Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gudermannian function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function relating circular and hyperbolic functions}} [[File:Gudermannian function.png|thumb|upright=1.5|The Gudermannian function relates the area of a [[circular sector]] to the area of a [[hyperbolic sector]], via a common [[stereographic projection]]. If twice the area of the blue hyperbolic sector is {{math|''ψ''}}, then twice the area of the red circular sector is {{math|''ϕ'' {{=}} gd ''ψ''}}. Twice the area of the purple triangle is the stereographic projection {{math|''s'' {{=}} tan {{sfrac|1|2}}''ϕ'' {{=}} tanh {{sfrac|1|2}}''ψ''.}} The blue point has coordinates {{math|(cosh ''ψ'', sinh ''ψ'')}}. The red point has coordinates {{math|(cos ''ϕ'', sin ''ϕ'').}} The purple point has coordinates {{math|(0, ''s'').}} ]] [[File:Gudermannian graph.png|thumb|right|upright=1.4|[[Graph of a function|Graph]] of the Gudermannian function.]] [[File:Inverse Gudermannian graph.png|thumb|right|upright=1.2|Graph of the inverse Gudermannian function.]] In mathematics, the '''Gudermannian function''' relates a [[hyperbolic angle]] measure <math display=inline>\psi</math> to a [[angle|circular angle]] measure <math display=inline>\phi</math> called the ''gudermannian'' of <math display=inline>\psi</math> and denoted <math display=inline>\operatorname{gd}\psi</math>.<ref>The symbols <math display=inline>\psi</math> and <math display=inline>\phi</math> were chosen for this article because they are commonly used in [[geodesy]] for the [[Latitude#Isometric latitude|isometric latitude]] (vertical coordinate of the [[Mercator projection]]) and [[Geodetic coordinates|geodetic latitude]], respectively, and geodesy/cartography was the original context for the study of the Gudermannian and inverse Gudermannian functions.</ref> The Gudermannian function reveals a close relationship between the [[circular function]]s and [[hyperbolic function]]s. It was introduced in the 1760s by [[Johann Heinrich Lambert]], and later named for [[Christoph Gudermann]] who also described the relationship between circular and hyperbolic functions in 1830.<ref>Gudermann published several papers about the trigonometric and hyperbolic functions in [[Crelle's Journal]] in 1830–1831. These were collected in a book, {{harvp|Gudermann|1833}}.</ref> The gudermannian is sometimes called the '''hyperbolic amplitude''' as a [[limiting case (mathematics)|limiting case]] of the [[Jacobi elliptic functions#am|Jacobi elliptic amplitude]] <math display=inline>\operatorname{am}(\psi, m)</math> when parameter <math display=inline>m=1.</math> The [[real number|real]] Gudermannian function is typically defined for <math display=inline>-\infty < \psi < \infty</math> to be the integral of the hyperbolic secant<ref>{{harvp|Roy|Olver|2010}} [http://dlmf.nist.gov/4.23#viii §4.23(viii) "Gudermannian Function"]; {{harvp|Beyer|1987}}</ref> :<math> \phi = \operatorname{gd} \psi \equiv \int_0^\psi \operatorname{sech} t \,\mathrm{d}t = \operatorname{arctan} (\sinh \psi).</math> The real inverse Gudermannian function can be defined for <math display=inline>-\tfrac12\pi < \phi < \tfrac12\pi</math> as the [[integral of the secant function|integral of the (circular) secant]] :<math> \psi = \operatorname{gd}^{-1} \phi = \int_0^\phi \operatorname{sec} t \,\mathrm{d}t = \operatorname{arsinh} (\tan \phi). </math> The hyperbolic angle measure <math>\psi = \operatorname{gd}^{-1} \phi</math> is called the ''anti-gudermannian'' of <math>\phi</math> or sometimes the '''lambertian''' of <math>\phi</math>, denoted <math>\psi = \operatorname{lam} \phi.</math><ref>{{harvp|Kennelly|1929}}; {{harvp|Lee|1976}}</ref> In the context of [[geodesy]] and [[navigation]] for latitude <math display=inline>\phi</math>, <math>k \operatorname{gd}^{-1} \phi</math> (scaled by arbitrary constant <math display=inline>k</math>) was historically called the '''meridional part''' of <math>\phi</math> ([[French (language)|French]]: ''latitude croissante''). It is the vertical coordinate of the [[Mercator projection]]. The two angle measures <math display=inline>\phi</math> and <math display=inline>\psi</math> are related by a common [[stereographic projection]] :<math>s = \tan \tfrac12 \phi = \tanh \tfrac12 \psi,</math> and this identity can serve as an alternative definition for <math display=inline>\operatorname{gd}</math> and <math display=inline>\operatorname{gd}^{-1}</math> valid throughout the [[complex plane]]: :<math>\begin{aligned} \operatorname{gd} \psi &= {2\arctan}\bigl(\tanh\tfrac12 \psi \,\bigr), \\[5mu] \operatorname{gd}^{-1} \phi &= {2\operatorname{artanh}}\bigl(\tan\tfrac12 \phi \,\bigr). \end{aligned}</math> __TOC__ {{clear}} == Circular–hyperbolic identities == We can