Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hankel transform
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical operation}} {{Distinguish|Hankel matrix transform}} In [[mathematics]], the '''Hankel transform''' expresses any given function ''f''(''r'') as the weighted sum of an infinite number of [[Bessel functions|Bessel functions of the first kind]] {{math|''J<sub>ν</sub>''(''kr'')}}. The Bessel functions in the sum are all of the same order ν, but differ in a scaling factor ''k'' along the ''r'' axis. The necessary coefficient {{math|''F<sub>ν</sub>''}} of each Bessel function in the sum, as a function of the scaling factor ''k'' constitutes the transformed function. The Hankel transform is an [[integral transform]] and was first developed by the mathematician [[Hermann Hankel]]. It is also known as the '''Fourier–Bessel transform'''. Just as the [[Fourier transform]] for an infinite interval is related to the [[Fourier series]] over a finite interval, so the Hankel transform over an infinite interval is related to the [[Fourier–Bessel series]] over a finite interval. ==Definition== The '''Hankel transform''' of order <math>\nu</math> of a function ''f''(''r'') is given by : <math>F_\nu(k) = \int_0^\infty f(r) J_\nu(kr) \,r\,\mathrm{d}r,</math> where <math>J_\nu</math> is the [[Bessel function]] of the first kind of order <math>\nu</math> with <math>\nu \geq -1/2</math>. The inverse Hankel transform of {{math|''F<sub>ν</sub>''(''k'')}} is defined as : <math>f(r) = \int_0^\infty F_\nu(k) J_\nu(kr) \,k\,\mathrm{d}k,</math> which can be readily verified using the orthogonality relationship described below. ===Domain of definition=== Inverting a Hankel transform of a function ''f''(''r'') is valid at every point at which ''f''(''r'') is continuous, provided that the function is defined in (0, ∞), is piecewise continuous and of [[bounded variation]] in every finite subinterval in (0, ∞), and : <math>\int_0^\infty |f(r)|\,r^{\frac{1}{2}} \,\mathrm{d}r < \infty.</math> However, like the Fourier transform, the domain can be extended by a density argument to include some functions whose above integral is not finite, for example <math>f(r) = (1 + r)^{-3/2}</math>. ===Alternative definition=== An alternative definition says that the Hankel transform of ''g''(''r'') is<ref>{{cite book |title=Hilbert spaces of entire functions |url=https://archive.org/details/hilbertspacesofe0000debr |url-access=registration |year=1968 |publisher=Prentice-Hall |location=London |isbn=978-0133889000 |author=Louis de Branges |authorlink=Louis de Branges de Bourcia |page=[https://archive.org/details/hilbertspacesofe0000debr/page/189 189]}}</ref> : <math>h_\nu(k) = \int_0^\infty g(r) J_\nu(kr) \,\sqrt{kr}\,\mathrm{d}r.</math> The two definitions are related: : If <math>g(r) = f(r) \sqrt r</math>, then <math>h_\nu(k) = F_\nu(k) \sqrt k.</math> This means that, as with the previous definition, the Hankel transform defined this way is also its own inverse: : <math>g(r) = \int_0^\infty h_\nu(k) J_\nu(kr) \,\sqrt{kr}\,\mathrm{d}k.