Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Harmonic number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n}} {{other uses}} {{Use American English|date = March 2019}} [[Image:HarmonicNumbers.svg|right|thumb|400px|The harmonic number <math>H_n</math> with <math>n=\lfloor x \rfloor</math> (red line) with its asymptotic limit <math>\gamma+\ln(x)</math> (blue line) where <math>\gamma</math> is the [[Euler–Mascheroni constant]].]] In [[mathematics]], the {{mvar|n}}-th '''harmonic number''' is the sum of the [[Multiplicative inverse|reciprocals]] of the first {{mvar|n}} [[natural number]]s:<ref>{{Cite book |last=Knuth |first=Donald |title=The Art of Computer Programming |publisher=Addison-Wesley |year=1997 |isbn=0-201-89683-4 |edition=3rd |pages=75–79 |language=en}}</ref> <math display="block">H_n= 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} =\sum_{k=1}^n \frac{1}{k}.</math> Starting from {{math|1=''n'' = 1}}, the sequence of harmonic numbers begins: <math display="block">1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \dots</math> Harmonic numbers are related to the [[harmonic mean]] in that the {{mvar|n}}-th harmonic number is also {{mvar|n}} times the reciprocal of the harmonic mean of the first {{mvar|n}} positive integers. Harmonic numbers have been studied since antiquity and are important in various branches of [[number theory]]. They are sometimes loosely termed [[harmonic series (mathematics)|harmonic series]], are closely related to the [[Riemann zeta function]], and appear in the expressions of various [[special function]]s. The harmonic numbers roughly approximate the [[natural logarithm|natural logarithm function]]<ref name=ConwayGuy/>{{rp|143}} and thus the associated [[harmonic series (mathematics)|harmonic series]] grows without limit, albeit slowly. In 1737, [[Leonhard Euler]] used the [[Divergence of the sum of the reciprocals of the primes|divergence of the harmonic series]] to provide a new proof of the [[Euclid's theorem|infinity of prime numbers]]. His work was extended into the [[complex plane]] by [[Bernhard Riemann]] in 1859, leading directly to the celebrated [[Riemann hypothesis]] about the [[Prime number theorem|distribution of prime numbers]]. When the value of a large quantity of items has a [[Zipf's law]] distribution, the total value of the {{mvar|n}} most-valuable items is proportional to the {{mvar|n}}-th harmonic number. This leads to a variety of surprising conclusions regarding the [[long tail]] and [[Andrew Odlyzko#Network value|the theory of network value]]. The [[Bertrand's postulate|Bertrand-Chebyshev theorem]] implies that, except for the case {{math|1=''n'' = 1}}, the harmonic numbers are never integers.<ref name = 'ConcreteMath'>{{Cite book | first1 = Ronald L. | last1 = Graham | first2 = Donald E. | last2 = Knuth | first3 = Oren | last3 = Patashnik | title = Concrete Mathematics | year = 1994 | publisher = Addison-Wesley | title-link = Concrete Mathematics }}</ref> {| class="wikitable infobox collapsible collapsed" style="line-height:0.8;text-align:left;white-space:nowrap;" |+ The first 40 harmonic numbers ! rowspan="2" style="padding-top:1em;"|''n'' !! colspan="4"|Harmonic number, ''H<sub>n</sub>'' |- ! colspan="2"|expressed as a fraction !! decimal !! relative size |- | style="text-align:right;"|1 || style="text-align:center;" colspan="2"|1 || {{bartable|1||20}} |- | style="text-align:right;"|2 || style="border-right:none;padding-right:0;text-align:right;"|3 || style="border-left:none;padding-left:0;"|/2 || {{bartable|1.5||20}} |- | style="text-align:right;"|3 || style="border-right:none;padding-right:0;text-align:right;"|11 || style="border-left:none;padding-left:0;"|/6 || ~{{bartable|1.83333||20}} |- | style="text-align:right;"|4 || style="border-right:none;padding-right:0;text-align:right;"|25 || style="border-left:none;padding-left:0;"|/12 || ~{{bartable|2.08333||20}} |- | style="text-align:right;"|5 || style="border-right:none;padding-right:0;text-align:right;"|137 || style="border-left:none;padding-left:0;"|/60 || ~{{bartable|2.28333||20}} |- | style="text-align:right;"|6 || style="border-right:none;padding-right:0;text-align:right;"|49 || style="border-left:none;padding-left:0;"|/20 || {{bartable|2.45||20}} |- | style="text-align:right;"|7 || style="border-right:none;padding-right:0;text-align:right;"|363 || style="border-left:none;padding-left:0;"|/140 || ~{{bartable|2.59286||20}} |- | style="text-align:right;"|8 || style="border-right:none;padding-right:0;text-align:right;"|761 || style="border-left:none;padding-left:0;"|/280 || ~{{bartable|2.71786||20}} |- | style="text-align:right;"|9 || style="border-right:none;padding-right:0;text-align:right;"|7 129 || style="border-left:none;padding-left:0;"|/2 520 || ~{{bartable|2.82897||20}} |- | style="text-align:right;"|10 || style="border-right:none;padding-right:0;text-align:right;"|7 381 || style="border-left:none;padding-left:0;"|/2 520 || ~{{bartable|2.92897||20}} |- | style="text-align:right;"|11 || style="border-right:none;padding-right:0;text-align:right;"|83 711 || style="border-left:none;padding-left:0;"|/27 720 || ~{{bartable|3.01988||20}} |- | style="text-align:right;"|12 || style="border-right:none;padding-right:0;text-align:right;"|86 021 || style="border-left:none;padding-left:0;"|/27 720 || ~{{bartable|3.10321||20}} |- | style="text-align:right;"|13 || style="border-right:none;padding-right:0;text-align:right;"|1 145 993 || style="border-left:none;padding-left:0;"|/360 360 || ~{{bartable|3.18013||20}} |- | style="text-align:right;"|14 || style="border-right:none;padding-right:0;text-align:right;"|1 171 733 || style="border-left:none;padding-left:0;"|/360 360 || ~{{bartable|3.25156||20}} |- | style="text-align:right;"|15 || style="border-right:none;padding-right:0;text-align:right;"|1 195 757 || style="border-left:none;padding-left:0;"|/360 360 || ~{{bartable|3.31823||20}} |- | style="text-align:right;"|16 || style="border-right:none;padding-right:0;text-align:right;"|2 436 559 || style="border-left:none;padding-left:0;"|/720 720 || ~{{bartable|3.38073||20}} |- | style="text-align:right;"|17 || style="border-right:none;padding-right:0;text-align:right;"|42 142 223 || style="border-left:none;padding-left:0;"|/12 252 240 || ~{{bartable|3.43955||20}} |- | style="text-align:right;"|18 || style="border-right:none;padding-right:0;text-align:right;"|14 274 301 || style="border-left:none;padding-left:0;"|/4 084 080 || ~{{bartable|3.49511||20}} |- | style="text-align:right;"|19 || style="border-right:none;padding-right:0;text-align:right;"|275 295 799 || style="border-left:none;padding-left:0;"|/77 597 520 || ~{{bartable|3.54774||20}} |- | style="text-align:right;"|20 || style="border-right:none;padding-right:0;text-align:right;"|55 835 135 || style="border-left:none;padding-left:0;"|/15 519 504 || ~{{bartable|3.59774||20}} |- | style="text-align:right;"|21 || style="border-right:none;padding-right:0;text-align:right;"|18 858 053 || style="border-left:none;padding-left:0;"|/5 173 168 || ~{{bartable|3.64536||20}} |- | style="text-align:right;"|22 || style="border-right:none;padding-right:0;text-align:right;"|19 093 197 || style="border-left:none;padding-left:0;"|/5 173 168 || ~{{bartable|3.69081||20}} |- | style="text-align:right;"|23 || style="border-right:none;padding-right:0;text-align:right;"|444 316 699 || style="border-left:none;padding-left:0;"|/118 982 864 || ~{{bartable|3.73429||20}} |- | style="text-align:right;"|24 || style="border-right:none;padding-right:0;text-align:right;font-size:96%;"|1 347 822 955 || style="border-left:none;padding-left:0;font-size:96%;"|/356 948 592 || ~{{bartable|3.77596||20}} |- | style="text-align:right;"|25 || style="border-right:none;padding-right:0;text-align:right;font-size:87%;"|34 052 522 467 || style="border-left:none;padding-left:0;font-size:87%;"|/8 923 714 800 || ~{{bartable|3.81596||20}} |- | style="text-align:right;"|26 || style="border-right:none;padding-right:0;text-align:right;font-size:87%;"|34 395 742 267 || style="border-left:none;padding-left:0;font-size:87%;"|/8 923 714 800 || ~{{bartable|3.85442||20}} |- | style="text-align:right;"|27 || style="border-right:none;padding-right:0;text-align:right;font-size:80%;"|312 536 252 003 || style="border-left:none;padding-left:0;font-size:80%;"|/80 313 433 200 || ~{{bartable|3.89146||20}} |- | style="text-align:right;"|28 || style="border-right:none;padding-right:0;text-align:right;font-size:80%;"|315 404 588 903 || style="border-left:none;padding-left:0;font-size:80%;"|/80 313 433 200 || ~{{bartable|3.92717||20}} |- | style="text-align:right;"|29 || style="border-right:none;padding-right:0;text-align:right;font-size:73%;"|9 227 046 511 387 || style="border-left:none;padding-left:0;font-size:73%;"|/2 329 089 562 800 || ~{{bartable|3.96165||20}} |- | style="text-align:right;"|30 || style="border-right:none;padding-right:0;text-align:right;font-size:73%;"|9 304 682 830 147 || style="border-left:none;padding-left:0;font-size:73%;"|/2 329 089 562 800 || ~{{bartable|3.99499||20}} |- | style="text-align:right;"|31 || style="border-right:none;padding-right:0;text-align:right;font-size:64%;"|290 774 257 297 357 || style="border-left:none;padding-left:0;font-size:64%;"|/72 201 776 446 800 || ~{{bartable|4.02725||20}} |- | style="text-align:right;"|32 || style="border-right:none;padding-right:0;text-align:right;font-size:64%;"|586 061 125 622 639 || style="border-left:none;padding-left:0;font-size:64%;"|/144 403 552 893 600 || ~{{bartable|4.05850||20}} |- | style="text-align:right;"|33 || style="border-right:none;padding-right:0;text-align:right;font-size:68%;"|53 676 090 078 349 || style="border-left:none;padding-left:0;font-size:68%;"|/13 127 595 717 600 || ~{{bartable|4.08880||20}} |- | style="text-align:right;"|34 || style="border-right:none;padding-right:0;text-align:right;font-size:68%;"|54 062 195 834 749 || style="border-left:none;padding-left:0;font-size:68%;"|/13 127 595 717 600 || ~{{bartable|4.11821||20}} |- | style="text-align:right;"|35 || style="border-right:none;padding-right:0;text-align:right;font-size:68%;"|54 437 269 998 109 || style="border-left:none;padding-left:0;font-size:68%;"|/13 127 595 717 600 || ~{{bartable|4.14678||20}} |- | style="text-align:right;"|36 || style="border-right:none;padding-right:0;text-align:right;font-size:68%;"|54 801 925 434 709 || style="border-left:none;padding-left:0;font-size:68%;"|/13 127 595 717 600 || ~{{bartable|4.17456||20}} |- | style="text-align:right;"|37 || style="border-right:none;padding-right:0;text-align:right;font-size:60%;"|2 040 798 836 801 833 || style="border-left:none;padding-left:0;font-size:60%;"|/485 721 041 551 200 || ~{{bartable|4.20159||20}} |- | style="text-align:right;"|38 || style="border-right:none;padding-right:0;text-align:right;font-size:60%;"|2 053 580 969 474 233 || style="border-left:none;padding-left:0;font-size:60%;"|/485 721 041 551 200 || ~{{bartable|4.22790||20}} |- | style="text-align:right;"|39 || style="border-right:none;padding-right:0;text-align:right;font-size:60%;"|2 066 035 355 155 033 || style="border-left:none;padding-left:0;font-size:60%;"|/485 721 041 551 200 || ~{{bartable|4.25354||20}} |- | style="text-align:right;"|40 || style="border-right:none;padding-right:0;text-align:right;font-size:60%;"|2 078 178 381 193 813 || style="border-left:none;padding-left:0;font-size:60%;"|/485 721 041 551 200 || ~{{bartable|4.27854||20}} |} <!-- Python script to generate n from 2 to 40: import fractions numerator = 1; denominator = 1 for i in range(2, 40 + 1): numerator = numerator * i + denominator; denominator *= i; gcd = fractions.gcd(numerator, denominator); numerator /= gcd; denominator /= gcd decimal = ('{}' if (i < 3 or i == 6) else '{:.5f}').format(float(numerator) / denominator); exact = '' if (i < 3 or i == 6) else '~' numerator_length = len(str(numerator)); size = '' if (numerator_length <= 9) else 'font-size:{:d}%;'.format(960 / numerator_length) print('|-\n| style="text-align:right;"|{} || style="border-right:none;padding-right:0;text-align:right;{}"|{:,} || style="border-left:none;padding-left:0;{}"|/{:,} || {}{{{{bartable|{}||20}}}}'. format(i, size, numerator, size, denominator, exact, decimal).replace(',', ' ')) --> ==Identities involving harmonic numbers== By definition, the harmonic numbers satisfy the [[recurrence relation]] <math display="block"> H_{n + 1} = H_{n} + \frac{1}{n + 1}.</math> The harmonic numbers are connected to the [[Stirling numbers of the first kind]] by the relation <math display="block"> H_n = \frac{1}{n!}\left[{n+1 \atop 2}\right]. </math> The harmonic numbers satisfy the series identities <math display="block"> \sum_{k=1}^n H_k = (n+1) H_{n} - n</math> and <math display="block">\sum_{k=1}^n H_k^2 = (n+1)H_{n}^2 - (2 n +1) H_n + 2 n.</math> These two results are closely analogous to the corresponding integral results <math display="block">\int_0^x \log y \ d y = x \log x - x</math> and <math display="block">\int_0^x (\log y)^2\ d y = x (\log x)^2 - 2 x \log x + 2 x.</math> ===Identities involving {{pi}}=== There are several infinite summations involving harmonic numbers and powers of [[Pi|{{pi}}]]:<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Harmonic Number |url=https://mathworld.wolfram.com/HarmonicNumber.html |access-date=2024-09-30 |website=mathworld.wolfram.com |language=en}}</ref>{{better source|date=February 2022}} <math display="block">\begin{align} \sum_{n=1}^\infty \frac{H_n}{n\cdot 2^n} &= \frac{\pi^2}{12} \\ \sum_{n=1}^\infty \frac{H_n^2}{n^2} &= \frac{17}{360}\pi^4 \\ \sum_{n=1}^\infty \frac{H_n^2}{(n+1)^2} &= \frac{11}{360}\pi^4 \\ \sum_{n=1}^\infty \frac{H_n}{n^3} &= \frac{\pi^4}{72} \end{align}</math> ==Calculation== An integral representation given by [[Euler]]<ref>{{citation|title=How Euler Did It|series=MAA Spectrum|first=C. Edward|last=Sandifer|publisher=Mathematical Association of America|year=2007|isbn=9780883855638|page=206|url=https://books.google.com/books?id=sohHs7ExOsYC&pg=PA206}}.</ref> is <math display="block"> H_n = \int_0^1 \frac{1 - x^n}{1 - x}\,dx. </math> The equality above is straightforward by the simple [[algebraic identity]] <math display="block"> \frac{1-x^n}{1-x}=1+x+\cdots +x^{n-1}.</math> Using the substitution {{math|1=''x'' = 1 − ''u''}}, another expression for {{math|''H''<sub>''n''</sub>}} is <math display="block">\begin{align} H_n &= \int_0^1 \frac{1 - x^n}{1 - x}\,dx = \int_0^1\frac{1-(1-u)^n}{u}\,du \\[6pt] &= \int_0^1\left[\sum_{k=1}^n \binom nk (-u)^{k-1}\right]\,du = \sum_{k=1}^n \binom nk \int_0^1 (-u)^{k-1}\,du \\[6pt] &= \sum_{k=1}^n \binom nk \frac{(-1)^{k-1}}{k}. \end{align} </math> [[File:Integral Test.svg|thumb|Graph demonstrating a connection between harmonic numbers and the [[natural logarithm]]. The harmonic number {{math|''H''<sub>''n''</sub>}} can be interpreted as a [[Riemann sum]] of the integral: <math>\int_1^{n+1} \frac{dx}{x} = \ln(n+1).