and <math>\mathbf v</math>. This means that <math>\operatorname{proj}_{\mathbf u} (\mathbf{v})</math> is the [[orthogonal projection]] of <math>\mathbf v</math> onto the line spanned by <math>\mathbf u</math>. If <math>\mathbf u</math> is the zero vector, then <math>\operatorname{proj}_{\mathbf u} (\mathbf{v})</math> is defined as the zero vector. Given <math>k</math> nonzero linearly-independent vectors <math>\mathbf{v}_1, \ldots, \mathbf{v}_k</math> the Gram–Schmidt process defines the vectors <math>\mathbf{u}_1, \ldots, \mathbf{u}_k</math> as follows: <math display="block">\begin{align} \mathbf{u}_1 & = \mathbf{v}_1, & \!\mathbf{e}_1 & = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} \\ \mathbf{u}_2 & = \mathbf{v}_2-\operatorname{proj}_{\mathbf{u}_1} (\mathbf{v}_2), & \!\mathbf{e}_2 & = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} \\ \mathbf{u}_3 & = \mathbf{v}_3-\operatorname{proj}_{\mathbf{u}_1} (\mathbf{v}_3) - \operatorname{proj}_{\mathbf{u}_2} (\mathbf{v}_3), & \!\mathbf{e}_3 & = \frac{\mathbf{u}_3 }{\|\mathbf{u}_3\|} \\ \mathbf{u}_4 & = \mathbf{v}_4-\operatorname{proj}_{\mathbf{u}_1} (\mathbf{v}_4)-\operatorname{proj}_{\mathbf{u}_2} (\mathbf{v}_4)-\operatorname{proj}_{\mathbf{u}_3} (\mathbf{v}_4), & \!\mathbf{e}_4 & = {\mathbf{u}_4 \over \|\mathbf{u}_4\|} \\ & {}\ \ \vdots & & {}\ \ \vdots \\ \mathbf{u}_k & = \mathbf{v}_k - \sum_{j=1}^{k-1}\operatorname{proj}_{\mathbf{u}_j} (\mathbf{v}_k), & \!\mathbf{e}_k & = \frac{\mathbf{u}_k}{\|\mathbf{u}_k\|}. \end{align}</math> The sequence <math>\mathbf{u}_1, \ldots, \mathbf{u}_k</math> is the required system of orthogonal vectors, and the normalized vectors <math>\mathbf{e}_1, \ldots, \mathbf{e}_k</math> form an [[orthonormal set]]. The calculation of the sequence <math>\mathbf{u}_1, \ldots, \mathbf{u}_k</math> is known as ''Gram–Schmidt [[orthogonalization]]'', and the calculation of the sequence <math>\mathbf{e}_1, \ldots, \mathbf{e}_k</math> is known as ''Gram–Schmidt [[orthonormalization]]''. To check that these formulas yield an orthogonal sequence, first compute <math>\langle \mathbf{u}_1, \mathbf{u}_2 \rangle</math> by substituting the above formula for <math>\mathbf{u}_2</math>: we get zero. Then use this to compute <math>\langle \mathbf{u}_1, \mathbf{u}_3 \rangle</math> again by substituting the formula for <math>\mathbf{u}_3</math>: we get zero. For arbitrary <math>k</math> the proof is accomplished by [[mathematical induction]]. Geometrically, this method proceeds as follows: to compute <math>\mathbf{u}_i</math>, it projects <math>\mathbf{v}_i</math> orthogonally onto the subspace <math>U</math> generated by <math>\mathbf{u}_1, \ldots, \mathbf{u}_{i-1}</math>, which is the same as the subspace generated by <math>\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}</math>. The vector <math>\mathbf{u}_i</math> is then defined to be the difference between <math>\mathbf{v}_i</math> and this projection, guaranteed to be orthogonal to all of the vectors in the subspace <math>U</math>. The Gram–Schmidt process also applies to a linearly independent [[countably infinite]] sequence {{math|{'''v'''<sub>''i''</sub>}<sub>''i''</sub>}}. The result is an orthogonal (or orthonormal) sequence {{math|{'''u'''<sub>''i''</sub>}<sub>''i''</sub>}} such that for natural number {{mvar|n}}: the algebraic span of <math>\mathbf{v}_1, \ldots, \mathbf{v}_{n}</math> is the same as that of <math>\mathbf{u}_1, \ldots, \mathbf{u}_{n}</math>. If the Gram–Schmidt process is applied to a linearly dependent sequence, it outputs the {{math|'''0'''}} vector on the <math>i</math>th step, assuming that <math>\mathbf{v}_i</math> is a linear combination of <math>\mathbf{v}_1, \ldots, \mathbf{v}_{i-1}</math>. If an orthonormal basis is to be produced, then the algorithm should test for zero vectors