</math> The obvious domain now has the condition : <math>\int_0^\infty |g(r)| \,\mathrm{d}r < \infty,</math> but this can be extended. According to the reference given above, we can take the integral as the limit as the upper limit goes to infinity (an [[improper integral]] rather than a [[Lebesgue integral]]), and in this way the Hankel transform and its inverse work for all functions in [[L2-space|L<sup>2</sup>]](0, ∞). == Transforming Laplace's equation == The Hankel transform can be used to transform and solve [[Laplace's equation#Forms in different coordinate systems|Laplace's equation]] expressed in cylindrical coordinates. Under the Hankel transform, the Bessel operator becomes a multiplication by <math>-k^2</math>.<ref>{{Cite book |title=The transforms and applications handbook |date=1996 |publisher=CRC Press |author=Poularikas, Alexander D. |isbn=0-8493-8342-0 |location=Boca Raton Fla. |oclc=32237017}}</ref> In the axisymmetric case, the [[partial differential equation]] is transformed as : <math>\mathcal{H}_0 \left\{ \frac{\partial^2 u}{\partial r^2} + \frac 1 r \frac{\partial u}{\partial r} + \frac{\partial ^2 u}{\partial z^2} \right\} = -k^2 U + \frac{\partial^2}{\partial z^2} U,</math> where <math>U = \mathcal{H}_0 u</math>. Therefore, the Laplacian in cylindrical coordinates becomes an ordinary differential equation in the transformed function <math>U</math>. ==Orthogonality== The Bessel functions form an [[orthogonal basis]] with respect to the weighting factor ''r'':<ref>{{Cite journal|title=Revisiting the orthogonality of Bessel functions of the first kind on an infinite interval|last=Ponce de Leon|first=J.|journal= European Journal of Physics|volume=36|year=2015|issue=1|pages=015016|doi=10.1088/0143-0807/36/1/015016|bibcode=2015EJPh...36a5016P}}</ref> : <math>\int_0^\infty J_\nu(kr) J_\nu(k'r) \,r\,\mathrm{d}r = \frac{\delta(k - k')}{k}, \quad k, k' > 0.</math> ==The Plancherel theorem and Parseval's theorem== If ''f''(''r'') and ''g''(''r'') are such that their Hankel transforms {{math|''F<sub>ν</sub>''(''k'')}} and {{math|''G<sub>ν</sub>''(''k'')}} are well defined, then the [[Plancherel theorem]] states : <math>\int_0^\infty f(r) g(r) \,r\,\mathrm{d}r = \int_0^\infty F_\nu(k) G_\nu(k) \,k\,\mathrm{d}k.</math> [[Parseval's theorem]], which states : <math>\int_0^\infty |f(r)|^2 \,r\,\mathrm{d}r = \int_0^\infty |F_\nu(k)|^2 \,k\,\mathrm{d}k,</math> is a special case of the Plancherel theorem. These theorems can be proven using the orthogonality property. == Relation to the multidimensional Fourier transform == The Hankel transform appears when one writes the multidimensional Fourier transform in [[hyperspherical coordinates]], which is the reason why the Hankel transform often appears in physical problems with cylindrical or spherical symmetry. Consider a function <math>f(\mathbf{r})</math> of a <math display="inline">d</math>-dimensional vector {{math|'''r'''}}. Its <math display="inline">d</math>-dimensional Fourier transform is defined as<math display="block">F(\mathbf{k}) = \int_{\R^d} f(\mathbf{r}) e^{-i\mathbf{k} \cdot \mathbf{r}} \,\mathrm{d}\mathbf{r}.</math>To rewrite it in hyperspherical coordinates, we can use the decomposition of a plane wave into <math display="inline">d</math>-dimensional hyperspherical harmonics <math>Y_{l,m}</math>:<ref>{{Cite book |last=Avery, James Emil |title=Hyperspherical harmonics and their physical applications |isbn=978-981-322-930-3 |oclc=1013827621}}</ref><math display="block">e^{-i\mathbf{k} \cdot \mathbf{r}} = (2 \pi)^{d/2} (kr)^{1-d/2}\sum_{l = 0}^{+\infty} (-i)^{l} J_{d/2-1+l}(kr)\sum_{m} Y_{l,m}(\Omega_{\mathbf{k}}) Y^{*}_{l,m}(\Omega_{\mathbf{r}}),</math>where <math display="inline">\Omega_{\mathbf{r}}</math> and <math display="inline">\Omega_{\mathbf{k}}</math> are the sets of all hyperspherical angles in the <math>\mathbf{r}</math>-space and <math>\mathbf{k}</math>-space. This gives the following expression for the <math display="inline">d</math>-dimensional Fourier transform in hyperspherical coordinates:<math display="block">F(\mathbf{k}) = (2 \pi)^{d/2} k^{1-d/2} \sum_{l = 0}^{+\infty} (-i)^{l} \sum_{m}Y_{l,m}(\Omega_{\mathbf{k}}) \int_{0}^{+\infty}J_{d/2-1+l}(kr)r^{d/2}\mathrm{d}r \int f(\mathbf{r}) Y_{l,m}^{*}(\Omega_{\mathbf{r}}) \mathrm{d}\Omega_{\mathbf{r}}. </math>If we expand <math>f(\mathbf{r})</math> and <math>F(\mathbf{k})</math> in hyperspherical harmonics:<math display="block">f(\mathbf{r}) = \sum_{l = 0}^{+\infty} \sum_{m}f_{l,m}(r)Y_{l,m}(\Omega_{\mathbf{r}}),\quad F(\mathbf{k}) = \sum_{l = 0}^{+\infty} \sum_{m} F_{l,m}(k) Y_{l,m}(\Omega_{\mathbf{k}}), </math>the Fourier transform in hyperspherical coordinates simplifies to<math display="block">k^{d/2-1}F_{l,m}(k) = (2 \pi)^{d/2} (-i)^{l} \int_{0}^{+\infty}r^{d/2-1}f_{l,m}(r)J_{d/2-1+l}(kr)r\mathrm{d}r. </math>This means that functions with angular dependence in form of a hyperspherical harmonic retain it upon the multidimensional Fourier transform, while the radial part undergoes the Hankel transform (up to some extra factors like <math display="inline">r^{d/2-1}</math>). === Special cases === ==== Fourier transform in two dimensions ==== If a two-dimensional function {{math|''f''('''r''')}} is expanded in a [[multipole expansion|multipole series]], :<math>f(r, \theta) = \sum_{m=-\infty}^\infty f_m(r) e^{im\theta_{\mathbf{r}}},</math> then its two-dimensional Fourier transform is given by<math display="block">F(\mathbf k) = 2\pi \sum_m i^{-m} e^{im\theta_{\mathbf{k}}} F_m(k),</math>where<math display="block">F_m(k) = \int_0^\infty f_m(r) J_m(kr) \,r\,\mathrm{d}r</math>is the <math display="inline">m</math>-th order Hankel transform of <math>f_m(r)</math> (in this case <math display="inline">m</math> plays the role of the angular momentum, which was denoted by <math display="inline">l</math> in the previous section). ==== Fourier transform in three dimensions ==== If a three-dimensional function {{math|''f''('''r''')}} is expanded in a [[multipole expansion|multipole series]] over [[spherical harmonics]], :<math>f(r,\theta_{\mathbf{r}},\varphi_{\mathbf{r}}) = \sum_{l = 0}^{+\infty} \sum_{m=-l}^{+l}f_{l,m}(r)Y_{l,m}(\theta_{\mathbf{r}},\varphi_{\mathbf{r}}),</math> then its three-dimensional Fourier transform is given by<math display="block">F(k,\theta_{\mathbf{k}},\varphi_{\mathbf{k}}) = (2 \pi)^{3/2} \sum_{l = 0}^{+\infty} (-i)^{l} \sum_{m=-l}^{+l} F_{l,m}(k) Y_{l,m}(\theta_{\mathbf{k}},\varphi_{\mathbf{k}}),</math>where<math display="block">\sqrt{k} F_{l,m}(k) = \int_{0}^{+\infty}\sqrt{r} f_{l,m}(r)J_{l+1/2}(kr)r\mathrm{d}r.</math>is the Hankel transform of <math>\sqrt{r} f_{l,m}(r)</math> of order <math display="inline">(l+1/2)</math>. This kind of Hankel transform of half-integer order is also known as the spherical Bessel transform. ==== Fourier transform in {{math|''d''}} dimensions (radially symmetric case) ==== If a {{math|''d''}}-dimensional function {{math|''f''(''r'')}} does not depend on angular coordinates, then its {{math|''d''}}-dimensional Fourier transform {{math|''F''(''k'')}} also does not depend on angular coordinates and is given by<ref>{{cite web|url=http://math.arizona.edu/~faris/methodsweb/hankel.pdf|title=Radial functions and the Fourier transform: Notes for Math 583A, Fall 2008|last=Faris|first=William G.