</math>]] The {{mvar|n}}th harmonic number is about as large as the [[natural logarithm]] of {{mvar|n}}. The reason is that the sum is approximated by the [[integral]] <math display="block">\int_1^n \frac{1}{x}\, dx,</math> whose value is {{math|ln ''n''}}. The values of the sequence {{math|''H''<sub>''n''</sub> − ln ''n''}} decrease monotonically towards the [[Limit of a sequence|limit]] <math display="block"> \lim_{n \to \infty} \left(H_n - \ln n\right) = \gamma,</math> where {{math|''γ'' ≈ 0.5772156649}} is the [[Euler–Mascheroni constant]]. The corresponding [[asymptotic expansion]] is <math display="block">\begin{align} H_n &\sim \ln{n}+\gamma+\frac{1}{2n}-\sum_{k=1}^\infty \frac{B_{2k}}{2k n^{2k}}\\ &=\ln{n}+\gamma+\frac{1}{2n}-\frac{1}{12n^2}+\frac{1}{120n^4}-\cdots, \end{align}</math> where {{math|''B''<sub>''k''</sub>}} are the [[Bernoulli numbers]]. {{Reflist|group=note}} ==Generating functions== A [[generating function]] for the harmonic numbers is <math display="block">\sum_{n=1}^\infty z^n H_n = \frac {-\ln(1-z)}{1-z},</math> where ln(''z'') is the [[natural logarithm]]. An exponential generating function is <math display="block">\sum_{n=1}^\infty \frac {z^n}{n!} H_n = e^z \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k} \frac {z^k}{k!} = e^z \operatorname{Ein}(z)</math> where Ein(''z'') is the entire [[exponential integral]]. The exponential integral may also be expressed as <math display="block">\operatorname{Ein}(z) = \mathrm{E}_1(z) + \gamma + \ln z = \Gamma (0,z) + \gamma + \ln z</math> where Γ(0, ''z'') is the [[incomplete gamma function]]. == Arithmetic properties == The harmonic numbers have several interesting arithmetic properties. It is well-known that <math display="inline">H_n</math> is an integer [[if and only if]] <math display="inline">n=1</math>, a result often attributed to Taeisinger.<ref>{{Cite book|title=CRC Concise Encyclopedia of Mathematics|last=Weisstein|first=Eric W.|publisher=Chapman & Hall/CRC|year=2003|isbn=978-1-58488-347-0|location=Boca Raton, FL|pages=3115}}</ref> Indeed, using [[P-adic valuation|2-adic valuation]], it is not difficult to prove that for <math display="inline">n \ge 2</math> the numerator of <math display="inline">H_n</math> is an odd number while the denominator of <math display="inline">H_n</math> is an even number. More precisely, <math display="block">H_n=\frac{1}{2^{\lfloor\log_2(n)\rfloor}}\frac{a_n}{b_n}</math> with some odd integers <math display="inline">a_n</math> and <math display="inline">b_n</math>. As a consequence of [[Wolstenholme's theorem]], for any prime number <math>p \ge 5</math> the numerator of <math>H_{p-1}</math> is divisible by <math display="inline">p^2</math>. Furthermore, Eisenstein<ref>{{Cite journal|last=Eisenstein|first=Ferdinand Gotthold Max|year=1850|title=Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen ahhängen und durch gewisse lineare Funktional-Gleichungen definirt werden|journal=Berichte Königl. Preuβ. Akad. Wiss. Berlin|volume=15|pages=36–42}}</ref> proved that for all odd prime number <math display="inline">p</math> it holds <math display="block">H_{(p-1)/2} \equiv -2q_p(2) \pmod p</math> where <math display="inline">q_p(2) = (2^{p-1} -1)/p</math> is a [[Fermat quotient]], with the consequence that <math display="inline">p</math> divides the numerator of <math>H_{(p-1)/2}</math> if and only if <math display="inline">p</math> is a [[Wieferich prime]]. In 1991, Eswarathasan and Levine<ref>{{Cite journal|last1=Eswarathasan|first1=Arulappah|last2=Levine|first2=Eugene|year=1991|title=p-integral harmonic sums|journal=Discrete Mathematics|volume=91|issue=3|pages=249–257|doi=10.1016/0012-365X(90)90234-9|doi-access=free}}</ref> defined <math>J_p</math> as the set of all positive integers <math>n</math> such that the numerator of <math>H_n</math> is divisible by a prime number <math>p.</math> They proved that <math display="block">\{p-1,p^2-p,p^2-1\}\subseteq J_p</math> for all prime numbers <math>p \ge 5,</math> and they defined ''harmonic primes'' to be the primes <math display="inline">p</math> such that <math>J_p</math> has exactly 3 elements. Eswarathasan and Levine also conjectured that <math>J_p</math> is a [[finite set]] for all primes <math>p,</math> and that there are infinitely many harmonic primes. Boyd<ref>{{Cite journal|last=Boyd|first=David W.