Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hilbert–Schmidt operator
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Topic in mathematics}} In [[mathematics]], a '''Hilbert–Schmidt operator''', named after [[David Hilbert]] and [[Erhard Schmidt]], is a [[bounded operator]] <math> A \colon H \to H </math> that acts on a [[Hilbert space]] <math> H </math> and has finite '''Hilbert–Schmidt norm''' <math display="block">\|A\|^2_{\operatorname{HS}} \ \stackrel{\text{def}}{=}\ \sum_{i \in I} \|Ae_i\|^2_H,</math> where <math>\{e_i: i \in I\}</math> is an [[orthonormal basis]].<ref name="MathWorld">{{cite web |last=Moslehian |first=M. S. |title=Hilbert–Schmidt Operator (From MathWorld) |url=http://mathworld.wolfram.com/Hilbert-SchmidtOperator.html}}</ref><ref name="EOM">{{eom |first=M. I. |last=Voitsekhovskii |title=Hilbert-Schmidt operator}}</ref> The index set <math> I </math> need not be countable. However, the sum on the right must contain at most countably many non-zero terms, to have meaning.{{sfn | Schaefer | 1999 | p=177}} This definition is independent of the choice of the orthonormal basis. In finite-dimensional [[Euclidean space]], the Hilbert–Schmidt norm <math>\|\cdot\|_\text{HS}</math> is identical to the [[matrix norm#Frobenius norm|Frobenius norm]]. ==‖·‖{{sub|HS}} is well defined== The Hilbert–Schmidt norm does not depend on the choice of orthonormal basis. Indeed, if <math>\{e_i\}_{i\in I}</math> and <math>\{f_j\}_{j\in I}</math> are such bases, then <math display="block"> \sum_i \|Ae_i\|^2 = \sum_{i,j} \left| \langle Ae_i, f_j\rangle \right|^2 = \sum_{i,j} \left| \langle e_i, A^*f_j\rangle \right|^2 = \sum_j\|A^* f_j\|^2. </math> If <math>e_i = f_i, </math> then <math display="inline"> \sum_i \|Ae_i\|^2 = \sum_i\|A^* e_i\|^2. </math> As for any bounded operator, <math> A = A^{**}. </math> Replacing <math> A </math> with <math> A^* </math> in the first formula, obtain <math display="inline"> \sum_i \|A^* e_i\|^2 = \sum_j\|A f_j\|^2. </math> The independence follows. == Examples == An important class of examples is provided by [[Hilbert–Schmidt integral operator]]s. Every bounded operator with a finite-dimensional range (these are called operators of finite rank) is a Hilbert–Schmidt operator. The [[identity map|identity operator]] on a Hilbert space is a Hilbert–Schmidt operator if and only if the Hilbert space is finite-dimensional. Given any <math>x</math> and <math>y</math> in <math>H</math>, define <math>x \otimes y : H \to H</math> by <math>(x \otimes y)(z) = \langle z, y \rangle x</math>, which is a continuous linear operator of rank 1 and thus a Hilbert–Schmidt operator; moreover, for any bounded linear operator ''<math>A</math>'' on <math>H</math> (and into <math>H</math>), <math>\operatorname{Tr}\left( A\left( x \otimes y \right) \right) = \left\langle A x, y \right\rangle</math>.{{sfn | Conway | 1990 | p=268}} If <math>T: H \to H</math> is a bounded compact operator with eigenvalues <math>\ell_1, \ell_2, \dots</math> of <math>|T| := \sqrt{T^*T}</math>, where each eigenvalue is repeated as often as its multiplicity, then <math>T</math> is Hilbert–Schmidt if and only if <math display="inline">\sum_{i=1}^{\infty} \ell_i^2 < \infty</math>, in which case the Hilbert–Schmidt norm of <math>T</math> is <math display="inline">\left\| T \right\|_{\operatorname{HS}} = \sqrt{\sum_{i=1}^{\infty} \ell_i^2}</math>.{{sfn | Conway | 1990 | p=267}} If <math>k \in L^2\left( \mu \times \mu \right)</math>, where <math>\left( X, \Omega, \mu \right)</math> is a measure space, then the integral operator <math>K : L^2\left( \mu \right) \to L^2\left( \mu \right)</math> with kernel <math>k</math> is a Hilbert–Schmidt operator and <math>\left\| K \right\|_{\operatorname{HS}} = \left\| k \right\|_2</math>.{{sfn | Conway | 1990 | p=267}} == Space of Hilbert–Schmidt operators == The product of two Hilbert–Schmidt operators has finite [[trace class|trace-class norm]]; therefore, if ''A'' and ''B'' are two Hilbert–Schmidt operators, the '''Hilbert–Schmidt inner product''' can be defined as <math display="block">\langle A, B \rangle_\text{HS} = \operatorname{Tr}(B^* A) = \sum_i \langle Ae_i, Be_i \rangle.</math> The Hilbert–Schmidt operators form a two-sided [[ideal (ring theory)|*-ideal]] in the [[Banach algebra]] of bounded operators on {{math|''H''}}. They also form a Hilbert space, denoted by {{math|''B''<sub>HS</sub>(''H'')}} or {{math|''B''<sub>2</sub>(''H'')}}, which can be shown to be [[Natural transformation|naturally]] isometrically isomorphic to the [[tensor product of Hilbert spaces]] <math display="block">H^* \otimes H,</math> where {{math|''H''<sup>∗</sup>}} is the [[dual space]] of {{math|''H''}}. The norm induced by this inner product is the Hilbert–Schmidt norm under which the space of Hilbert–Schmidt operators is complete (thus making it into a Hilbert space).