evaluate the integral of the hyperbolic secant using the stereographic projection ([[tangent half-angle substitution#Hyperbolic functions|hyperbolic half-tangent]]) as a [[Integration by substitution|change of variables]]:<ref>{{harvp|Masson|2021}}</ref> :<math>\begin{align} \operatorname{gd} \psi &\equiv \int_0^\psi \frac{1}{\operatorname{cosh} t}\mathrm{d}t = \int_0^{\tanh\frac12\psi} \frac{1-u^2}{1 + u^2}\frac{2\,\mathrm{d}u}{1 - u^2} \qquad \bigl(u = \tanh\tfrac12 t \bigr) \\[8mu] &= 2\int_0^{\tanh\frac12\psi} \frac{1}{1 + u^2} \mathrm{d}u = {2\arctan}\bigl(\tanh\tfrac12\psi\,\bigr), \\[5mu] \tan\tfrac12{\operatorname{gd} \psi} &= \tanh\tfrac12\psi. \end{align}</math> Letting <math display=inline>\phi = \operatorname{gd} \psi</math> and <math display=inline>s = \tan \tfrac12 \phi = \tanh \tfrac12 \psi</math> we can derive a number of identities between hyperbolic functions of <math display=inline>\psi</math> and circular functions of <math display=inline>\phi.</math><ref>{{harvp|Gottschalk|2003}} pp. 23–27</ref> [[File:Gudermannian identities.png|frameless|left|upright=2|Identities related to the Gudermannian function represented graphically.]] {{clear|left}} :<math>\begin{align} s &= \tan \tfrac12 \phi = \tanh \tfrac12 \psi, \\[6mu] \frac{2s}{1 + s^2} &= \sin \phi = \tanh \psi, \quad & \frac{1 + s^2}{2s} &= \csc \phi = \coth \psi, \\[10mu] \frac{1 - s^2}{1 + s^2} &= \cos \phi = \operatorname{sech} \psi, \quad & \frac{1 + s^2}{1 - s^2} &= \sec \phi = \cosh \psi, \\[10mu] \frac{2s}{1 - s^2} &= \tan \phi = \sinh \psi, \quad & \frac{1 - s^2}{2s} &= \cot \phi = \operatorname{csch} \psi. \\[8mu] \end{align}</math> These are commonly used as expressions for <math>\operatorname{gd}</math> and <math>\operatorname{gd}^{-1}</math> for real values of <math>\psi</math> and <math>\phi</math> with <math>|\phi| < \tfrac12\pi.</math> For example, the numerically well-behaved formulas :<math>\begin{align} \operatorname{gd} \psi &= \operatorname{arctan} (\sinh \psi), \\[6mu] \operatorname{gd}^{-1} \phi &= \operatorname{arsinh} (\tan \phi). \end{align}</math> (Note, for <math>|\phi| > \tfrac12\pi</math> and for complex arguments, care must be taken choosing [[Branch point|branches]] of the inverse functions.)<ref>{{harvp|Masson|2021}} draws complex-valued plots of several of these, demonstrating that naïve implementations that choose the principal branch of inverse trigonometric functions yield incorrect results.</ref> We can also express <math display=inline>\psi</math> and <math display=inline>\phi</math> in terms of <math display=inline>s\colon</math> :<math>\begin{align} 2\arctan s &= \phi = \operatorname{gd} \psi, \\[6mu] 2\operatorname{artanh} s &= \operatorname{gd}^{-1} \phi = \psi. \\[6mu] \end{align}</math> If we expand <math display=inline>\tan\tfrac12</math> and <math display=inline>\tanh\tfrac12</math> in terms of the [[Exponential function#Complex plane|exponential]], then we can see that <math display=inline>s,</math> <math>\exp \phi i,</math> and <math>\exp \psi</math> are all [[Möbius transformation]]s of each-other (specifically, rotations of the [[Riemann sphere]]): :<math>\begin{align} s &= i\frac{1-e^{\phi i}}{1+e^{\phi i}} = \frac{e^\psi - 1}{e^\psi + 1}, \\[10mu] i \frac{s - i}{s + i} &= \exp \phi i \quad = \frac{e^\psi - i}{e^\psi + i}, \\[10mu] \frac{1 + s}{1 - s} &= i\frac{i+e^{\phi i}}{i-e^{\phi i}} \,= \exp \psi. \end{align}</math> For real values of <math display=inline>\psi</math> and <math display=inline>\phi</math> with <math>|\phi| < \tfrac12\pi</math>, these Möbius transformations can be written in terms of trigonometric functions in several ways, :<math>\begin{align} \exp \psi &= \sec \phi + \tan \phi = \tan\tfrac12 \bigl(\tfrac12\pi + \phi \bigr) \\[6mu] &= \frac{1 + \tan\tfrac12 \phi}{1 - \tan\tfrac12 \phi} = \sqrt{\frac{1+\sin \phi}{1-\sin \phi}}, \\[12mu] \exp \phi i &= \operatorname{sech} \psi + i \tanh \psi = \tanh\tfrac12 \bigl({-\tfrac12}\pi i + \psi \bigr) \\[6mu] &= \frac{1 + i \tanh\tfrac12 \psi}{1 - i \tanh\tfrac12 \psi} = \sqrt{\frac{1 + i \sinh \psi}{1 - i \sinh \psi}}. \end{align}</math> These give further expressions for <math>\operatorname{gd}</math> and <math>\operatorname{gd}^{-1}</math> for real arguments with <math>|\phi| < \tfrac12\pi.