Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hurewicz theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Gives a homomorphism from homotopy groups to homology groups}} In [[mathematics]], the '''Hurewicz theorem''' is a basic result of [[algebraic topology]], connecting [[homotopy theory]] with [[homology theory]] via a map known as the '''Hurewicz homomorphism'''. The theorem is named after [[Witold Hurewicz]], and generalizes earlier results of [[Henri Poincaré]]. ==Statement of the theorems== The Hurewicz theorems are a key link between [[homotopy group]]s and [[homology group]]s. ===Absolute version=== For any [[Path connected|path-connected]] space ''X'' and positive integer ''n'' there exists a [[group homomorphism]] :<math>h_* \colon \pi_n(X) \to H_n(X),</math> called the '''Hurewicz homomorphism''', from the ''n''-th [[homotopy group]] to the ''n''-th [[Homology (mathematics)|homology group]] (with integer coefficients). It is given in the following way: choose a canonical generator <math>u_n \in H_n(S^n)</math>, then a homotopy class of maps <math>f \in \pi_n(X)</math> is taken to <math>f_*(u_n) \in H_n(X)</math>. The Hurewicz theorem states cases in which the Hurewicz homomorphism is an [[group isomorphism|isomorphism]]. * For <math>n\ge 2</math>, if ''X'' is [[N-connected|<math>(n-1)</math>-connected]] (that is: <math>\pi_i(X)= 0</math> for all <math>i < n</math>), then <math>\tilde{H_i}(X)= 0</math> for all <math>i < n</math>, and the Hurewicz map <math>h_* \colon \pi_n(X) \to H_n(X)</math> is an isomorphism.<ref name=":0">{{citation |last=Hatcher |first=Allen |title=Algebraic Topology |page= |year=2001 |publisher=[[Cambridge University Press]] |isbn=978-0-521-79160-1 |author-link=Allen Hatcher}}</ref>{{Rp|page=366|location=Thm.4.32}} This implies, in particular, that the [[homological connectivity]] equals the [[homotopical connectivity]] when the latter is at least 1. In addition, the Hurewicz map <math>h_* \colon \pi_{n+1}(X) \to H_{n+1}(X)</math> is an [[epimorphism]] in this case.<ref name=":0" />{{Rp|page=390|location=?}} * For <math>n=1</math>, the Hurewicz homomorphism induces an [[group isomorphism|isomorphism]] <math>\tilde{h}_* \colon \pi_1(X)/[ \pi_1(X), \pi_1(X)] \to H_1(X)</math>, between the [[Commutator subgroup|abelianization]] of the first homotopy group (the [[fundamental group]]) and the first homology group. ===Relative version=== For any [[topological pair|pair of spaces]] <math>(X,A)</math> and integer <math>k>1</math> there exists a homomorphism :<math>h_* \colon \pi_k(X,A) \to H_k(X,A)</math> from relative homotopy groups to relative homology groups. The Relative Hurewicz Theorem states that if both <math>X</math> and <math>A</math> are connected and the pair is <math>(n-1)</math>-connected then <math>H_k(X,A)=0</math> for <math>k<n</math> and <math>H_n(X,A)</math> is obtained from <math>\pi_n(X,A)</math> by factoring out the action of <math>\pi_1(A)</math>. This is proved in, for example, {{Harvtxt|Whitehead|1978}} by induction, proving in turn the absolute version and the Homotopy Addition Lemma. This relative Hurewicz theorem is reformulated by {{Harvtxt|Brown|Higgins|1981}} as a statement about the morphism :<math>\pi_n(X,A) \to \pi_n(X \cup CA),</math> where <math>CA</math> denotes the [[Cone (topology)|cone]] of <math>A</math>. This statement is a special case of a [[homotopical excision theorem]], involving induced modules for <math>n>2</math> ([[crossed module]]s if <math>n=2</math>), which itself is deduced from a higher homotopy [[van Kampen theorem]] for relative homotopy groups, whose proof requires development of techniques of a cubical higher homotopy groupoid of a filtered space. ===Triadic version=== For any triad of spaces <math>(X;A,B)</math> (i.e., a space ''X'' and subspaces ''A'', ''B'') and integer <math>k>2</math> there exists a homomorphism :<math>h_*\colon \pi_k(X;A,B) \to H_k(X;A,B)</math> from triad homotopy groups to triad homology groups. Note that :<math>H_k(X;A,B) \cong H_k(X\cup (C(A\cup B))).