Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hopf–Rinow theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Gives equivalent statements about the geodesic completeness of Riemannian manifolds}} The '''Hopf–Rinow theorem''' is a set of statements about the [[Geodesic manifold|geodesic completeness]] of [[Riemannian manifold]]s. It is named after [[Heinz Hopf]] and his student [[Willi Rinow]], who published it in 1931.<ref>{{cite journal|last1=Hopf|first1=H.|last2=Rinow|first2=W.|title=Ueber den Begriff der vollständigen differentialgeometrischen Fläche|journal=[[Commentarii Mathematici Helvetici]]|volume=3|year=1931|issue=1|pages=209–225|doi=10.1007/BF01601813}}</ref> [[Stefan Cohn-Vossen]] extended part of the Hopf–Rinow theorem to the context of certain types of [[metric space]]s. ==Statement== Let <math>(M, g)</math> be a [[Connected space|connected]] and smooth Riemannian manifold. Then the following statements are equivalent:{{sfnm|1a1=do Carmo|1y=1992|1loc=Chapter 7|2a1=Gallot|2a2=Hulin|2a3=Lafontaine|2y=2004|2loc=Section 2.C.5|3a1=Jost|3y=2017|3loc=Section 1.7|4a1=Kobayashi|4a2=Nomizu|4y=1963|4loc=Section IV.4|5a1=Lang|5y=1999|5loc=Section VIII.6|6a1=O'Neill|6y=1983|6loc=Theorem 5.21 and Proposition 5.22|7a1=Petersen|7y=2016|7loc=Section 5.7.1}} # The [[Closed set|closed]] and [[Bounded set|bounded]] [[subset]]s of <math>M</math> are [[Compact space|compact]]; # <math>M</math> is a [[Complete space|complete]] [[metric space]]; # <math>M</math> is geodesically complete; that is, for every <math>p \in M,</math> the [[Exponential map (Riemannian geometry)|exponential map]] exp<sub>''p''</sub> is defined on the entire [[tangent space]] <math>\operatorname{T}_p M.</math> Furthermore, any one of the above implies that given any two points <math>p, q \in M,</math> there exists a length minimizing [[geodesic]] connecting these two points (geodesics are in general [[Critical point (mathematics)|critical points]] for the [[Arc length|length]] functional, and may or may not be minima). In the Hopf–Rinow theorem, the first characterization of completeness deals purely with the topology of the manifold and the boundedness of various sets; the second deals with the existence of minimizers to a certain problem in the [[calculus of variations]] (namely minimization of the length functional); the third deals with the nature of solutions to a certain system of [[ordinary differential equation]]s. ==Variations and generalizations== * The Hopf–Rinow theorem is generalized to [[length-metric space]]s the following way:{{sfnm|1a1=Bridson|1a2=Haefliger|1y=1999|1loc=Proposition I.3.7|2a1=Gromov|2y=1999|2loc=Section 1.B}} ** If a [[length-metric space]] is [[Complete space|complete]] and [[locally compact]] then any two points can be connected by a [[Geodesic|minimizing geodesic]], and any bounded [[closed set]] is [[Compact space|compact]]. :In fact these properties characterize completeness for locally compact length-metric spaces.{{sfnm|1a1=Burago|1a2=Burago|1a3=Ivanov|1y=2001|1loc=Section 2.5.3}} * The theorem does not hold for infinite-dimensional manifolds. The unit sphere in a [[separable Hilbert space]] can be endowed with the structure of a [[Hilbert manifold]] in such a way that antipodal points cannot be joined by a length-minimizing geodesic.{{sfnm|1a1=Lang|1y=1999|1pp=226–227}} It was later observed that it is not even automatically true that two points are joined by any geodesic, whether minimizing or not.<ref>{{Citation|last1=Atkin|first1=C. J.|title=The Hopf–Rinow theorem is false in infinite dimensions|mr=0400283|year=1975|journal=[[The Bulletin of the London Mathematical Society]]|volume=7|issue=3|pages=261–266|doi=10.1112/blms/7.3.261}}</ref> *The theorem also does not generalize to [[Lorentzian manifold]]s: the [[Clifton–Pohl torus]] provides an example (diffeomorphic to the two-dimensional torus) that is compact but not complete.