</math> For example,<ref name=weinstein>{{mathworld|urlname=Gudermannian|title=Gudermannian}}</ref> :<math>\begin{align} \operatorname{gd} \psi &= 2 \arctan e^\psi - \tfrac12\pi, \\[6mu] \operatorname{gd}^{-1} \phi &= \log (\sec \phi + \tan \phi). \end{align}</math> == Complex values == [[File:Gudermannian conformal map.png|thumb|right|upright=1.5|The Gudermannian function {{math|''z'' ↦ gd ''z''}} is a conformal map from an infinite strip to an infinite strip. It can be broken into two parts: a map {{math|''z'' ↦ tanh {{sfrac|1|2}}''z''}} from one infinite strip to the complex unit disk and a map {{math|''ζ'' ↦ 2 arctan ''ζ''}} from the disk to the other infinite strip.]] As a [[Complex analysis|function of a complex variable]], <math display=inline>z \mapsto w = \operatorname{gd} z</math> [[conformal map|conformally maps]] the infinite strip <math display=inline>\left|\operatorname{Im}z\right| \leq \tfrac12\pi</math> to the infinite strip <math display=inline>\left|\operatorname{Re}w\right| \leq \tfrac12\pi,</math> while <math display=inline>w \mapsto z = \operatorname{gd}^{-1} w</math> conformally maps the infinite strip <math display=inline>\left|\operatorname{Re}w\right| \leq \tfrac12\pi</math> to the infinite strip <math display=inline> \left|\operatorname{Im}z\right| \leq \tfrac12\pi.</math> [[Analytic continuation|Analytically continued]] by [[Schwarz reflection principle|reflections]] to the whole complex plane, <math display=inline>z \mapsto w = \operatorname{gd} z</math> is a periodic function of period <math display=inline>2\pi i</math> which sends any infinite strip of "height" <math display=inline>2\pi i</math> onto the strip <math display=inline>-\pi< \operatorname{Re}w \leq \pi.</math> Likewise, extended to the whole complex plane, <math display=inline>w \mapsto z = \operatorname{gd}^{-1} w</math> is a periodic function of period <math display=inline>2\pi</math> which sends any infinite strip of "width" <math display=inline>2\pi</math> onto the strip <math display=inline>-\pi < \operatorname{Im}z \leq \pi.</math><ref>{{harvp|Kennelly|1929}}</ref> For all points in the complex plane, these functions can be correctly written as: :<math>\begin{aligned} \operatorname{gd} z &= {2\arctan}\bigl(\tanh\tfrac12 z \,\bigr), \\[5mu] \operatorname{gd}^{-1} w &= {2\operatorname{artanh}}\bigl(\tan\tfrac12 w \,\bigr). \end{aligned}</math> For the <math display=inline>\operatorname{gd}</math> and <math display=inline>\operatorname{gd}^{-1}</math> functions to remain invertible with these extended domains, we might consider each to be a [[multivalued function]] (perhaps <math display=inline>\operatorname{Gd}</math> and <math display=inline>\operatorname{Gd}^{-1}</math>, with <math display=inline>\operatorname{gd}</math> and <math display=inline>\operatorname{gd}^{-1}</math> the [[principal branch]]) or consider their domains and codomains as [[Riemann surface]]s. If <math display=inline>u + iv = \operatorname{gd}(x + iy),</math> then the real and imaginary components <math display=inline>u</math> and <math display=inline>v</math> can be found by:<ref>{{harvp|Kennelly|1929}} [https://archive.org/details/dli.ministry.19102/page/181 p. 181]; {{harvp|Beyer|1987}} [https://archive.org/details/crchandbookofmat00beye/page/269/mode/1up p. 269]</ref> :<math> \tan u = \frac{\sinh x}{\cos y}, \quad \tanh v = \frac{\sin y}{\cosh x}. </math> (In practical implementation, make sure to use the [[atan2|2-argument arctangent]], {{nobr|<math display=inline>u = \operatorname{atan2}(\sinh x, \cos y)</math>.)}} Likewise, if <math display=inline>x + iy = \operatorname{gd}^{-1}(u + iv),</math> then components <math display=inline>x</math> and <math display=inline>y</math> can be found by:<ref>{{harvp|Beyer|1987}} [https://archive.org/details/crchandbookofmat00beye/page/269/mode/1up p. 269] – note the typo.</ref> :<math> \tanh x = \frac{\sin u}{\cosh v}, \quad \tan y = \frac{\sinh v}{\cos u}. </math> Multiplying these together reveals the additional identity<ref name=weinstein/> :<math> \tanh x\, \tan y = \tan u\, \tanh v. </math> === Symmetries === The two functions can be thought of as rotations or reflections of each-other, with a similar relationship as <math display=inline>\sinh iz = i \sin z</math> [[Hyperbolic functions#Hyperbolic functions for complex numbers|between sine and hyperbolic sine]]:<ref>{{harvp|Legendre|1817}} [https://archive.org/details/exercicescalculi02legerich/page/n165/ §4.2.8(163) pp. 144–145]</ref> :<math>\begin{aligned} \operatorname{gd} iz &= i \operatorname{gd}^{-1} z, \\[5mu] \operatorname{gd}^{-1} iz &= i \operatorname{gd} z. \end{aligned}</math> The functions are both [[even and odd functions|odd]] and they commute with [[complex conjugate|complex conjugation]]. That is, a reflection across the real or imaginary axis in the domain results in the same reflection in the codomain: :<math>\begin{aligned} \operatorname{gd} (-z) &= -\operatorname{gd} z, &\quad \operatorname{gd} \bar z &= \overline{\operatorname{gd} z}, &\quad \operatorname{gd} (-\bar z) &= -\overline{\operatorname{gd} z}, \\[5mu] \operatorname{gd}^{-1} (-z) &= -\operatorname{gd}^{-1} z, &\quad \operatorname{gd}^{-1} \bar z &= \overline{\operatorname{gd}^{-1} z}, &\quad \operatorname{gd}^{-1} (-\bar z) &= -\overline{\operatorname{gd}^{-1} z}. \end{aligned}</math> The