|year=1994|title=A p-adic study of the partial sums of the harmonic series|url=http://projecteuclid.org/euclid.em/1048515811|journal=Experimental Mathematics|volume=3|issue=4|pages=287–302|doi=10.1080/10586458.1994.10504298|citeseerx=10.1.1.56.7026}}</ref> verified that <math>J_p</math> is finite for all prime numbers up to <math>p = 547</math> except 83, 127, and 397; and he gave a heuristic suggesting that the [[Natural density|density]] of the harmonic primes in the set of all primes should be <math>1/e</math>. Sanna<ref>{{Cite journal|last=Sanna|first=Carlo|year=2016|title=On the p-adic valuation of harmonic numbers|journal=Journal of Number Theory|volume=166|pages=41–46|doi=10.1016/j.jnt.2016.02.020|hdl=2318/1622121|url=https://iris.unito.it/bitstream/2318/1622121/1/padicharm.pdf|doi-access=free}}</ref> showed that <math>J_p</math> has zero [[Natural density|asymptotic density]], while Bing-Ling Wu and Yong-Gao Chen<ref>{{Cite journal|last1=Chen|first1=Yong-Gao|last2=Wu|first2=Bing-Ling|year=2017|title=On certain properties of harmonic numbers|journal=Journal of Number Theory|volume=175|pages=66–86|doi=10.1016/j.jnt.2016.11.027|doi-access=}}</ref> proved that the number of elements of <math>J_p</math> not exceeding <math>x</math> is at most <math>3x^{\frac{2}{3}+\frac1{25 \log p}}</math>, for all <math>x \geq 1</math>. ==Applications== The harmonic numbers appear in several calculation formulas, such as the [[digamma function]] <math display="block"> \psi(n) = H_{n-1} - \gamma.</math> This relation is also frequently used to define the extension of the harmonic numbers to non-integer ''n''. The harmonic numbers are also frequently used to define {{mvar|γ}} using the limit introduced earlier: <math display="block"> \gamma = \lim_{n \rightarrow \infty}{\left(H_n - \ln(n)\right)}, </math> although <math display="block"> \gamma = \lim_{n \to \infty}{\left(H_n - \ln\left(n+\frac{1}{2}\right)\right)} </math> converges more quickly. In 2002, [[Jeffrey Lagarias]] proved<ref>{{cite journal |author=Jeffrey Lagarias |title=An Elementary Problem Equivalent to the Riemann Hypothesis |journal=Amer. Math. Monthly |volume=109 |issue=6 |year=2002 |pages=534–543 |arxiv=math.NT/0008177 |doi=10.2307/2695443|jstor=2695443 }}</ref> that the [[Riemann hypothesis]] is equivalent to the statement that <math display="block"> \sigma(n) \le H_n + (\log H_n)e^{H_n},</math> is true for every [[integer]] {{math|''n'' ≥ 1}} with strict inequality if {{math|''n'' > 1}}; here {{math|''σ''(''n'')}} denotes the [[divisor function|sum of the divisors]] of {{mvar|n}}. The eigenvalues of the nonlocal problem on <math> L^2([-1,1])</math> <math display="block"> \lambda \varphi(x) = \int_{-1}^{1} \frac{\varphi(x)-\varphi(y)}{|x-y|} \, dy </math> are given by <math>\lambda = 2H_n</math>, where by convention <math>H_0 = 0</math>, and the corresponding eigenfunctions are given by the [[Legendre polynomials]] <math>\varphi(x) = P_n(x)</math>.<ref>{{cite journal |author=E.O. Tuck |title=Some methods for flows past blunt slender bodies |journal=J. Fluid Mech. |volume=18 |year=1964 |issue=4 |pages=619–635 |doi=10.1017/S0022112064000453|bibcode=1964JFM....18..619T |s2cid=123120978 }}</ref> ==Generalizations== ===Generalized harmonic numbers=== The ''n''th '''generalized harmonic number''' of order ''m'' is given by <math display="block">H_{n,m}=\sum_{k=1}^n \frac{1}{k^m}.</math> (In some sources, this may also be denoted by <math display="inline">H_n^{(m)}</math> or <math display="inline">H_m(n).</math>) The special case ''m'' = 0 gives <math>H_{n,0}= n.</math> The special case ''m'' = 1 reduces to the usual harmonic number: <math display="block">H_{n, 1} = H_n = \sum_{k=1}^n \frac{1}{k}.</math> The limit of <math display="inline">H_{n, m}</math> as {{math|''n'' → ∞}} is finite if {{math|''m'' > 1}}, with the generalized harmonic number bounded by and converging to the [[Riemann zeta function]] <math display="block">\lim_{n\rightarrow \infty} H_{n,m} = \zeta(m).</math> The smallest natural number ''k'' such that ''k<sup>n</sup>'' does not divide the denominator of generalized harmonic number ''H''(''k'', ''n'') nor the denominator of alternating generalized harmonic number ''H′''(''k'', ''n'') is, for ''n''=1, 2, ... : :77, 20, 94556602, 42, 444, 20, 104, 42, 76, 20, 77, 110, 3504, 20, 903, 42, 1107, 20, 104, 42, 77, 20, 2948, 110, 136, 20, 76, 42, 903, 20, 77, 42, 268, 20, 7004, 110, 1752, 20, 19203, 42, 77, 20, 104, 42, 76, 20, 370, 110, 1107, 20, ... {{OEIS|id=A128670}} The related sum <math>\sum_{k=1}^n k^m</math> occurs in the study of [[Bernoulli number]]s; the harmonic numbers also appear in the study of [[Stirling number]]s. Some integrals of generalized harmonic numbers are <math display="block">\int_0^a H_{x,2} \, dx = a \frac {\pi^2}{6}-H_{a}</math> and <math display="block">\int_0^a H_{x,3} \, dx = a A - \frac {1}{2} H_{a,2},</math> where ''A'' is [[Apéry's constant]] ''ζ''(3), and <math display="block">\sum_{k=1}^n H_{k,m}=(n+1)H_{n,m}- H_{n,m-1} \text{ for } m \geq 0 .