|date=2008-12-06|website=University of Arizona, Department of Mathematics|accessdate=2015-04-25}}</ref><math display="block">k^{d/2-1}F(k) = (2 \pi)^{d/2} \int_{0}^{+\infty}r^{d/2-1}f(r)J_{d/2-1}(kr)r\mathrm{d}r.</math>which is the Hankel transform of <math>r^{d/2-1}f(r)</math> of order <math display="inline">(d/2-1)</math> up to a factor of <math>(2 \pi)^{d/2} </math>. ====2D functions inside a limited radius==== If a two-dimensional function {{math|''f''('''r''')}} is expanded in a [[multipole expansion|multipole series]] and the expansion coefficients {{math|''f<sub>m</sub>''}} are sufficiently smooth near the origin and zero outside a radius {{mvar|R}}, the radial part {{math|''f''(''r'')/''r<sup>m</sup>''}} may be expanded into a [[power series]] of {{math|1 − (''r''/''R'')^2}}: :<math>f_m(r)= r^m \sum_{t \ge 0} f_{m,t} \left(1 - \left(\tfrac{r}{R}\right)^2 \right)^t, \quad 0 \le r \le R,</math> such that the two-dimensional Fourier transform of {{math|''f''('''r''')}} becomes :<math>\begin{align} F(\mathbf k) &= 2\pi\sum_m i^{-m} e^{i m\theta_k} \sum_t f_{m,t} \int_0^R r^m \left(1 - \left(\tfrac{r}{R}\right)^2 \right)^t J_m(kr) r\,\mathrm{d}r && \\ &= 2\pi\sum_m i^{-m} e^{i m\theta_k} R^{m+2} \sum_t f_{m,t} \int_0^1 x^{m+1} (1-x^2)^t J_m(kxR) \,\mathrm{d}x && (x = \tfrac{r}{R})\\ &= 2\pi\sum_m i^{-m} e^{i m\theta_k} R^{m+2} \sum_t f_{m,t} \frac{t!2^t}{(kR)^{1+t}} J_{m+t+1}(kR), \end{align}</math> where the last equality follows from §6.567.1 of.<ref>{{cite book |last1=Gradshteyn|first1=I. S. |last2=Ryzhik|first2=I. M. |editor1-last=Zwillinger|editor1-first=Daniel |title=Table of Integrals, Series, and Products |date=2015 |publisher=Academic Press |isbn=978-0-12-384933-5 |edition=Eighth |page=687}}</ref> The expansion coefficients {{math|''f<sub>m,t</sub>''}} are accessible with [[discrete Fourier transform]] techniques:<ref>{{cite journal |first1=José D. |last1=Secada |title=Numerical evaluation of the Hankel transform |journal=Comput. Phys. Commun. |volume=116 |issue=2–3 |pages=278–294 |bibcode=1999CoPhC.116..278S |year=1999 |doi = 10.1016/S0010-4655(98)00108-8 }}</ref> if the radial distance is scaled with :<math>r/R\equiv \sin\theta,\quad 1-(r/R)^2 = \cos^2\theta,</math> the Fourier-Chebyshev series coefficients {{math|''g''}} emerge as :<math>f(r)\equiv r^m \sum_j g_{m,j} \cos(j\theta)= r^m\sum_jg_{m,j} T_j(\cos\theta).</math> Using the re-expansion :<math> \cos(j\theta) = 2^{j-1}\cos^j\theta-\frac{j}{1}2^{j-3}\cos^{j-2}\theta +\frac{j}{2}\binom{j-3}{1}2^{j-5}\cos^{j-4}\theta - \frac{j}{3}\binom{j-4}{2}2^{j-7}\cos^{j-6}\theta + \cdots </math> yields {{math|''f''<sub>''m,t''</sub>}} expressed as sums of {{math|''g''<sub>''m,j''</sub>}}. This is one flavor of fast Hankel transform techniques. ==Relation to the Fourier and Abel transforms== The Hankel transform is one member of the [[Projection-slice theorem|FHA cycle]] of integral operators. In two dimensions, if we define {{mvar|A}} as the [[Abel transform]] operator, {{mvar|F}} as the [[Fourier transform]] operator, and {{mvar|H}} as the zeroth-order Hankel transform operator, then the special case of the [[projection-slice theorem]] for circularly symmetric functions states that : <math>FA = H.