functions are [[periodic function|periodic]], with periods <math display=inline>2\pi i</math> and <math display=inline>2\pi</math>: :<math>\begin{aligned} \operatorname{gd} (z + 2\pi i) &= \operatorname{gd} z, \\[5mu] \operatorname{gd}^{-1} (z + 2\pi) &= \operatorname{gd}^{-1} z. \end{aligned}</math> A translation in the domain of <math display=inline>\operatorname{gd}</math> by <math display=inline>\pm\pi i</math> results in a half-turn rotation and translation in the codomain by one of <math display=inline>\pm\pi,</math> and vice versa for <math display=inline>\operatorname{gd}^{-1}\colon</math><ref>{{harvp|Kennelly|1929}} [https://archive.org/details/dli.ministry.19102/page/182 p. 182]</ref> :<math>\begin{aligned} \operatorname{gd} ({\pm \pi i} + z) &= \begin{cases} \pi - \operatorname{gd} z \quad &\mbox{if }\ \ \operatorname{Re} z \geq 0, \\[5mu] -\pi - \operatorname{gd} z \quad &\mbox{if }\ \ \operatorname{Re} z < 0, \end{cases} \\[15mu] \operatorname{gd}^{-1} ({\pm \pi} + z) &= \begin{cases} \pi i - \operatorname{gd}^{-1} z \quad &\mbox{if }\ \ \operatorname{Im} z \geq 0, \\[3mu] -\pi i - \operatorname{gd}^{-1} z \quad &\mbox{if }\ \ \operatorname{Im} z < 0. \end{cases} \end{aligned}</math> A reflection in the domain of <math display=inline>\operatorname{gd}</math> across either of the lines <math display=inline>x \pm \tfrac12\pi i</math> results in a reflection in the codomain across one of the lines <math display=inline>\pm \tfrac12\pi + yi,</math> and vice versa for <math display=inline>\operatorname{gd}^{-1}\colon</math> :<math>\begin{aligned} \operatorname{gd} ({\pm \pi i} + \bar z) &= \begin{cases} \pi - \overline{\operatorname{gd} z} \quad &\mbox{if }\ \ \operatorname{Re} z \geq 0, \\[5mu] -\pi - \overline{\operatorname{gd} z} \quad &\mbox{if }\ \ \operatorname{Re} z < 0, \end{cases} \\[15mu] \operatorname{gd}^{-1} ({\pm \pi} - \bar z) &= \begin{cases} \pi i + \overline{\operatorname{gd}^{-1} z} \quad &\mbox{if }\ \ \operatorname{Im} z \geq 0, \\[3mu] -\pi i + \overline{\operatorname{gd}^{-1} z} \quad &\mbox{if }\ \ \operatorname{Im} z < 0. \end{cases} \end{aligned}</math> This is related to the identity :<math> \tanh\tfrac12 ({\pi i} \pm z) = \tan\tfrac12 ({\pi} \mp \operatorname{gd} z). </math> === Specific values === A few specific values (where <math display=inline>\infty</math> indicates the limit at one end of the infinite strip):<ref>{{harvp|Kahlig|Reich|2013}}</ref> :<math>\begin{align} \operatorname{gd}(0) &= 0, &\quad {\operatorname{gd}}\bigl({\pm {\log}\bigl(2 + \sqrt3\bigr)}\bigr) &= \pm \tfrac13\pi, \\[5mu] \operatorname{gd}(\pi i) &= \pi, &\quad {\operatorname{gd}}\bigl({\pm \tfrac13}\pi i\bigr) &= \pm {\log}\bigl(2 + \sqrt3\bigr)i, \\[5mu] \operatorname{gd}({\pm \infty}) &= \pm\tfrac12\pi, &\quad {\operatorname{gd}}\bigl({\pm {\log}\bigl(1 + \sqrt2\bigr)}\bigr) &= \pm \tfrac14\pi, \\[5mu] {\operatorname{gd}}\bigl({\pm \tfrac12}\pi i\bigr) &= \pm \infty i, &\quad {\operatorname{gd}}\bigl({\pm \tfrac14}\pi i\bigr) &= \pm {\log}\bigl(1 + \sqrt2\bigr)i, \\[5mu] && {\operatorname{gd}}\bigl({\log}\bigl(1 + \sqrt2\bigr) \pm \tfrac12\pi i\bigr) &= \tfrac12\pi \pm {\log}\bigl(1 + \sqrt2\bigr)i, \\[5mu] && {\operatorname{gd}}\bigl({-\log}\bigl(1 + \sqrt2\bigr) \pm \tfrac12\pi i\bigr) &= -\tfrac12\pi \pm {\log}\bigl(1 + \sqrt2\bigr)i. \end{align}</math> ==Derivatives== As the Gudermannian and inverse Gudermannian functions can be defined as the antiderivatives of the hyperbolic secant and circular secant functions, respectively, their derivatives are those secant functions: :<math>\begin{align} \frac{\mathrm d}{\mathrm d z} \operatorname{gd} z &= \operatorname{sech} z , \\[10mu] \frac{\mathrm d}{\mathrm d z} \operatorname{gd}^{-1} z &= \sec z . \end{align}</math> == Argument-addition identities == By combining [[hyperbolic functions#Sums of arguments|hyperbolic]] and [[trigonometric functions#Sum and difference formulas|circular]] argument-addition identities, :<math>\begin{align} \tanh(z + w) &= \frac{\tanh z + \tanh w}{1 + \tanh z \, \tanh w }, \\[10mu] \tan(z + w) &= \frac{\tan z + \tan w }{1 - \tan z \, \tan w }, \end{align}</math> with the [[#Circular–hyperbolic identities|circular–hyperbolic identity]], :<math> \tan \tfrac12 (\operatorname{gd} z) = \tanh \tfrac12 z, </math> we have the Gudermannian argument-addition identities: :<math>\begin{align} \operatorname{gd}(z + w) &= 2 \arctan \frac {\tan \tfrac12(\operatorname{gd} z) + \tan\tfrac12(\operatorname{gd} w)} {1 + \tan\tfrac12(\operatorname{gd} z) \, \tan\tfrac12(\operatorname{gd} w)}, \\[12mu] \operatorname{gd}^{-1}(z + w) &= 2 \operatorname{artanh} \frac {\tanh\tfrac12(\operatorname{gd}^{-1} z) + \tanh\tfrac12(\operatorname{gd}^{-1} w)} {1 - \tanh\tfrac12(\operatorname{gd}^{-1} z) \, \tanh\tfrac12(\operatorname{gd}^{-1} w)}. \end{align}</math> Further