</math> The Triadic Hurewicz Theorem states that if ''X'', ''A'', ''B'', and <math>C=A\cap B</math> are connected, the pairs <math>(A,C)</math> and <math>(B,C)</math> are <math>(p-1)</math>-connected and <math>(q-1)</math>-connected, respectively, and the triad <math>(X;A,B)</math> is <math>(p+q-2)</math>-connected, then <math>H_k(X;A,B)=0</math> for <math>k<p+q-2</math> and <math>H_{p+q-1}(X;A)</math> is obtained from <math>\pi_{p+q-1}(X;A,B)</math> by factoring out the action of <math>\pi_1(A\cap B)</math> and the generalised Whitehead products. The proof of this theorem uses a higher homotopy van Kampen type theorem for triadic homotopy groups, which requires a notion of the fundamental <math>\operatorname{cat}^n</math>-group of an ''n''-cube of spaces. ===Simplicial set version=== The Hurewicz theorem for topological spaces can also be stated for ''n''-connected [[simplicial set]]s satisfying the Kan condition.<ref>{{Citation | last1=Goerss | first1=Paul G. | last2=Jardine | first2=John Frederick | author-link2=Rick Jardine| title=Simplicial Homotopy Theory | publisher=Birkhäuser | location=Basel, Boston, Berlin | series=Progress in Mathematics | isbn=978-3-7643-6064-1 | year=1999 | volume=174}}, III.3.6, 3.7</ref> ===Rational Hurewicz theorem=== '''Rational Hurewicz theorem:<ref>{{Citation | last1=Klaus | first1=Stephan | last2=Kreck | first2=Matthias |author-link2=Matthias Kreck | title=A quick proof of the rational Hurewicz theorem and a computation of the rational homotopy groups of spheres | journal= [[Mathematical Proceedings of the Cambridge Philosophical Society]] | year=2004 | volume=136 | issue=3 | pages=617–623 | doi=10.1017/s0305004103007114| bibcode=2004MPCPS.136..617K | s2cid=119824771 }}</ref><ref>{{Citation | last1=Cartan | first1=Henri |author-link1=Henri Cartan| last2=Serre | first2=Jean-Pierre | author-link2=Jean-Pierre Serre| title= Espaces fibrés et groupes d'homotopie, II, Applications | journal=[[Comptes rendus de l'Académie des Sciences]] | year=1952 | volume=2 | number=34 |pages=393–395}}</ref>''' Let ''X'' be a simply connected topological space with <math>\pi_i(X)\otimes \Q = 0</math> for <math>i\leq r</math>. Then the Hurewicz map :<math>h\otimes \Q \colon \pi_i(X)\otimes \Q \longrightarrow H_i(X;\Q )</math> induces an isomorphism for <math>1\leq i \leq 2r</math> and a surjection for <math>i = 2r+1</math>. ==Notes== {{Reflist}} ==References== * {{citation | last = Brown | first = Ronald | contribution = Triadic Van Kampen theorems and Hurewicz theorems | doi = 10.1090/conm/096/1022673 | mr = 1022673 | pages = 39–57 | publisher = American Mathematical Society | location = Providence, RI | series = Contemporary Mathematics | title = Algebraic topology (Evanston, IL, 1988) | volume = 96 | year = 1989| isbn = 9780821851029 }} <!--* R. Brown, ''Triadic Van Kampen theorems and Hurewicz theorems'', Algebraic Topology, Proc. Int. Conf. March 1988, Edited M.Mahowald and S.Priddy, Cont. Math. 96 (1989) 39-57.--> * {{citation |last1= Brown |first1= Ronald |last2= Higgins |first2= P. J. |title= Colimit theorems for relative homotopy groups |journal= Journal of Pure and Applied Algebra |year= 1981 |volume= 22 |pages= 11–41 |issn= 0022-4049 |doi= 10.1016/0022-4049(81)90080-3 |doi-access= }} * {{citation |last1= Brown |first1= R. |last2= Loday |first2= J.-L. |title= Homotopical excision, and Hurewicz theorems, for n-cubes of spaces |journal= Proceedings of the London Mathematical Society |series=Third Series |year= 1987 |volume= 54 |pages=176–192 |issn= 0024-6115 |doi= 10.1112/plms/s3-54.1.176 |citeseerx= 10.1.1.168.1325 }} * {{citation |last1= Brown |first1= R. |last2= Loday |first2= J.-L. |title= Van Kampen theorems for diagrams of spaces |journal= [[Topology (journal)|Topology]] |year= 1987 |volume= 26 |pages=311–334 |issn= 0040-9383 |doi= 10.1016/0040-9383(87)90004-8 |issue= 3 |doi-access= }} * {{citation |last= Rotman |first= Joseph J.<!-- |author-link= Joseph J. Rotman--><!-- missing link --> |title= An Introduction to Algebraic Topology |publisher= [[Springer-Verlag]] |year= 1988 |publication-date= 1998-07-22 |series= [[Graduate Texts in Mathematics]] |volume= 119 |isbn= 978-0-387-96678-6 |url-access= registration |url= https://archive.org/details/introductiontoal0000rotm }} * {{citation |last= Whitehead |first= George W. |author-link= George W. Whitehead |title= Elements of Homotopy Theory |publisher= [[Springer-Verlag]] |year= 1978 |series= [[Graduate Texts in Mathematics]] |volume= 61 |isbn= 978-0-387-90336-1 }} [[Category:Theorems in homotopy theory]] [[Category:Homology theory]] [[Category:Theorems in algebraic topology]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Harvtxt
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)