</math> In other words, applying the Abel transform to a 1-dimensional function and then applying the Fourier transform to that result is the same as applying the Hankel transform to that function. This concept can be extended to higher dimensions. == Numerical evaluation == A simple and efficient approach to the numerical evaluation of the Hankel transform is based on the observation that it can be cast in the form of a [[convolution]] by a logarithmic change of variables<ref>{{cite journal |last=Siegman |first=A.E. |date=1977-07-01 |title=Quasi fast Hankel transform |journal=Optics Letters |volume=1 |issue=1 |pages=13 |doi=10.1364/ol.1.000013 |pmid=19680315 |bibcode=1977OptL....1...13S |issn=0146-9592}}</ref> <math display="block">r = r_0 e^{-\rho}, \quad k = k_0 \, e^{\kappa}.</math> In these new variables, the Hankel transform reads <math display="block">\tilde F_\nu(\kappa) = \int_{-\infty}^\infty \tilde f(\rho) \tilde J_\nu(\kappa - \rho) \,\mathrm{d}\rho,</math> where <math display="block">\tilde f(\rho) = \left(r_0 \, e^{-\rho} \right)^{1-n} \, f(r_0 e^{-\rho}),</math> <math display="block">\tilde F_\nu(\kappa) = \left(k_0 \, e^{\kappa} \right)^{1+n} \, F_\nu(k_0 e^\kappa),</math> <math display="block">\tilde J_\nu(\kappa-\rho) = \left(k_0 \, r_0 \, e^{\kappa-\rho} \right)^{1+n} \, J_\nu(k_0 r_0 e^{\kappa-\rho}).</math> Now the integral can be calculated numerically with <math display="inline">O(N \log N)</math> [[Computational complexity|complexity]] using [[fast Fourier transform]]. The algorithm can be further simplified by using a known analytical expression for the Fourier transform of <math>\tilde J_\nu</math>:<ref>{{cite journal |last=Talman |first=James D. |date=October 1978 |title=Numerical Fourier and Bessel transforms in logarithmic variables |journal=Journal of Computational Physics |volume=29 |issue=1 |pages=35–48 |doi=10.1016/0021-9991(78)90107-9 |bibcode=1978JCoPh..29...35T |issn=0021-9991}}</ref> <math display="block"> \int_{-\infty}^{+\infty} \tilde J_\nu(x) e^{-i q x} \,\mathrm{d}x = \frac{\Gamma\left(\frac{\nu + 1 + n - iq}{2} \right)}{\Gamma\left(\frac{\nu + 1 - n + iq}{2}\right)} \, 2^{n - iq}e^{iq \ln(k_0 r_0)}.</math> The optimal choice of parameters <math>r_0, k_0, n</math> depends on the properties of <math>f(r),</math> in particular its asymptotic behavior at <math>r \to 0</math> and <math>r \to \infty.</math> This algorithm is known as the "quasi-fast Hankel transform", or simply "fast Hankel transform". Since it is based on [[fast Fourier transform]] in logarithmic variables, <math>f(r)</math> has to be defined on a logarithmic grid. For functions defined on a uniform grid, a number of other algorithms exist, including straightforward [[Numerical integration|quadrature]], methods based on the [[projection-slice theorem]], and methods using the [[Bessel function#Asymptotic forms|asymptotic expansion]] of Bessel functions.