{{sfnm|1a1=Gallot|1a2=Hulin|1a3=Lafontaine|1y=2004|1loc=Section 2.D.4|2a1=O'Neill|2y=1983|2p=193}} ==Notes== {{reflist}} ==References== {{refbegin}} * {{wikicite|ref={{sfnRef|Burago|Burago|Ivanov|2001}}|reference={{cite book|mr=1835418|zbl=0981.51016|last1=Burago|first1=Dmitri|last2=Burago|first2=Yuri|last3=Ivanov|first3=Sergei|title=A course in metric geometry|series=[[Graduate Studies in Mathematics]]|volume=33|publisher=[[American Mathematical Society]]|location=Providence, RI|year=2001|isbn=0-8218-2129-6|author-link1=Dmitri Burago|author-link2=Yuri Burago|author-link3=Sergei Ivanov (mathematician)|doi=10.1090/gsm/033|ref=none}} {{erratum|https://www.pdmi.ras.ru/~svivanov/papers/bbi-errata.pdf|checked=yes}}}} * {{cite book|mr=1744486|last1=Bridson|first1=Martin R.|last2=Haefliger|first2=André|title=Metric spaces of non-positive curvature|series=Grundlehren der mathematischen Wissenschaften|volume=319|publisher=[[Springer-Verlag]]|location=Berlin|year=1999|isbn=3-540-64324-9|doi=10.1007/978-3-662-12494-9|author-link1=Martin Bridson|author-link2=André Haefliger|zbl=0988.53001}} * {{cite book|last=do Carmo|first=Manfredo Perdigão|authorlink=Manfredo do Carmo|title=Riemannian geometry|series= Mathematics: Theory & Applications|year=1992|isbn=0-8176-3490-8|location=Boston, MA|publisher=[[Birkhäuser|Birkhäuser Boston, Inc.]]|others=Translated from the second Portuguese edition by Francis Flaherty|zbl=0752.53001|mr=1138207}} * {{cite book|last1=Gallot|first1=Sylvestre|author-link1=Sylvestre Gallot|last2=Hulin|first2=Dominique|author-link2=Dominique Hulin|last3=Lafontaine|first3=Jacques|title=Riemannian geometry|year=2004|edition=Third|series=Universitext|publisher=[[Springer-Verlag]]|mr=2088027|isbn=3-540-20493-8|doi=10.1007/978-3-642-18855-8|zbl=1068.53001}} * {{cite book|last1=Gromov|first1=Misha|title-link=Metric Structures for Riemannian and Non-Riemannian Spaces|title=Metric structures for Riemannian and non-Riemannian spaces|edition=Based on the 1981 French original|series=Progress in Mathematics|volume=152|publisher=[[Birkhäuser|Birkhäuser Boston, Inc.]]|location=Boston, MA|year=1999|isbn=0-8176-3898-9|mr=1699320|translator-last1=Bates|translator-first1=Sean Michael|others=With appendices by [[Mikhail Katz|M. Katz]], [[Pierre Pansu|P. Pansu]], and [[Stephen Semmes|S. Semmes]].|doi=10.1007/978-0-8176-4583-0|zbl=0953.53002|author-link1=Mikhael Gromov (mathematician)}} * {{cite book|last1=Jost|first1=Jürgen|title=Riemannian geometry and geometric analysis|series=Universitext|author-link1=Jürgen Jost|edition=Seventh edition of 1995 original|publisher=[[Springer, Cham]]|year=2017|isbn=978-3-319-61859-3|mr=3726907|doi=10.1007/978-3-319-61860-9|zbl=1380.53001}} * {{cite book|author-link1=Shoshichi Kobayashi|author-link2=Katsumi Nomizu|last1=Kobayashi|first1=Shoshichi|last2=Nomizu|title-link=Foundations of Differential Geometry|first2=Katsumi|title=Foundations of differential geometry. Volume I |publisher=[[John Wiley & Sons, Inc.]]|location=New York–London|year=1963|mr=0152974|zbl=0119.37502}} * {{cite book|mr=1666820|last1=Lang|first1=Serge|title=Fundamentals of differential geometry|series=[[Graduate Texts in Mathematics]]|volume=191|publisher=[[Springer-Verlag]]|location=New York|year=1999|isbn=0-387-98593-X|doi=10.1007/978-1-4612-0541-8|author-link1=Serge Lang|zbl=0932.53001}} * {{cite book|last1=O'Neill|first1=Barrett|author-link1=Barrett O'Neill|title=Semi-Riemannian geometry. With applications to relativity|series=Pure and Applied Mathematics|volume=103|publisher=[[Academic Press|Academic Press, Inc.]]|location=New York|year=1983|isbn=0-12-526740-1|mr=0719023|zbl=0531.53051|doi=10.1016/s0079-8169(08)x6002-7}} * {{cite book|last1=Petersen|first1=Peter|title=Riemannian geometry|edition=Third edition of 1998 original|series=[[Graduate Texts in Mathematics]]|volume=171|publisher=[[Springer Publishing|Springer, Cham]]|year=2016|isbn=978-3-319-26652-7|mr=3469435|doi=10.1007/978-3-319-26654-1|zbl=1417.53001}} {{refend}} ==External links== * {{springer|id=H/h048010|title=Hopf–Rinow theorem|first=M. I. |last=Voitsekhovskii}} * {{mathworld|Hopf-RinowTheorem|author=Derwent, John}} {{Riemannian geometry}} {{Manifolds}} {{DEFAULTSORT:Hopf-Rinow theorem}} [[Category:Metric geometry]] [[Category:Theorems in Riemannian geometry]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Manifolds
(
edit
)
Template:Mathworld
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Riemannian geometry
(
edit
)
Template:Sfnm
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)
Template:Wikicite
(
edit
)