</math> Every generalized harmonic number of order ''m'' can be written as a function of harmonic numbers of order <math>m-1</math> using <math display="block">H_{n,m} = \sum_{k=1}^{n-1} \frac {H_{k,m-1}}{k(k+1)} + \frac {H_{n,m-1}}{n} </math> for example: <math>H_{4,3} = \frac {H_{1,2}}{1 \cdot 2} + \frac {H_{2,2}}{2 \cdot 3} + \frac {H_{3,2}}{3 \cdot 4} + \frac {H_{4,2}}{4} </math> A [[generating function]] for the generalized harmonic numbers is <math display="block">\sum_{n=1}^\infty z^n H_{n,m} = \frac {\operatorname{Li}_m(z)}{1-z},</math> where <math>\operatorname{Li}_m(z)</math> is the [[polylogarithm]], and {{math|{{mabs|''z''}} < 1}}. The generating function given above for {{math|1=''m'' = 1}} is a special case of this formula. A '''fractional argument for generalized harmonic numbers''' can be introduced as follows: For every <math>p,q>0</math> integer, and <math>m>1</math> integer or not, we have from polygamma functions: <math display="block">H_{q/p,m}=\zeta(m)-p^m\sum_{k=1}^\infty \frac{1}{(q+pk)^m}</math> where <math>\zeta(m)</math> is the [[Riemann zeta function]]. The relevant recurrence relation is <math display="block">H_{a,m}=H_{a-1,m}+\frac{1}{a^m}.</math> Some special values are<math display="block">\begin{align} H_{\frac{1}{4},2} &= 16-\tfrac{5}{6}\pi^2 -8G\\ H_{\frac{1}{2},2} &= 4-\frac{\pi^2}{3} \\ H_{\frac{3}{4},2} &= \frac{16}{9}-\frac{5}{6}\pi^2 + 8G \\ H_{\frac{1}{4},3} &= 64-\pi^3-27\zeta(3) \\ H_{\frac{1}{2},3} & =8-6\zeta(3) \\ H_{\frac{3}{4},3} &= \left(\frac{4}{3}\right)^3+\pi^3 -27\zeta(3) \end{align}</math>where ''G'' is [[Catalan's constant]]. In the special case that <math>p = 1</math>, we get <math display="block">H_{n,m}=\zeta(m, 1) - \zeta(m, n+1),</math> where <math>\zeta(m, n)</math> is the [[Hurwitz zeta function]]. This relationship is used to calculate harmonic numbers numerically. ===Multiplication formulas=== The [[multiplication theorem]] applies to harmonic numbers. Using [[polygamma]] functions, we obtain <math display="block">\begin{align} H_{2x} & =\frac{1}{2}\left(H_x+H_{x-\frac{1}{2}}\right)+\ln 2 \\ H_{3x} &= \frac{1}{3}\left(H_x+H_{x-\frac{1}{3}}+H_{x-\frac{2}{3}}\right)+\ln 3, \end{align}</math> or, more generally, <math display="block">H_{nx}=\frac{1}{n}\left(H_x+H_{x-\frac{1}{n}}+H_{x-\frac{2}{n}}+\cdots +H_{x-\frac{n-1}{n}} \right) + \ln n.</math> For generalized harmonic numbers, we have <math display="block">\begin{align} H_{2x,2} &= \frac{1}{2}\left(\zeta(2)+\frac{1}{2}\left(H_{x,2}+H_{x-\frac{1}{2},2}\right)\right) \\ H_{3x,2} &= \frac{1}{9}\left(6\zeta(2)+H_{x,2}+H_{x-\frac{1}{3},2}+H_{x-\frac{2}{3},2}\right), \end{align}</math> where <math>\zeta(n)</math> is the [[Riemann zeta function]]. ===Hyperharmonic numbers=== The next generalization was discussed by [[John Horton Conway|J. H. Conway]] and [[Richard K. Guy|R. K. Guy]] in their 1995 book ''[[The Book of Numbers (maths)|The Book of Numbers]]''.<ref name=ConwayGuy/>{{rp|258}} Let <math display="block"> H_n^{(0)} = \frac1n. </math> Then the nth [[hyperharmonic number]] of order ''r'' (''r>0'') is defined recursively as <math display="block"> H_n^{(r)} = \sum_{k=1}^n H_k^{(r-1)}. </math> In particular, <math>H_n^{(1)}</math> is the ordinary harmonic number <math>H_n</math>. === Roman Harmonic numbers === The [[Roman Harmonic numbers]],<ref>{{Cite journal |last=Sesma |first=J. |date=2017 |title=The Roman harmonic numbers revisited |url=http://dx.doi.org/10.1016/j.jnt.2017.05.009 |journal=Journal of Number Theory |volume=180 |pages=544–565 |doi=10.1016/j.jnt.2017.05.009 |issn=0022-314X|arxiv=1702.03718 }}</ref> named after [[Steven Roman]], were introduced by [[Daniel E. Loeb|Daniel Loeb]] and [[Gian-Carlo Rota]] in the context of a generalization of [[umbral calculus]] with logarithms.<ref>{{Cite journal |last1=Loeb |first1=Daniel E |last2=Rota |first2=Gian-Carlo |date=1989 |title=Formal power series of logarithmic type |journal=Advances in Mathematics |volume=75 |issue=1 |pages=1–118 |doi=10.1016/0001-8708(89)90079-0 |issn=0001-8708|doi-access=free }}</ref> There are many possible definitions, but one of them, for <math>n,k \geq 0</math>, is<math display="block"> c_n^{(0)} = 1, </math>and<math display="block"> c_n^{(k+1)} = \sum_{i=1}^n\frac{c_i^{(k)}}{i}. </math>Of course,<math display="block"> c_n^{(1)} = H_n. </math> If <math>n \neq 0</math>, they satisfy<math display="block"> c_n^{(k+1)} - \frac{c_n^{(k)}}{n} = c_{n-1}^{(k+1)}. </math>Closed form formulas are<math display="block"> c_n^{(k)} = n! (-1)^k s(-n,k), </math>where <math>s(-n,k)</math> is [[Stirling numbers of the first kind]] generalized to negative first argument, and<math display="block"> c_n^{(k)} = \sum_{j=1}^n \binom{n}{j} \frac{(-1)^{j-1}}{j^k}, </math>which was found by [[Donald Knuth]]. In fact, these numbers were defined in a more general manner using Roman numbers and [[Roman factorials]], that include negative values for <math>n</math>. This generalization was useful in their study to define [[Harmonic logarithms]]. ==Harmonic numbers for real and complex values== {{unreferenced section|date=May 2019}} The formulae given above, <math display="block"> H_x = \int_0^1 \frac{1-t^x}{1-t} \, dt= \sum_{k=1}^\infty {x \choose k} \frac{(-1)^{k-1}}{k}</math> are an integral and a series representation for a function that interpolates the harmonic numbers and, via [[analytic continuation]], extends the definition to the complex plane other than the negative integers ''x''. The interpolating function is in fact closely related to the [[digamma function]] <math display="block">H_x = \psi(x+1)+\gamma,</math> where {{math|''ψ''(''x'')}} is the digamma function, and {{math|''γ''}} is the [[Euler–Mascheroni constant]]. The integration process may be repeated to obtain <math display="block">H_{x,2}= \sum_{k=1}^\infty \frac {(-1)^{k-1}}{k} {x \choose k} H_k.