<ref>{{Cite journal |last1=Cree |first1=M. J. |last2=Bones |first2=P. J. |date=July 1993 |title=Algorithms to numerically evaluate the Hankel transform |journal=Computers & Mathematics with Applications |volume=26 |issue=1 |pages=1–12 |doi=10.1016/0898-1221(93)90081-6 |doi-access=free |issn=0898-1221}}</ref> == Some Hankel transform pairs == <ref>{{cite book |last=Papoulis |first=Athanasios |title=Systems and Transforms with Applications to Optics |year=1981 |publisher=Krieger Publishing Company |location=Florida USA |isbn=978-0898743586 |pages=140–175}}</ref> {|class="wikitable" ! <math>f(r)</math> ! <math>F_0(k)</math> |- | <math>1</math> | <math>\frac{\delta(k)}{k}</math> |- | <math>\frac{1}{r}</math> | <math>\frac{1}{k}</math> |- | <math>r</math> | <math>-\frac{1}{k^3}</math> |- | <math>r^3</math> | <math>\frac{9}{k^5}</math> |- | <math>r^m</math> | <math>\frac{\, 2^{m+1} \, \Gamma \left( \tfrac{m}{2} + 1 \right) \,}{k^{m+2} \, \Gamma\left( -\tfrac{m}{2} \right)}, \quad -2 < \mathcal{R_e} \{ m \} < -\tfrac{1}{2}</math> |- | <math>\frac{1}{\sqrt{r^2 + z^2\,}}</math> | <math>\frac{\, e^{-k|z|} \,}{k}</math><!-- = \sqrt{ \frac{2|z| \,}{\pi k}}K_{-\tfrac{1}{2}}(k|z|) \, ref Smythe 1968 --> |- | <math>\frac{1}{\, z^2 + r^2 \,}</math> | <math>K_0(kz), \quad z \in \mathbb{C}</math> |- |rowspan="2"| <math>\frac{e^{iar}}{r}</math> | <math>\frac{i}{\, \sqrt{a^2 - k^2 \,} \,}, \quad a > 0, \; k < a</math> |- | <math>\frac{1}{\,\sqrt{k^2 - a^2\,}\,}, \quad a > 0, \; k > a</math> |- | <math>e^{-\frac{1}{2} a^2r^2}</math> | <math>\frac{1}{\,a^2\,} \, e^{-\tfrac{k^2}{2\,a^2}}</math> |- | <math>\frac{1}{r} J_0(lr) \, e^{-sr}</math> | <math>\frac{2}{\, \pi \sqrt{ (k + l)^2 + s^2 \,} \,} K\left( \sqrt{\frac{4kl}{(k + l)^2 + s^2} \,} \right)</math> |- | <math>-r^2 f(r)</math> | <math>\frac{\, \mathrm{d}^2 F_0 \,}{\mathrm{d}k^2} + \frac{1}{k} \frac{\, \mathrm{d} F_0 \,}{\mathrm{d}k}</math> |} {|class="wikitable" ! <math>f(r)</math> ! <math>F_\nu(k)</math> |- | <math>r^s</math> | <math>\frac{2^{s+1}}{\, k^{s+2} \,} \, \frac{\Gamma\left(\tfrac{1}{2}(2 + \nu + s)\right)}{\Gamma(\tfrac{1}{2} (\nu - s))}</math> |- | <math>r^{\nu-2s} \Gamma(s, r^2 h)</math> | <math>\tfrac{1}{2} \left(\tfrac k 2\right)^{2s-\nu-2} \gamma\left(1 - s + \nu, \tfrac{k^2}{4h} \right)</math> |- | <math>e^{-r^2} r^\nu \, U(a, b, r^2)</math> | <math>\frac{\Gamma(2 + \nu - b)}{\, 2\, \Gamma(2 + \nu - b + a)} \left(\tfrac k 2\right)^\nu \, e^{-\frac{k^2}{4} \,} \, _1F_1\left( a, 2 + a - b + \nu, \tfrac{k^2}{4} \right)</math> |- | <math>r^n J_\mu(lr) \, e^{-sr}</math> | Expressable in terms of [[elliptic integral]]s.<ref>{{cite journal | last1 = Kausel | first1 = E. | last2 = Irfan Baig | first2 = M.M. | year = 2012 | title = Laplace transform of products of Bessel functions: A visitation of earlier formulas | journal = Quarterly of Applied Mathematics | volume = 70 | pages = 77–97 | hdl = 1721.1/78923 | url = http://dspace.mit.edu/bitstream/1721.1/78923/1/Kausel_Baig.pdf | doi = 10.1090/s0033-569x-2011-01239-2 | doi-access = free}}</ref> |- | <math>-r^2 f(r)</math> | <math>\frac{\mathrm{d}^2 F_\nu}{\mathrm{d}k^2} + \frac{1}{k} \frac{\, \mathrm{d} F_\nu \,}{\mathrm{d}k} - \frac{\nu^2}{k^2} \, F_\nu</math> |} {{math|''K<sub>n</sub>''(''z'')}} is a [[modified Bessel function of the second kind]]. {{math|''K''(''z'')}} is the [[complete elliptic integral of the first kind]]. The expression : <math>\frac{\, \mathrm{d}^2 F_0 \,}{\mathrm{d}k^2} + \frac{1}{k} \frac{\, \mathrm{d} F_0 \,}{\mathrm{d}k}</math> coincides with the expression for the [[Laplace operator]] in [[polar coordinates]] {{math|( ''k'', ''θ'' )}} applied to a spherically symmetric function {{math| ''F''<sub>0</sub>(''k'') .