in the output and discard them because no multiple of a zero vector can have a length of 1. The number of vectors output by the algorithm will then be the dimension of the space spanned by the original inputs. A variant of the Gram–Schmidt process using [[transfinite recursion]] applied to a (possibly uncountably) infinite sequence of vectors <math>(v_\alpha)_{\alpha<\lambda}</math> yields a set of orthonormal vectors <math>(u_\alpha)_{\alpha<\kappa}</math> with <math>\kappa\leq\lambda</math> such that for any <math>\alpha\leq\lambda</math>, the [[Complete space#Completion|completion]] of the span of <math>\{ u_\beta : \beta<\min(\alpha,\kappa) \}</math> is the same as that of {{nowrap|<math>\{ v_\beta : \beta < \alpha\}</math>.}} In particular, when applied to a (algebraic) basis of a [[Hilbert space]] (or, more generally, a basis of any dense subspace), it yields a (functional-analytic) orthonormal basis. Note that in the general case often the strict inequality <math>\kappa < \lambda</math> holds, even if the starting set was linearly independent, and the span of <math>(u_\alpha)_{\alpha<\kappa}</math> need not be a subspace of the span of <math>(v_\alpha)_{\alpha<\lambda}</math> (rather, it's a subspace of its completion). == Example == ===Euclidean space=== Consider the following set of vectors in <math>\mathbb{R}^2</math> (with the conventional [[Inner product space#Euclidean vector space|inner product]]) <math display="block">S = \left\{\mathbf{v}_1=\begin{bmatrix} 3 \\ 1\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}2 \\2\end{bmatrix}\right\}.</math> Now, perform Gram–Schmidt, to obtain an orthogonal set of vectors: <math display="block">\mathbf{u}_1=\mathbf{v}_1=\begin{bmatrix}3\\1\end{bmatrix}</math> <math display="block"> \mathbf{u}_2 = \mathbf{v}_2 - \operatorname{proj}_{\mathbf{u}_1} (\mathbf{v}_2) = \begin{bmatrix}2\\2\end{bmatrix} - \operatorname{proj}_{\left[\begin{smallmatrix}3 \\ 1\end{smallmatrix}\right]} {\begin{bmatrix}2\\2\end{bmatrix}} = \begin{bmatrix}2\\2\end{bmatrix} - \frac{8}{10} \begin{bmatrix} 3 \\1 \end{bmatrix} = \begin{bmatrix} -2/5 \\6/5 \end{bmatrix}. </math> We check that the vectors <math>\mathbf{u}_1</math> and <math>\mathbf{u}_2</math> are indeed orthogonal: <math display="block">\langle\mathbf{u}_1,\mathbf{u}_2\rangle = \left\langle \begin{bmatrix}3\\1\end{bmatrix}, \begin{bmatrix} -2/5 \\ 6/5 \end{bmatrix} \right\rangle = -\frac{6}{5} + \frac{6}{5} = 0,</math> noting that if the [[dot product]] of two vectors is 0 then they are orthogonal. For non-zero vectors, we can then normalize the vectors by dividing out their sizes as shown above: <math display="block">\mathbf{e}_1 = \frac{1}{\sqrt {10}}\begin{bmatrix}3\\1\end{bmatrix}</math> <math display="block">\mathbf{e}_2 = \frac{1}{\sqrt{40 \over 25}} \begin{bmatrix}-2/5\\6/5\end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix}-1\\3\end{bmatrix}. </math> == Properties == Denote by <math> \operatorname{GS}(\mathbf{v}_1, \dots, \mathbf{v}_k) </math> the result of applying the Gram–Schmidt process to a collection of vectors <math> \mathbf{v}_1, \dots, \mathbf{v}_k </math>. This yields a map <math> \operatorname{GS} \colon (\R^n)^{k} \to (\R^n)^{k} </math>. It has the following properties: * It is continuous * It is [[orientation (vector space)|orientation]] preserving in the sense that <math> \operatorname{or}(\mathbf{v}_1,\dots,\mathbf{v}_k) = \operatorname{or}(\operatorname{GS}(\mathbf{v}_1,\dots,\mathbf{v}_k)) </math>. * It commutes with orthogonal maps: Let <math> g \colon \R^n \to \R^n </math> be orthogonal (with respect to the given inner product). Then we have <math display="block"> \operatorname{GS}(g(\mathbf{v}_1),\dots,g(\mathbf{v}_k)) = \left( g(\operatorname{GS}(\mathbf{v}_1,\dots,\mathbf{v}_k)_1),\dots,g(\operatorname{GS}(\mathbf{v}_1,\dots,\mathbf{v}_k)_k) \right) </math> Further, a