{{sfn | Conway | 1990 | p=268}} The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with the Hilbert–Schmidt norm).{{sfn | Conway | 1990 | p=268}} The set of Hilbert–Schmidt operators is closed in the [[norm topology]] if, and only if, {{math|''H''}} is finite-dimensional. == Properties == * Every Hilbert–Schmidt operator {{math|''T'' : ''H'' → ''H''}} is a [[compact operator]].{{sfn | Conway | 1990 | p=267}} * A bounded linear operator {{math|''T'' : ''H'' → ''H''}} is Hilbert–Schmidt if and only if the same is true of the operator <math display="inline">\left| T \right| := \sqrt{T^* T}</math>, in which case the Hilbert–Schmidt norms of ''T'' and |''T''| are equal.{{sfn | Conway | 1990 | p=267}} * Hilbert–Schmidt operators are [[nuclear operator]]s of order 2, and are therefore [[compact operator]]s.{{sfn | Conway | 1990 | p=267}} * If <math>S : H_1 \to H_2</math> and <math>T : H_2 \to H_3</math> are Hilbert–Schmidt operators between Hilbert spaces then the composition <math>T \circ S : H_1 \to H_3</math> is a [[nuclear operator]].{{sfn | Schaefer | 1999 | p=177}} * If {{math|''T'' : ''H'' → ''H''}} is a bounded linear operator then we have <math>\left\| T \right\| \leq \left\| T \right\|_{\operatorname{HS}}</math>.{{sfn | Conway | 1990 | p=267}} * {{math|''T''}} is a Hilbert–Schmidt operator if and only if the [[trace class|trace]] <math>\operatorname{Tr}</math> of the nonnegative self-adjoint operator <math>T^{*} T</math> is finite, in which case <math>\|T\|^2_\text{HS} = \operatorname{Tr}(T^* T)</math>.<ref name="MathWorld"/><ref name="EOM"/> * If {{math|''T'' : ''H'' → ''H''}} is a bounded linear operator on {{math|''H''}} and {{math|''S'' : ''H'' → ''H''}} is a Hilbert–Schmidt operator on {{math|''H''}} then <math>\left\| S^* \right\|_{\operatorname{HS}} = \left\| S \right\|_{\operatorname{HS}}</math>, <math>\left\| T S \right\|_{\operatorname{HS}} \leq \left\| T \right\| \left\| S \right\|_{\operatorname{HS}}</math>, and <math>\left\| S T \right\|_{\operatorname{HS}} \leq \left\| S \right\|_{\operatorname{HS}} \left\| T \right\|</math>.{{sfn | Conway | 1990 | p=267}} In particular, the composition of two Hilbert–Schmidt operators is again Hilbert–Schmidt (and even a [[trace class operator]]).{{sfn | Conway | 1990 | p=267}} * The space of Hilbert–Schmidt operators on {{math|''H''}} is an [[Ideal (ring theory)|ideal]] of the space of bounded operators <math>B\left( H \right)</math> that contains the operators of finite-rank.{{sfn | Conway | 1990 | p=267}} * If {{math|''A''}} is a Hilbert–Schmidt operator on {{math|''H''}} then <math display="block">\|A\|^2_\text{HS} = \sum_{i,j} |\langle e_i, Ae_j \rangle|^2 = \|A\|^2_2</math> where <math>\{e_i: i \in I\}</math> is an [[orthonormal basis]] of ''H'', and <math>\|A\|_2</math> is the [[Schatten norm]] of <math>A</math> for {{math|1=''p'' = 2}}. In [[Euclidean space]], <math>\|\cdot\|_\text{HS}</math> is also called the [[matrix norm#Frobenius norm|Frobenius norm]]. ==See also== * {{annotated link|Frobenius inner product}} * {{annotated link|Sazonov's theorem}} * {{annotated link|Trace class}} ==References== {{Reflist}} * {{cite book | last=Conway | first=John B.|authorlink = John B. Conway| title=A course in functional analysis | publisher=Springer-Verlag | publication-place=New York | year=1990 | isbn=978-0-387-97245-9 | oclc=21195908}} <!--- {{sfn | Conway | 1990 | p=}} ---> * {{cite book | last=Schaefer | first=Helmut H.|authorlink = Helmut H. Schaefer| title=Topological Vector Spaces | publisher=Springer New York Imprint Springer | series=[[Graduate Texts in Mathematics|GTM]] | volume=3 | location=New York, NY | year=1999 | isbn=978-1-4612-7155-0 | oclc=840278135 }} <!-- {{sfn | Schaefer | 1999 | p=}} --> {{Hilbert space}} {{Topological tensor products and nuclear spaces}} {{Functional analysis}} {{DEFAULTSORT:Hilbert-Schmidt Operator}} [[Category:Linear operators]] [[Category:Operator theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Eom
(
edit
)
Template:Functional analysis
(
edit
)
Template:Hilbert space
(
edit
)
Template:Math
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Sub
(
edit
)
Template:Topological tensor products and nuclear spaces
(
edit
)