argument-addition identities can be written in terms of other circular functions,<ref>{{harvp|Cayley|1862}} [https://archive.org/details/londonedinburg4241862lond/page/21 p. 21]</ref> but they require greater care in choosing branches in inverse functions. Notably, :<math>\begin{align} \operatorname{gd}(z + w) &= u + v, \quad \text{where}\ \tan u = \frac{\sinh z}{\cosh w},\ \tan v = \frac{\sinh w}{\cosh z}, \\[10mu] \operatorname{gd}^{-1}(z + w) &= u + v, \quad \text{where}\ \tanh u = \frac{\sin z}{\cos w},\ \tanh v = \frac{\sin w}{\cos z}, \end{align}</math> which can be used to derive the [[Gudermannian function#Complex values|per-component computation]] for the complex Gudermannian and inverse Gudermannian.<ref>{{harvp|Kennelly|1929}} [https://archive.org/details/dli.ministry.19102/page/180 pp. 180–183]</ref> In the specific case <math display=inline>z = w,</math> double-argument identities are :<math>\begin{align} \operatorname{gd}(2z) &= 2 \arctan (\sin(\operatorname{gd} z)), \\[5mu] \operatorname{gd}^{-1}(2z) &= 2 \operatorname{artanh}(\sinh(\operatorname{gd}^{-1}z)). \end{align}</math> == Taylor series == The [[Taylor series]] near zero, valid for complex values <math display=inline>z</math> with <math display=inline>|z| < \tfrac12\pi,</math> are<ref>{{harvp|Legendre|1817}} [https://archive.org/details/exercicescalculi02legerich/page/n165/ §4.2.7(162) pp. 143–144]</ref> :<math>\begin{align} \operatorname{gd} z &= \sum_{k=0}^\infty \frac{E_k}{(k+1)!}z^{k+1} = z - \frac16z^3 + \frac1{24}z^5 - \frac{61}{5040}z^7 + \frac{277}{72576}z^9 - \dots, \\[10mu] \operatorname{gd}^{-1} z &= \sum_{k=0}^\infty \frac{|E_k|}{(k+1)!}z^{k+1} = z + \frac16z^3 + \frac1{24}z^5 + \frac{61}{5040}z^7 + \frac{277}{72576}z^9 + \dots, \end{align}</math> where the numbers <math display=inline>E_{k}</math> are the [[Euler numbers|Euler secant numbers]], 1, 0, -1, 0, 5, 0, -61, 0, 1385 ... (sequences {{OEIS link|A122045}}, {{OEIS link|A000364}}, and {{OEIS link|A028296}} in the [[On-Line Encyclopedia of Integer Sequences|OEIS]]). These series were first computed by [[James Gregory (mathematician)|James Gregory]] in 1671.<ref>{{cite book |editor-last=Turnbull |editor-first=Herbert Westren |year=1939 |title=James Gregory; Tercentenary Memorial Volume |publisher=G. Bell & Sons |page=170 }}</ref> Because the Gudermannian and inverse Gudermannian functions are the integrals of the hyperbolic secant and secant functions, the numerators <math display=inline>E_{k}</math> and <math display=inline>|E_{k}|</math> are same as the numerators of the [[Hyperbolic functions#Taylor series expressions|Taylor series for {{math|sech}}]] and [[Trigonometric functions#Power series expansion|{{math|sec}}]], respectively, but shifted by one place. The reduced unsigned numerators are 1, 1, 1, 61, 277, ... and the reduced denominators are 1, 6, 24, 5040, 72576, ... (sequences {{OEIS link|A091912}} and {{OEIS link|A136606}} in the [[On-Line Encyclopedia of Integer Sequences|OEIS]]). ==History== {{Broader| Mercator projection#History| Integral of the secant function}} The function and its inverse are related to the [[Mercator projection]]. The vertical coordinate in the Mercator projection is called [[Latitude#Isometric latitude|isometric latitude]], and is often denoted <math display=inline>\psi.</math> In terms of [[latitude]] <math display=inline>\phi</math> on the sphere (expressed in [[radian]]s) the isometric latitude can be written :<math>\psi = \operatorname{gd}^{-1} \phi = \int_0^\phi \sec t \,\mathrm{d}t.</math> The inverse from the isometric latitude to spherical latitude is <math display=inline>\phi = \operatorname{gd} \psi.</math> (Note: on an [[ellipsoid of revolution]], the relation between geodetic latitude and isometric latitude is slightly more complicated.) [[Gerardus Mercator]] plotted his celebrated map in 1569, but the precise method of construction was not revealed. In 1599, [[Edward Wright (mathematician)|Edward Wright]] described a method for constructing a Mercator projection numerically from trigonometric tables, but did not produce a closed formula. The closed formula was published in 1668 by [[James Gregory (mathematician)|James Gregory]]. The Gudermannian function per se was introduced by [[Johann Heinrich Lambert]] in the 1760s at the same time as the [[hyperbolic functions]]. He called it the "transcendent angle", and it went by various names until 1862 when [[Arthur Cayley]] suggested it be given its current name as a tribute to [[Christoph Gudermann]]'s work in the 1830s on the theory of special functions.