</math> The [[Taylor series]] for the harmonic numbers is <math display="block">H_x=\sum_{k=2}^\infty (-1)^{k}\zeta (k)\;x^{k-1}\quad\text{ for } |x| < 1</math> which comes from the Taylor series for the digamma function (<math>\zeta </math> is the [[Riemann zeta function]]). === Alternative, asymptotic formulation === There is an asymptotic formulation that gives the same result as the analytic continuation of the integral just described. When seeking to approximate {{math|''H''{{sub|''x''}}}} for a [[complex number]] {{math|''x''}}, it is effective to first compute {{math|''H''{{sub|''m''}}}} for some large integer {{math|''m''}}. Use that as an approximation for the value of {{math|''H''{{sub|''m''+''x''}}}}. Then use the recursion relation {{math|1=''H''{{sub|''n''}} = ''H''{{sub|''n''−1}} + 1/''n''}} backwards {{math|''m''}} times, to unwind it to an approximation for {{math|''H''{{sub|''x''}}}}. Furthermore, this approximation is exact in the limit as {{math|''m''}} goes to infinity. Specifically, for a fixed integer {{math|''n''}}, it is the case that <math display="block">\lim_{m \rightarrow \infty} \left[H_{m+n} - H_m\right] = 0.</math> If {{math|''n''}} is not an integer then it is not possible to say whether this equation is true because we have not yet (in this section) defined harmonic numbers for non-integers. However, we do get a unique extension of the harmonic numbers to the non-integers by insisting that this equation continue to hold when the arbitrary integer {{math|''n''}} is replaced by an arbitrary complex number {{math|''x''}}, <math display="block">\lim_{m \rightarrow \infty} \left[H_{m+x} - H_m\right] = 0\,.</math> Swapping the order of the two sides of this equation and then subtracting them from {{math|''H''<sub>''x''</sub>}} gives <math display="block"> \begin{align}H_x &= \lim_{m \rightarrow \infty} \left[H_m - (H_{m+x}-H_x)\right] \\[6pt] &= \lim_{m \rightarrow \infty} \left[\left(\sum_{k=1}^m \frac{1}{k}\right) - \left(\sum_{k=1}^m \frac{1}{x+k}\right) \right] \\[6pt] &= \lim_{m \rightarrow \infty} \sum_{k=1}^m \left(\frac{1}{k} - \frac{1}{x+k}\right) = x \sum_{k=1}^{\infty} \frac{1}{k(x+k)}\, . \end{align} </math> This [[infinite series]] converges for all complex numbers {{math|''x''}} except the negative integers, which fail because trying to use the recursion relation {{math|1=''H''{{sub|''n''}} = ''H''{{sub|''n''−1}} + 1/''n''}} backwards through the value {{math|1=''n'' = 0}} involves a division by zero. By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) {{math|1=''H''{{sub|0}} = 0}}, (2) {{math|1=''H''{{sub|''x''}} = ''H''{{sub|''x''−1}} + 1/''x''}} for all complex numbers {{math|''x''}} except the non-positive integers, and (3) {{math|1=lim<sub>''m''→+∞</sub> (''H''<sub>''m''+''x''</sub> − ''H''<sub>''m''</sub>) = 0}} for all complex values {{math|''x''}}. This last formula can be used to show that <math display="block"> \int_0^1 H_x \, dx = \gamma, </math> where {{math|''γ''}} is the [[Euler–Mascheroni constant]] or, more generally, for every {{math|''n''}} we have: <math display="block"> \int_0^nH_{x}\,dx = n\gamma + \ln(n!) .</math> ===Special values for fractional arguments=== There are the following special analytic values for fractional arguments between 0 and 1, given by the integral <math display="block">H_\alpha = \int_0^1\frac{1-x^\alpha}{1-x}\,dx\, .</math> More values may be generated from the recurrence relation <math display="block"> H_\alpha = H_{\alpha-1}+\frac{1}{\alpha}\,,</math> or from the reflection relation <math display="block"> H_{-\alpha}-H_{\alpha-1} = \pi\cot{(\pi\alpha)}.