}} The Hankel transform of [[Zernike polynomial]]s are essentially Bessel Functions (Noll 1976): : <math>R_n^m(r) = (-1)^{\frac{n-m}{2}} \int_0^\infty J_{n+1}(k) J_m(kr) \,\mathrm{d}k</math> for even {{math|''n'' − ''m'' ≥ 0}}. ==See also== * [[Fourier transform]] * [[Integral transform]] * [[Abel transform]] * [[Fourier–Bessel series]] * [[Neumann polynomial]] * [[Y and H transforms]] == References == {{Reflist|30em}} {{div col|colwidth=30em}} * {{cite book |last=Gaskill |first=Jack D. |title=Linear Systems, Fourier Transforms, and Optics|publisher=John Wiley & Sons|location=New York|year=1978|isbn=978-0-471-29288-3}} * {{cite book |last1=Polyanin |first1=A. D. |last2=Manzhirov |first2=A. V. |title=Handbook of Integral Equations |publisher=CRC Press |location=Boca Raton |year=1998 |isbn=978-0-8493-2876-3 }} * {{cite book |last=Smythe|first=William R.|title=Static and Dynamic Electricity |edition=3rd|publisher=McGraw-Hill|location=New York|year=1968|pages=179–223}} * {{cite journal |last1=Offord |first1=A. C. |title=On Hankel transforms |journal=Proceedings of the London Mathematical Society |volume=39 |issue=2 |pages=49–67 |year=1935 |doi=10.1112/plms/s2-39.1.49 }} * {{cite journal |first1=G. |last1=Eason |first2=B. |last2=Noble |first3=I. N. |last3=Sneddon |title=On certain integrals of Lipschitz-Hankel type involving products of Bessel Functions |journal=[[Philosophical Transactions of the Royal Society A]] |year=1955 |volume=247 |issue=935 |pages=529–551 | jstor = 91565 |doi=10.1098/rsta.1955.0005|bibcode=1955RSPTA.247..529E }} *{{cite journal |first1=J. E. |last1=Kilpatrick |first2=Shigetoshi |last2=Katsura |first3=Yuji |last3=Inoue |title=Calculation of integrals of products of Bessel functions |journal=Mathematics of Computation |volume=21 |issue=99 |pages=407–412 |year=1967 |doi=10.1090/S0025-5718-67-99149-1 |doi-access=free }} * {{cite journal |first1=Robert F. |last1=MacKinnon |title=The asymptotic expansions of Hankel transforms and related integrals |journal=Mathematics of Computation |volume=26 |issue=118 |pages=515–527 |year=1972 |doi=10.1090/S0025-5718-1972-0308695-9 | jstor = 2003243|doi-access=free }} *{{cite journal |last1=Linz |first1=Peter |last2=Kropp |first2=T. E. |title=A note on the computation of integrals involving products of trigonometric and Bessel functions |journal=Mathematics of Computation |volume=27 |issue=124 |pages=871–872 |year=1973 | jstor = 2005522 |doi=10.2307/2005522|doi-access=free }} *{{cite journal |first=Robert J |last=Noll |title=Zernike polynomials and atmospheric turbulence |journal=Journal of the Optical Society of America |volume=66 |issue=3 |year=1976 |pages=207–211 |doi=10.1364/JOSA.66.000207 |bibcode=1976JOSA...66..207N }} *{{cite journal |first1=A. E. |last1=Siegman |title=Quasi-fast Hankel transform |journal=Opt. Lett. |volume=1 |issue=1 |pages=13–15 |bibcode=1977OptL....1...13S |doi=10.1364/OL.1.000013 |year=1977 |pmid=19680315 }} *{{cite journal |first1=Vittorio |last1=Magni |first2=Giulio |last2=Cerullo |first3=Sandro |last3=De Silverstri |title=High-accuracy fast Hankel transform for optical beam propagation |journal=J. Opt. Soc. Am. A |volume=9 |issue=11 |pages=2031–2033 |year=1992 |doi=10.1364/JOSAA.9.002031 |bibcode = 1992JOSAA...9.2031M }} *{{cite journal |first1=A. |last1=Agnesi |first2=Giancarlo C. |last2=Reali |first3=G. |last3=Patrini |first4=A. |last4=Tomaselli |title=Numerical evaluation of the Hankel transform: remarks |journal=Journal of the Optical Society of America A |volume=10 |issue=9 |page=1872 |year=1993 |doi=10.1364/JOSAA.10.001872 |bibcode=1993JOSAA..10.1872A }} *{{cite journal |first1=Richard |last1=Barakat |title=Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy |journal=Applied Mathematics Letters |volume=9 |issue=5 |pages=21–26 |mr=1415467 |year=1996 |doi=10.1016/0893-9659(96)00067-5 |doi-access=free }} *{{cite journal |first1=José A. |last1=Ferrari |first2=Daniel |last2=Perciante |first3=Alfredo |last3=Dubra |title=Fast Hankel transform of nth order |journal= J. Opt. Soc. Am. A |volume=16 |issue=10 |pages=2581–2582 |doi=10.1364/JOSAA.16.002581 |bibcode=1999JOSAA..16.2581F |year=1999 }} *{{cite journal |first1=Thomas |last1=Wieder |title=Algorithm 794: Numerical Hankel transform by the Fortran program HANKEL |journal=ACM Trans. Math. Softw. |volume=25 |issue=2 |pages=240–250 |year=1999 |doi=10.1145/317275.317284 |doi-access=free }} * {{cite journal |first1=Luc |last1=Knockaert |title=Fast Hankel transform by fast sine and cosine transforms: the Mellin connection |journal=IEEE Trans. Signal Process. |volume=48 |issue=6 |pages=1695–1701 |year=2000 |hdl=20.500.12860/4476 |doi=10.1109/78.845927 |url=https://scholar.archive.org/work/2klp6tigojbgppayv6tgjxeu5m |bibcode=2000ITSP...48.1695K |citeseerx=10.1.1.721.1633 }} *{{cite journal |first1=D. W. |last1=Zhang |first2=X.-C. |last2=Yuan |first3=N. Q. |last3=Ngo |first4=P. |last4=Shum |title=Fast Hankel transform and its application for studying the propagation of cylindrical electromagnetic fields |journal=Opt. Express |volume=10 |issue=12 |pages=521–525 |year=2002 |doi=10.1364/oe.10.000521 |pmid=19436390 |bibcode=2002OExpr..10..521Z |doi-access=free }} *{{cite journal |first1=Joanne |last1=Markham |first2=Jose-Angel |last2=Conchello |title=Numerical evaluation of Hankel transforms for oscillating functions |journal=J. Opt. Soc. Am. A |volume=20 |issue=4 |pages=621–630 |year=2003 |doi=10.1364/JOSAA.20.000621 |pmid=12683487 |bibcode = 2003JOSAA..20..621M }} *{{cite journal |first1=César D. |last1=Perciante |first2=José A. |last2=Ferrari |title=Fast Hankel transform of nth order with improved performance |journal=J. Opt. Soc. Am. A |volume=21 |number=9 |year=2004 |pages=1811–2 |doi=10.1364/JOSAA.21.001811 |pmid=15384449 |bibcode=2004JOSAA..21.1811P }} * {{cite journal |first1=Manuel |last1=Gizar-Sicairos |first2=Julio C. |last2=Guitierrez-Vega |title=Computation of quasi-discrete Hankel transform of integer order for propagating optical wave fields |journal=J. Opt. Soc. Am. A |volume=21 |issue=1 |year=2004 |pages=53–58 |doi=10.1364/JOSAA.21.000053 |pmid=14725397 |bibcode = 2004JOSAA..21...53G }} *{{cite journal |first1=Charles |last1=Cerjan |title=The Zernike-Bessel representation and its application to Hankel transforms |journal=J. Opt. Soc. Am. A |volume=24 |issue=6 |doi=10.1364/JOSAA.24.001609 |pages=1609–1616 |year=2007 |pmid=17491628 |bibcode=2007JOSAA..24.1609C |url=https://zenodo.org/record/894588 }} {{div col end}} {{Authority control}} [[Category:Integral transforms]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Distinguish
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)