parametrized version of the Gram–Schmidt process yields a (strong) [[Retraction (topology)#Deformation retract and strong deformation retract|deformation retraction]] of the general linear group <math> \mathrm{GL}(\R^n)</math> onto the orthogonal group <math> O(\R^n)</math>. == Numerical stability == When this process is implemented on a computer, the vectors <math>\mathbf{u}_k</math> are often not quite orthogonal, due to [[round-off error|rounding errors]]. For the Gram–Schmidt process as described above (sometimes referred to as "classical Gram–Schmidt") this loss of orthogonality is particularly bad; therefore, it is said that the (classical) Gram–Schmidt process is [[numerical stability|numerically unstable]]. The Gram–Schmidt process can be stabilized by a small modification; this version is sometimes referred to as '''modified Gram-Schmidt''' or MGS. This approach gives the same result as the original formula in exact arithmetic and introduces smaller errors in finite-precision arithmetic. Instead of computing the vector {{math|'''u'''<sub>''k''</sub>}} as <math display="block"> \mathbf{u}_k = \mathbf{v}_k - \operatorname{proj}_{\mathbf{u}_1} (\mathbf{v}_k) - \operatorname{proj}_{\mathbf{u}_2} (\mathbf{v}_k) - \cdots - \operatorname{proj}_{\mathbf{u}_{k-1}} (\mathbf{v}_k), </math> it is computed as <math display="block"> \begin{align} \mathbf{u}_k^{(1)} &= \mathbf{v}_k - \operatorname{proj}_{\mathbf{u}_1} (\mathbf{v}_k), \\ \mathbf{u}_k^{(2)} &= \mathbf{u}_k^{(1)} - \operatorname{proj}_{\mathbf{u}_2} \left(\mathbf{u}_k^{(1)}\right), \\ & \;\; \vdots \\ \mathbf{u}_k^{(k-2)} &= \mathbf{u}_k^{(k-3)} - \operatorname{proj}_{\mathbf{u}_{k-2}} \left(\mathbf{u}_k^{(k-3)}\right), \\ \mathbf{u}_k^{(k-1)} &= \mathbf{u}_k^{(k-2)} - \operatorname{proj}_{\mathbf{u}_{k-1}} \left(\mathbf{u}_k^{(k-2)}\right), \\ \mathbf{e}_k &= \frac{\mathbf{u}_k^{(k-1)}}{\left\|\mathbf{u}_k^{(k-1)}\right\|} \end{align} </math> This method is used in the previous animation, when the intermediate <math>\mathbf{v}'_3</math> vector is used when orthogonalizing the blue vector <math>\mathbf{v}_3</math>. Here is another description of the modified algorithm. Given the vectors <math>\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n</math>, in our first step we produce vectors <math>\mathbf{v}_1, \mathbf{v}_2^{(1)}, \dots, \mathbf{v}_n^{(1)}</math>by removing components along the direction of <math>\mathbf{v}_1</math>. In formulas, <math>\mathbf{v}_k^{(1)} := \mathbf{v}_k - \frac{\langle \mathbf{v}_k, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1</math>. After this step we already have two of our desired orthogonal vectors <math>\mathbf{u}_1, \dots, \mathbf{u}_n</math>, namely <math>\mathbf{u}_1 = \mathbf{v}_1, \mathbf{u}_2 = \mathbf{v}_2^{(1)}</math>, but we also made <math>\mathbf{v}_3^{(1)}, \dots, \mathbf{v}_n^{(1)}</math> already orthogonal to <math>\mathbf{u}_1</math>. Next, we orthogonalize those remaining vectors against <math>\mathbf{u}_2 = \mathbf{v}_2^{(1)}</math>. This means we compute <math>\mathbf{v}_3^{(2)}, \mathbf{v}_4^{(2)}, \dots, \mathbf{v}_n^{(2)}</math> by subtraction <math>\mathbf{v}_k^{(2)} := \mathbf{v}_k^{(1)} - \frac{\langle \mathbf{v}_k^{(1)}, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2</math>. Now we have stored the vectors <math>\mathbf{v}_1, \mathbf{v}_2^{(1)}, \mathbf{v}_3^{(2)}, \mathbf{v}_4^{(2)}, \dots, \mathbf{v}_n^{(2)}</math> where the first three vectors are already <math>\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3</math> and the remaining vectors are already orthogonal to <math>\mathbf{u}_1, \mathbf{u}_2</math>. As should be clear now, the next step orthogonalizes <math>\mathbf{v}_4^{(2)}, \dots, \mathbf{v}_n^{(2)}</math> against <math>\mathbf{u}_3 = \mathbf{v}_3^{(2)}</math>. Proceeding in this manner we find the full set of orthogonal vectors <math>\mathbf{u}_1, \dots, \mathbf{u}_n</math>. If orthonormal vectors are desired, then we normalize as we go, so that the denominators in the subtraction formulas turn into ones. == Algorithm == The following [[MATLAB]] algorithm implements classical Gram–Schmidt orthonormalization. The vectors {{math|'''v'''<sub>1</sub>, ..., '''v'''<sub>''k''</sub>}} (columns of matrix <code>V</code>, so that <code>V(:,j)</code> is the <math>j</math>th vector) are replaced by orthonormal vectors (columns of <code>U</code>) which span the same subspace. <syntaxhighlight lang="matlab" line="1"> function U = gramschmidt(V) [n, k] = size(V); U = zeros(n,k); U(:,1) = V(:,1) / norm(V(:,1)); for i = 2:k U(:,i) = V(:,i); for j = 1:i-1 U(:,i) = U(:,i) - (U(:,j)'*U(:,i)) * U(:,j); end U(:,i) = U(:,i) / norm(U(:,i)); end end </syntaxhighlight> The cost of this algorithm is asymptotically {{math|O(''nk''<sup>2</sup>)}} floating point operations, where {{mvar|n}} is the dimensionality of the vectors.{{sfn|Golub|Van Loan|1996|loc=§5.2.8}} == Via Gaussian elimination == If the rows {{math|{'''v'''<sub>1</sub>, ..., '''v'''<sub>''k''</sub>}<nowiki/>}} are written as a matrix <math>A</math>, then applying [[Gaussian elimination]] to the augmented matrix <math>\left[A A^\mathsf{T} | A \right]</math> will produce the orthogonalized vectors in place of <math>A</math>. However the matrix <math>A A^\mathsf{T}</math> must be brought to [[row echelon form]], using only the [[Elementary matrix|row operation]] of adding a scalar multiple of one row to another.<ref>{{cite journal|last1=Pursell|first1=Lyle|last2=Trimble|first2=S. Y.|title=Gram-Schmidt Orthogonalization by Gauss Elimination |journal=The American Mathematical Monthly|date=1 January 1991|volume=98|issue=6|pages=544–549| doi=10.2307/2324877 |jstor=2324877}}</ref> For example, taking <math>\mathbf{v}_1 = \begin{bmatrix} 3 & 1\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}2 & 2\end{bmatrix}</math> as above, we have <math display="block">\left[A A^\mathsf{T} | A \right] = \left[\begin{array}{rr|rr} 10 & 8 & 3 & 1 \\ 8 & 8 & 2 & 2\end{array}\right]</math> And reducing this to [[row echelon form]] produces <math display="block">\left[\begin{array}{rr|rr} 1 & .8 & .3 & .1 \\ 0 & 1 & -.25 & .75\end{array}\right]</math> The normalized vectors are then <math display="block">\mathbf{e}_1 = \frac{1}{\sqrt {.3^2+.1^2}}\begin{bmatrix}.3 & .1\end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix}3 & 1\end{bmatrix}</math> <math display="block">\mathbf{e}_2 = \frac{1}{\sqrt{.25^2+.75^2}} \begin{bmatrix}-.25 & .75\end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix}-1 & 3\end{bmatrix}, </math> as in the example above. == Determinant formula == The result of the Gram–Schmidt process may be expressed in a non-recursive formula using [[determinant]]s. <math display="block"> \mathbf{e}_j = \frac{1}{\sqrt{D_{j-1} D_j}} \begin{vmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \langle \mathbf{v}_2, \mathbf{v}_1 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_1 \rangle \\ \langle \mathbf{v}_1, \mathbf{v}_2 \rangle & \langle \mathbf{v}_2, \mathbf{v}_2 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{v}_1, \mathbf{v}_{j-1} \rangle & \langle \mathbf{v}_2, \mathbf{v}_{j-1} \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_{j-1} \rangle \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_j \end{vmatrix} </math> <math display="block"> \mathbf{u}_j = \frac{1}{D_{j-1} } \begin{vmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \langle \mathbf{v}_2, \mathbf{v}_1 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_1 \rangle \\ \langle \mathbf{v}_1, \mathbf{v}_2 \rangle & \langle \mathbf{v}_2, \mathbf{v}_2 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{v}_1, \mathbf{v}_{j-1} \rangle & \langle \mathbf{v}_2, \mathbf{v}_{j-1} \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_{j-1} \rangle \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_j \end{vmatrix} </math> where <math>D_0 = 1</math> and, for <math>j \ge 1</math>, <math>D_j</math> is the [[Gram determinant]] <math display="block"> D_j = \begin{vmatrix} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle & \langle \mathbf{v}_2, \mathbf{v}_1 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_1 \rangle \\ \langle \mathbf{v}_1, \mathbf{v}_2 \rangle & \langle \mathbf{v}_2, \mathbf{v}_2 \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{v}_1, \mathbf{v}_j \rangle & \langle \mathbf{v}_2, \mathbf{v}_j \rangle & \cdots & \langle \mathbf{v}_j, \mathbf{v}_j \rangle \end{vmatrix}. </math> Note that the expression for <math>\mathbf{u}_k</math> is a "formal" determinant, i.e. the matrix contains both scalars and vectors; the meaning of this expression is defined to be the result of a [[Laplace expansion|cofactor expansion]] along the row of vectors. The determinant formula for the Gram-Schmidt is computationally (exponentially) slower than the recursive algorithms described above; it is mainly of theoretical interest. == Expressed using geometric algebra == Expressed using notation used in [[geometric algebra]], the unnormalized results of the Gram–Schmidt process can be expressed as <math display="block">\mathbf{u}_k = \mathbf{v}_k - \sum_{j=1}^{k-1} (\mathbf{v}_k \cdot \mathbf{u}_j)\mathbf{u}_j^{-1}\ ,</math> which is equivalent to the expression using the <math>\operatorname{proj}</math> operator defined above. The results can equivalently be expressed as<ref>{{cite book |last1=Doran |first1=Chris |last2=Lasenby |first2=Anthony |title=Geometric Algebra for Physicists |publisher=Cambridge University Press |year=2007 |isbn=978-0-521-71595-9 |page=124 }}</ref> <math display="block">\mathbf{u}_k = \mathbf{v}_{k}\wedge\mathbf{v}_{k-1}\wedge\cdot\cdot\cdot\wedge\mathbf{v}_{1}(\mathbf{v}_{k-1}\wedge\cdot\cdot\cdot\wedge\mathbf{v}_{1})^{-1},</math> which is closely related to the expression using determinants above. == Alternatives == Other [[orthogonalization]] algorithms use [[Householder transformation]]s or [[Givens rotation]]s. The algorithms using Householder transformations are more stable than the stabilized Gram–Schmidt process. On the other hand, the Gram–Schmidt process produces the <math>j</math>th orthogonalized vector after the <math>j</math>th iteration, while orthogonalization using [[Householder reflection]]s produces all the vectors only at the end. This makes only the Gram–Schmidt process applicable for [[iterative method]]s like the [[Arnoldi iteration]]. Yet another alternative is motivated by the use of [[Cholesky decomposition]] for [[Ordinary least squares|inverting the matrix of the normal equations in linear least squares]]. Let <math>V</math> be a [[full rank|full column rank]] matrix, whose columns need to be orthogonalized. The matrix <math>V^* V </math> is [[Hermitian matrix|Hermitian]] and [[Positive definite matrix|positive definite]], so it can be written as <math> V^* V = L L^*, </math> using the [[Cholesky decomposition]]. The lower triangular matrix <math>L </math> with strictly positive diagonal entries is [[invertible]]. Then columns of the matrix <math>U = V\left(L^{-1}\right)^*</math> are [[orthonormal]] and [[linear span|span]] the same subspace as the columns of the original matrix <math>V</math>. The explicit use of the product <math>V^* V </math> makes the algorithm unstable, especially if the product's [[condition number]] is large. Nevertheless, this algorithm is used in practice and implemented in some software packages because of its high efficiency and simplicity. In [[quantum mechanics]] there are several orthogonalization schemes with characteristics better suited for certain applications than original Gram–Schmidt. Nevertheless, it remains a popular and effective algorithm for even the largest electronic structure calculations.