<ref>{{harvp|Becker|Van Orstrand|1909}}</ref> Gudermann had published articles in ''[[Crelle's Journal]]'' that were later collected in a book<ref>{{harvp|Gudermann|1833}}</ref> which expounded <math display=inline>\sinh</math> and <math display=inline>\cosh</math> to a wide audience (although represented by the symbols <math display=inline>\mathfrak{Sin}</math> and <math display=inline>\mathfrak{Cos}</math>). The notation <math display=inline>\operatorname{gd}</math> was introduced by Cayley who starts by calling <math display=inline>\phi = \operatorname{gd} u</math> the [[Jacobi elliptic functions#am|Jacobi elliptic amplitude]] <math display=inline>\operatorname{am} u</math> in the degenerate case where the elliptic modulus is <math display=inline>m = 1,</math> so that <math display=inline>\sqrt{1 - m\sin\!^2\,\phi}</math> reduces to <math display=inline>\cos \phi.</math><ref>{{harvp|Cayley|1862}}</ref> This is the inverse of the [[integral of the secant function]]. Using Cayley's notation, :<math> u = \int_0 \frac{d\phi}{\cos \phi} = {\log\, \tan}\bigl(\tfrac14\pi + \tfrac12 \phi\bigr). </math> He then derives "the definition of the transcendent", :<math> \operatorname{gd} u = {\frac1i \log\, \tan} \bigl(\tfrac14\pi + \tfrac12 ui\bigr), </math> observing that "although exhibited in an imaginary form, [it] is a real function of {{nobr|<math display=inline> u</math>".}} The Gudermannian and its inverse were used to make [[trigonometric tables]] of circular functions also function as tables of hyperbolic functions. Given a hyperbolic angle <math display=inline>\psi</math>, hyperbolic functions could be found by first looking up <math display=inline>\phi = \operatorname{gd} \psi</math> in a Gudermannian table and then looking up the appropriate circular function of <math display=inline>\phi</math>, or by directly locating <math display=inline>\psi</math> in an auxiliary <math>\operatorname{gd}^{-1}</math> column of the trigonometric table.<ref>For example Hoüel labels the hyperbolic functions across the top in Table XIV of: {{cite book |last=Hoüel |first=Guillaume Jules |year=1885 |title=Recueil de formules et de tables numériques |publisher=Gauthier-Villars |page=36 |url=https://archive.org/details/recueildeformul00hogoog/page/n115/}} </ref> == Generalization == The Gudermannian function can be thought of mapping points on one branch of a hyperbola to points on a semicircle. Points on one sheet of an ''n''-dimensional [[hyperboloid|hyperboloid of two sheets]] can be likewise mapped onto a ''n''-dimensional hemisphere via stereographic projection. The [[Hyperbolic geometry#The hemisphere model|hemisphere model of hyperbolic space]] uses such a map to represent hyperbolic space. ==Applications== [[File:Distance in the half-plane model 3.png|thumb|right|upright=1.5|Distance in the [[Poincaré half-plane model]] of the [[hyperbolic plane]] from the apex of a semicircle to another point on it is the inverse Gudermannian function of the central angle.]] *The [[angle of parallelism]] function in [[hyperbolic geometry]] is the [[Angle#Combining angle pairs|complement]] of the gudermannian, <math>\mathit{\Pi}(\psi) = \tfrac12\pi - \operatorname{gd} \psi.</math> * On a [[Mercator projection]] a line of constant latitude is parallel to the equator (on the projection) at a distance proportional to the anti-gudermannian of the latitude. * The Gudermannian function (with a complex argument) may be used to define the [[transverse Mercator projection]].<ref>{{harvp|Osborne|2013}} p. 74</ref> * The Gudermannian function appears in a non-periodic solution of the [[inverted pendulum]].<ref>{{harvp|Robertson|1997}}</ref> * The Gudermannian function appears in a moving mirror solution of the dynamical [[Casimir effect]].<ref>{{harvp|Good|Anderson|Evans|2013}}</ref> * If an infinite number of infinitely long, equidistant, parallel, coplanar, straight wires are kept at equal [[electric potential|potentials]] with alternating signs, the potential-flux distribution in a cross-sectional plane perpendicular to the wires is the complex Gudermannian function.<ref>{{harvp|Kennelly|1928}}</ref> * The Gudermannian function is a [[sigmoid function]], and as such is sometimes used as an [[activation function]] in machine learning. * The (scaled and shifted) Gudermannian function is the [[cumulative distribution function]] of the [[hyperbolic secant distribution]]. * A function based on the Gudermannian provides a good model for the shape of [[spiral galaxy]] arms.