</math> For example: <math display="block"> \begin{align} H_{\frac{1}{2}} &= 2 - 2\ln 2 \\ H_{\frac{1}{3}} &= 3 - \frac{\pi}{2\sqrt{3}} - \frac{3}{2}\ln 3 \\ H_{\frac{2}{3}} &= \frac{3}{2}+\frac{\pi}{2\sqrt{3}} - \frac{3}{2}\ln 3 \\ H_{\frac{1}{4}} &= 4 - \frac{\pi}{2} - 3\ln 2 \\ H_{\frac{1}{5}} &= 5 - \frac{\pi}{2} \sqrt{1+\frac{2}{\sqrt{5}}} - \frac{5}{4} \ln 5 - \frac{\sqrt{5}}{4} \ln\left(\frac{3+\sqrt{5}}{2}\right) \\ H_{\frac{3}{4}} &= \frac{4}{3} + \frac{\pi}{2} - 3\ln 2 \\ H_{\frac{1}{6}} &= 6 - \frac{\sqrt{3}}{2} \pi - 2\ln 2 - \frac{3}{2} \ln 3 \\ H_{\frac{1}{8}} &= 8 - \frac{1+\sqrt{2}}{2} \pi - 4\ln{2} - \frac{1}{\sqrt{2}} \left(\ln\left(2 + \sqrt{2}\right) - \ln\left(2 - \sqrt{2}\right)\right) \\ H_{\frac{1}{12}} &= 12 - \left(1+\frac{\sqrt{3}}{2}\right)\pi - 3\ln{2} - \frac{3}{2} \ln{3} + \sqrt{3} \ln\left(2-\sqrt{3}\right) \end{align}</math> Which are computed via [[Digamma function#Gauss's digamma theorem|Gauss's digamma theorem]], which essentially states that for positive integers ''p'' and ''q'' with ''p'' < ''q'' <math display="block"> H_{\frac{p}{q}} = \frac{q}{p} +2\sum_{k=1}^{\lfloor\frac{q-1}{2}\rfloor} \cos\left(\frac{2 \pi pk}{q}\right)\ln\left({\sin \left(\frac{\pi k}{q}\right)}\right)-\frac{\pi}{2}\cot\left(\frac{\pi p}{q}\right)-\ln\left(2q\right)</math> ===Relation to the Riemann zeta function=== Some derivatives of fractional harmonic numbers are given by <math display="block"> \begin{align} \frac{d^n H_x}{dx^n} & = (-1)^{n+1}n!\left[\zeta(n+1)-H_{x,n+1}\right] \\[6pt] \frac{d^n H_{x,2}}{dx^n} & = (-1)^{n+1}(n+1)!\left[\zeta(n+2)-H_{x,n+2}\right] \\[6pt] \frac{d^n H_{x,3}}{dx^n} & = (-1)^{n+1}\frac{1}{2}(n+2)!\left[\zeta(n+3)-H_{x,n+3}\right]. \end{align} </math> And using [[Taylor series|Maclaurin series]], we have for ''x'' < 1 that <math display="block"> \begin{align} H_x & = \sum_{n=1}^\infty (-1)^{n+1}x^n\zeta(n+1) \\[5pt] H_{x,2} & = \sum_{n=1}^\infty (-1)^{n+1}(n+1)x^n\zeta(n+2) \\[5pt] H_{x,3} & = \frac{1}{2}\sum_{n=1}^\infty (-1)^{n+1}(n+1)(n+2)x^n\zeta(n+3). \end{align} </math> For fractional arguments between 0 and 1 and for ''a'' > 1, <math display="block"> \begin{align} H_{1/a} & = \frac{1}{a}\left(\zeta(2)-\frac{1}{a}\zeta(3)+\frac{1}{a^2}\zeta(4)-\frac{1}{a^3} \zeta(5) + \cdots\right) \\[6pt] H_{1/a, \, 2} & = \frac{1}{a}\left(2\zeta(3)-\frac{3}{a}\zeta(4)+\frac{4}{a^2}\zeta(5)-\frac{5}{a^3} \zeta(6) + \cdots\right) \\[6pt] H_{1/a, \, 3} & = \frac{1}{2a}\left(2\cdot3\zeta(4)-\frac{3\cdot4}{a}\zeta(5)+\frac{4\cdot5}{a^2}\zeta(6)-\frac{5\cdot6}{a^3}\zeta(7)+\cdots\right). \end{align} </math> ==See also== * [[Watterson estimator]] * [[Tajima's D]] * [[Coupon collector's problem]] * [[Jeep problem]] * [[100 prisoners problem]] * [[Riemann zeta function]] * [[List of sums of reciprocals]] * [[False discovery rate#Benjamini–Yekutieli procedure]] * [[Block-stacking problem]] ==Notes== {{Reflist|refs= <ref name=ConwayGuy> {{Cite book | last1 = John H. | first1 = Conway | last2 = Richard K. | first2 = Guy | title = The book of numbers | year = 1995 | publisher = Copernicus }}</ref> }} ==References== * {{cite journal |author1=Arthur T. Benjamin |author2=Gregory O. Preston |author3=Jennifer J. Quinn |url=http://www.math.hmc.edu/~benjamin/papers/harmonic.pdf |title=A Stirling Encounter with Harmonic Numbers |year=2002 |journal=[[Mathematics Magazine]] |volume=75 |issue=2 |pages=95–103 |doi=10.2307/3219141 |jstor=3219141 |citeseerx=10.1.1.383.722 |access-date=2005-08-08 |archive-url=https://web.archive.org/web/20090617002133/http://www.math.hmc.edu/~benjamin/papers/harmonic.pdf |archive-date=2009-06-17 |url-status=dead }} * {{cite book |author=Donald Knuth |author-link=Donald Knuth |title=The Art of Computer Programming |volume=1: ''Fundamental Algorithms'' |edition=Third |publisher=Addison-Wesley |year=1997 |isbn=978-0-201-89683-1 |chapter=Section 1.2.7: Harmonic Numbers |pages=75–79}} * Ed Sandifer, ''[http://www.maa.org/editorial/euler/How%20Euler%20Did%20It%2002%20Estimating%20the%20Basel%20Problem.pdf How Euler Did It — Estimating the Basel problem] {{Webarchive|url=https://web.archive.org/web/20050513105944/http://www.maa.org/editorial/euler/How%20Euler%20Did%20It%2002%20Estimating%20the%20Basel%20Problem.pdf |date=2005-05-13 }}'' (2003) * {{cite journal | last1 = Paule | first1 = Peter | author1-link = Peter Paule | last2 = Schneider | first2 = Carsten | doi = 10.1016/s0196-8858(03)00016-2 | issue = 2 | journal = Adv. Appl. Math. | pages = 359–378 | title = Computer Proofs of a New Family of Harmonic Number Identities | url = http://www.risc.uni-linz.ac.at/publications/download/risc_200/HarmonicNumberIds.pdf | volume = 31 | year = 2003}} * {{cite journal |author=Wenchang Chu |url=http://www.combinatorics.org/Volume_11/PDF/v11i1n15.pdf |title=A Binomial Coefficient Identity Associated with Beukers' Conjecture on Apery Numbers |year=2004 |journal=The Electronic Journal of Combinatorics |volume=11 |pages=N15|doi=10.37236/1856 |doi-access=free }} ==External links== * {{MathWorld|urlname=HarmonicNumber |title=Harmonic Number}} {{PlanetMath attribution|id=3421|title=Harmonic number}} {{DEFAULTSORT:Harmonic Number}} [[Category:Number theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Ambox
(
edit
)
Template:Bartable
(
edit
)
Template:Better source
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:OEIS
(
edit
)
Template:Other uses
(
edit
)
Template:Pi
(
edit
)
Template:PlanetMath attribution
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Unreferenced
(
edit
)
Template:Unreferenced section
(
edit
)
Template:Use American English
(
edit
)
Template:Webarchive
(
edit
)