<ref>{{cite book|last1=Pursell|first1=Yukihiro|title=Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis |chapter=First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer | display-authors=etal|date=2011|pages=1:1–1:11| doi=10.1145/2063384.2063386 | isbn=9781450307710|s2cid=14316074}}</ref> == Run-time complexity == Gram-Schmidt orthogonalization can be done in [[strongly-polynomial time]]. The run-time analysis is similar to that of [[Gaussian elimination]].<ref name=":0">{{Cite Geometric Algorithms and Combinatorial Optimization}}</ref>{{Rp|page=40}} ==See also== * [[Linear algebra]] * [[Recursion]] * [[Orthogonality (mathematics)]] == References == <references /> == Notes == <references group="note"/> == Sources == * {{Citation | last1=Bau III | first1=David | last2=Trefethen | first2=Lloyd N. | author2-link=Lloyd N. Trefethen | title=Numerical linear algebra | publisher=Society for Industrial and Applied Mathematics | location=Philadelphia | isbn=978-0-89871-361-9 | year=1997}}. * {{Citation | last1=Golub | first1=Gene H. | author1-link=Gene H. Golub | last2=Van Loan | first2=Charles F. | author2-link=Charles F. Van Loan | title=Matrix Computations | publisher=Johns Hopkins | edition=3rd | isbn=978-0-8018-5414-9 | year=1996}}. * {{Citation | last1=Greub | first1=Werner | title=Linear Algebra | publisher = Springer | edition=4th |year = 1975}}. * {{Citation | last1=Soliverez | first1=C. E. | last2=Gagliano | first2=E. | url=http://rmf.smf.mx/pdf/rmf/31/4/31_4_743.pdf | title=Orthonormalization on the plane: a geometric approach | journal=Mex. J. Phys. | volume=31 | number=4 | pages=743–758 | year=1985 | access-date=2013-06-22 | archive-date=2014-03-07 | archive-url=https://web.archive.org/web/20140307095009/http://rmf.smf.mx/pdf/rmf/31/4/31_4_743.pdf | url-status=dead }}. == External links == {{Portal|Mathematics}} * {{springer|title=Orthogonalization|id=p/o070420}} * [https://web.archive.org/web/20160402140129/https://www.math.hmc.edu/calculus/tutorials/gramschmidt/gramschmidt.pdf Harvey Mudd College Math Tutorial on the Gram-Schmidt algorithm] * [http://jeff560.tripod.com/g.html Earliest known uses of some of the words of mathematics: G] The entry "Gram-Schmidt orthogonalization" has some information and references on the origins of the method. * Demos: [https://bigsigma.com/linear-algebra/gram-schmidt-process/#plain Gram Schmidt process in plane] and [https://bigsigma.com/linear-algebra/gram-schmidt-process/#space Gram Schmidt process in space] * [https://www.math.ucla.edu/~tao/resource/general/115a.3.02f/GramSchmidt.html Gram-Schmidt orthogonalization applet] * [http://www.nag.co.uk/numeric/fl/nagdoc_fl24/html/F05/f05conts.html NAG Gram–Schmidt orthogonalization of n vectors of order m routine] * Proof: [http://planetmath.org/ProofOfGramSchmidtOrthogonalizationProcedure Raymond Puzio, Keenan Kidwell. "proof of Gram-Schmidt orthogonalization algorithm" (version 8). PlanetMath.org.] {{linear algebra}} {{DEFAULTSORT:Gram-Schmidt Process}} [[Category:Linear algebra]] [[Category:Functional analysis]] [[Category:Articles with example MATLAB/Octave code]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite Geometric Algorithms and Combinatorial Optimization
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Linear algebra
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Navbox
(
edit
)
Template:Nowrap
(
edit
)
Template:Portal
(
edit
)
Template:Rp
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)