<ref>{{harvp|Ringermacher|Mead|2009}}</ref> == See also == *[[Tractrix]] *{{slink|Catenary#Catenary of equal strength}} == Notes == {{reflist|25em}} == References == {{sfn whitelist |CITEREFRoyOlver2010}} {{refbegin|30em}} * {{cite journal |last= Barnett |first=Janet Heine |author-link=Janet Barnett |year= 2004 |title=Enter, Stage Center: The Early Drama of the Hyperbolic Functions |journal=Mathematics Magazine |volume=77 |issue=1 |pages=15–30 |doi=10.1080/0025570X.2004.11953223 |url=https://www.maa.org/sites/default/files/321922717729.pdf.bannered.pdf }} * {{cite book |last1= Becker |first1=George Ferdinand |author-link1=George Ferdinand Becker |last2= Van Orstrand |first2=Charles Edwin |year= 1909 |title=Hyperbolic Functions |series=Smithsonian Mathematical Tables |publisher=Smithsonian Institution |url=https://archive.org/details/smithsonianmathe00smituoft}} * {{cite journal |last= Becker |first=George Ferdinand |year= 1912 |title=The gudermannian complement and imaginary geometry |journal=The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science |volume=24 |issue=142 |pages=600–608 |doi=10.1080/14786441008637363 |url=https://ia600708.us.archive.org/view_archive.php?archive=/28/items/crossref-pre-1923-scholarly-works/10.1080%252F14786440908635958.zip&file=10.1080%252F14786441008637363.pdf }} * {{cite book |editor-last= Beyer |editor-first=William H. |year= 1987 |title=CRC Handbook of Mathematical Sciences |edition=6th |pages=268–286 |publisher=CRC Press |url=https://archive.org/details/crchandbookofmat00beye/ |url-access=limited }} * {{cite journal |last= Cayley |first=Arthur |author-link=Arthur Cayley |year= 1862 |title=On the transcendent <math display=inline>\operatorname{gd} u = \tfrac{1}{i}\log \tan \bigl(\tfrac14\pi + \tfrac12 ui\bigr)</math> |journal=Philosophical Magazine |series=4th Series |volume=24 |issue=158 |pages=19–21 |url=https://archive.org/details/londonedinburg4241862lond/page/19 |doi=10.1080/14786446208643307 }} * {{cite journal |last1= Good |first1=Michael R.R. |last2= Anderson |first2=Paul R. |last3= Evans |first3=Charles R. |year= 2013 |title=Time dependence of particle creation from accelerating mirrors |journal=Physical Review D |volume=88 |issue=2 |pages=025023 |arxiv=1303.6756 |doi=10.1103/PhysRevD.88.025023 }} * {{cite web |last= Gottschalk |first=Walter |author-link=Walter_Gottschalk |year= 2003 |title=Good Things about the Gudermannian |website=Gottschalk's Gestalts |url=https://gottschalksgestalts.org/pdf/GG88.pdf}} * {{cite book |last= Gudermann |first=Christoph |author-link=Christoph Gudermann |year= 1833 |title=Theorie der Potenzial- oder cyklisch-hyperbolischen Functionen |publisher=G. Reimer |language=de |trans-title=Theory of Potential- or Circular-Hyperbolic Functions |url=https://archive.org/details/theoriederpotenz00gude }} * {{cite arXiv |last1= Jennings |first1=George |last2= Ni |first2= David |last3= Pong |first3=Wai Yan |last4= Raianu |first4=Serban |year= 2022 |title=The Integral of Secant and Stereographic Projections of Conic Sections |class=math.HO |eprint = 2204.11187 }} * {{cite tech report |last1= Kahlig |first1=Peter |last2= Reich |first2=Ludwig |year= 2013 |title=Contributions to the theory of the Legendre-Gudermann equation |publisher=Fachbibliothek für Mathematik, Karl-Franzens-Universität Graz |url=https://www.researchgate.net/profile/Peter-Kahlig/publication/263491672_Contributions_to_the_theory_of_the_Legendre-Gudermann_equation/links/53e4d6930cf25d674e94f819/Contributions-to-the-theory-of-the-Legendre-Gudermann-equation.pdf }} * {{cite journal |last= Karney |first=Charles F.F. |year= 2011 |title=Transverse Mercator with an accuracy of a few nanometers |journal=Journal of Geodesy |volume=85 |issue=8 |pages=475–485 |arxiv=1002.1417 |doi=10.1007/s00190-011-0445-3 |url=https://geographiclib.sourceforge.io/tm.html }} * {{cite journal |last= Kennelly |first=Arthur E. |year= 1928 |title=Gudermannian Complex Angles |journal=Proceedings of the National Academy of Sciences |volume=14 |number=11 |pages=839–844 |doi=10.1073/pnas.14.11.839 |doi-access=free |pmc=1085762 }} * {{cite journal |last= Kennelly |first=Arthur E. |year= 1929 |title=Gudermannians and Lambertians with Their Respective Addition Theorems |journal=Proceedings of the American Philosophical Society |volume=68 |issue=3 |pages=175–184 |url=https://archive.org/details/dli.ministry.19102/page/175 }} * {{cite journal |last= Lambert |first=Johann Heinrich |author-link=Johann Heinrich Lambert |year= 1761 |publication-date=1768 |title=Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques |language=fr |trans-title=Memoir on some remarkable properties of the circular and logarithmic transcendental quantities |journal=Histoire de l'Académie Royale des Sciences et des Belles-Lettres |publication-place=Berlin |volume=17 |pages=265–322 |url=https://babel.hathitrust.org/cgi/pt?id=nyp.33433009864251&view=1up&seq=301&skin=2021 }} * {{cite book |last= Lee |first=Laurence Patrick |author-link = Laurence Patrick Lee |year= 1976 |title=Conformal Projections Based on Elliptic Functions |location=Toronto |publisher=B. V. Gutsell, York University |series=''Cartographica Monographs'' |volume=16 |url=https://archive.org/details/conformalproject0000leel |url-access=limited |isbn=0-919870-16-3 }} Supplement No. 1 to [https://www.utpjournals.press/toc/cart/13/1 ''The Canadian Cartographer'' '''13''']. * {{cite book |last= Legendre |first=Adrien-Marie |author-link=Adrien-Marie Legendre |year= 1817 |title=Exercices de calcul intégral |volume=2 |trans-title=Exercises in integral calculus |language=fr |publisher=Courcier |url=https://archive.org/details/exercicescalculi02legerich }} * {{cite journal |last= Majernik |first=V. |year= 1986 |title=Representation of relativistic quantities by trigonometric functions |journal=American Journal of Physics |volume=54 |issue=6 |pages=536–538 |url=https://www.researchgate.net/publication/252401386 |doi=10.1119/1.14557 }} * {{cite book |last= McMahon |first=James |author-link=James McMahon (mathematician) |year= 1906 |title=Hyperbolic Functions |publisher=Wiley |url=https://archive.org/details/hyperbolicfuncti00mcmauoft}} [First published as {{cite book |last=McMahon |editor1-last=Merriman |editor2-last=Woodward |year=1896 |publisher=Wiley |chapter=IV. Hyperbolic Functions |title=Higher Mathematics |chapter-url=https://archive.org/details/highermathematic00merrrich/page/107 |pages=107–168 }}] * {{cite web |last= Masson |first=Paul |title=The Complex Gudermannian |year= 2021 |url=https://analyticphysics.com/Complex%20Variables/The%20Complex%20Gudermannian%20Function.htm |website=Analytic Physics}} * {{cite web |last= Osborne |first=Peter |year= 2013 |title=The Mercator projections |url=https://ccv.eng.wayne.edu/reference/mercator-15dec2015.pdf }} * {{cite journal |last= Peters |first=J. M. H. |year= 1984 |title=The Gudermannian |journal=The Mathematical Gazette |volume=68 |issue=445 |pages=192–196 |doi=10.2307/3616342 |jstor=3616342 }} * {{cite journal |last= Reynolds |first=William F. |year= 1993 |title=Hyperbolic Geometry on a Hyperboloid |journal=The American Mathematical Monthly |volume=100 |issue=5 |pages=442–455 |doi=10.1080/00029890.1993.11990430 |url=http://people.ucsc.edu:80/~rmont/classes/ClassicalGeometry/web2016/sources/Hyperbolic_AmerMathMonthly.pdf |archive-url=https://web.archive.org/web/20160528134406id_/http://people.ucsc.edu:80/~rmont/classes/ClassicalGeometry/web2016/sources/Hyperbolic_AmerMathMonthly.pdf |archive-date=2016-05-28 |url-status=dead }} * {{cite journal |last1= Rickey |first1=V. Frederick |last2= Tuchinsky |first2=Philip M. |year= 1980 |title=An application of geography to mathematics: History of the integral of the secant |journal=Mathematics Magazine |volume=53 |issue=3 |pages=162–166 |doi=10.1080/0025570X.1980.11976846 |url=https://www.maa.org/sites/default/files/0025570x15087.di021115.02p0115x.pdf }} * {{cite journal |last1= Ringermacher |first1=Harry I. |last2= Mead |first2=Lawrence R. |year= 2009 |title=A new formula describing the scaffold structure of spiral galaxies |journal=Monthly Notices of the Royal Astronomical Society |volume=397 |issue=1 |pages=164–171 |doi=10.1111/j.1365-2966.2009.14950.x |doi-access=free |arxiv=0908.0892 }} * {{cite journal |last= Robertson |first=John S. |year= 1997 |title=Gudermann and the simple pendulum |journal=The College Mathematics Journal |volume=28 |issue=4 |pages=271–276 |doi=10.2307/2687148 |jstor=2687148 }} * {{cite journal |last= Romakina |first=Lyudmila N. |year= 2018 |title=The inverse Gudermannian in the hyperbolic geometry |journal=Integral Transforms and Special Functions |volume=29 |issue=5 |pages=384–401 |doi=10.1080/10652469.2018.1441296 |url=https://www.researchgate.net/publication/320517449 }} * {{dlmf |last1= Roy |first1=Ranjan |last2= Olver |first2=Frank W. J. |author-link2=Frank W. J. Olver |id=4 |title=4. Elementary Functions |display-editors=1 }} * {{cite journal |last= Sala |first=Kenneth L. |year= 1989 |title=Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean |journal=SIAM Journal on Mathematical Analysis |volume=20 |issue=6 |pages=1514–1528 |url=http://kensala.com/publications/Sala_TransformationsOfTheJacobianAmplitudeFunctionAndItsCalculationViaTheArithmeticGeometricMean_SiamJMathsAnalysis_20_1989.pdf |doi=10.1137/0520100 }} {{refend}} == External links == * Penn, Michael (2020) [https://www.youtube.com/watch?v=rypoQgdF5cM "the Gudermannian function!"] on YouTube. {{bots|deny=Citation bot}} [[Category:Trigonometry]] [[Category:Elementary special functions]] [[Category:Exponentials]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Bots
(
edit
)
Template:Broader
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite tech report
(
edit
)
Template:Cite web
(
edit
)
Template:Clear
(
edit
)
Template:Dlmf
(
edit
)
Template:Harvp
(
edit
)
Template:Math
(
edit
)
Template:Mathworld
(
edit
)
Template:Nobr
(
edit
)
Template:OEIS link
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn whitelist
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)