Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hypercube
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Convex polytope, the n-dimensional analogue of a square and a cube}} {{other uses}} {{multiple image | footer = In the following [[perspective projection]]s, [[cube (geometry)|cube]] is 3-cube and [[tesseract]] is 4-cube. | image1 = Hexahedron.svg | image2 = Hypercube.svg | total_width = 380px }} In [[geometry]], a '''hypercube''' is an [[N-dimensional space|''n''-dimensional]] analogue of a [[Square (geometry)|square]] ([[two-dimensional|{{nowrap|1=''n'' = 2}}]]) and a [[cube]] ([[Three-dimensional|{{nowrap|1=''n'' = 3}}]]); the special case for [[Four-dimensional space|{{nowrap|1=''n'' = 4}}]] is known as a ''[[tesseract]]''. It is a [[Closed set|closed]], [[Compact space|compact]], [[Convex polytope|convex]] figure whose 1-[[N-skeleton|skeleton]] consists of groups of opposite [[parallel (geometry)|parallel]] [[line segment]]s aligned in each of the space's [[dimension]]s, [[perpendicular]] to each other and of the same length. A unit hypercube's longest diagonal in ''n'' dimensions is equal to <math>\sqrt{n}</math>. An ''n''-dimensional hypercube is more commonly referred to as an '''''n''-cube''' or sometimes as an '''''n''-dimensional cube'''.<ref>{{Cite journal|url=https://dx.doi.org/10.1016/0771-050X%2876%2990005-X|title=An adaptive algorithm for numerical integration over an n-dimensional cube|author1=Paul Dooren|author2=Luc Ridder|journal=Journal of Computational and Applied Mathematics |date=1976 |volume=2 |issue=3 |pages=207–217 |doi=10.1016/0771-050X(76)90005-X }}</ref><ref>{{Cite journal|url=https://www.sciencedirect.com/science/article/pii/S0020025506003173|title=A (4n − 9)/3 diagnosis algorithm on n-dimensional cube network|author1=Xiaofan Yang|author2=Yuan Tang|journal=Information Sciences |date=15 April 2007 |volume=177 |issue=8 |pages=1771–1781 |doi=10.1016/j.ins.2006.10.002 }}</ref> The term '''measure polytope''' (originally from Elte, 1912)<ref>{{cite book|title=The Semiregular Polytopes of the Hyperspaces|last=Elte|first=E. L.|publisher=[[University of Groningen]]|year=1912|location=Netherlands|chapter=IV, Five dimensional semiregular polytope|isbn = 141817968X}}</ref> is also used, notably in the work of [[Harold Scott MacDonald Coxeter|H. S. M. Coxeter]] who also labels the hypercubes the γ<small>n</small> polytopes.{{Sfn|Coxeter|1973|pp=122-123|loc=§7.2 see illustration Fig 7.2<small>C</small>}} The hypercube is the special case of a [[hyperrectangle]] (also called an ''n-orthotope''). A ''unit hypercube'' is a hypercube whose side has length one [[unit (number)|unit]]. Often, the hypercube whose corners (or ''vertices'') are the 2<sup>''n''</sup> points in '''R'''<sup>''n''</sup> with each coordinate equal to 0 or 1 is called ''the'' unit hypercube. == Construction == === By the number of dimensions === [[File:From Point to Tesseract (Looped Version).gif|thumb|An animation showing how to create a tesseract from a point.]] A hypercube can be defined by increasing the numbers of dimensions of a shape: :'''0''' – A point is a hypercube of dimension zero. :'''1''' – If one moves this point one unit length, it will sweep out a line segment, which is a unit hypercube of dimension one. :'''2''' – If one moves this line segment its length in a [[perpendicular]] direction from itself; it sweeps out a 2-dimensional square. :'''3''' – If one moves the square one unit length in the direction perpendicular to the plane it lies on, it will generate a 3-dimensional cube. :'''4''' – If one moves the cube one unit length into the fourth dimension, it generates a 4-dimensional unit hypercube (a unit [[tesseract]]). This can be generalized to any number of dimensions. This process of sweeping out volumes can be formalized mathematically as a [[Minkowski sum]]: the ''d''-dimensional hypercube is the Minkowski sum of ''d'' mutually perpendicular unit-length line segments, and is therefore an example of a [[zonotope]]. The 1-[[Skeleton (topology)|skeleton]] of a hypercube is a [[hypercube graph]]. === Vertex coordinates === [[File:8-cell.gif|thumb|Projection of a [[rotation|rotating]] [[tesseract]].]] A unit hypercube of dimension <math>n</math> is the [[convex hull]] of all the <math>2^n</math> points whose <math>n</math> [[Cartesian coordinate system|Cartesian coordinates]] are each equal to either <math>0</math> or <math>1</math>. These points are its [[vertex (geometry)|vertices]]. The hypercube with these coordinates is also the [[cartesian product]] <math>[0,1]^n</math> of <math>n</math> copies of the unit [[interval (mathematics)|interval]] <math>[0,1]</math>. Another unit hypercube, centered at the origin of the ambient space, can be obtained from this one by a [[translation (geometry)|translation]]. It is the convex hull of the <math>2^n</math> points whose vectors of Cartesian coordinates are : <math> \left(\pm \frac{1}{2}, \pm \frac{1}{2}, \cdots, \pm \frac{1}{2}\right)\!\!. </math> Here the symbol <math>\pm</math> means that each coordinate is either equal to <math>1/2</math> or to <math>-1/2</math>. This unit hypercube is also the cartesian product <math>[-1/2,1/2]^n</math>. Any unit hypercube has an edge length of <math>1</math> and an <math>n</math>-dimensional volume of <math>1</math>. The <math>n</math>-dimensional hypercube obtained as the convex hull of the points with coordinates <math>(\pm 1, \pm 1, \cdots, \pm 1)</math> or, equivalently as the Cartesian product <math>[-1,1]^n</math> is also often considered due to the simpler form of its vertex coordinates. Its edge length is <math>2</math>, and its <math>n</math>-dimensional volume is <math>2^n</math>. == Faces == Every hypercube admits, as its faces, hypercubes of a lower dimension contained in its boundary. A hypercube of dimension <math>n</math> admits <math>2n</math> facets, or faces of dimension <math>n-1</math>: a (<math>1</math>-dimensional) line segment has <math>2</math> endpoints; a (<math>2</math>-dimensional) square has <math>4</math> sides or edges; a <math>3</math>-dimensional cube has <math>6</math> square faces; a (<math>4</math>-dimensional) tesseract has <math>8</math> three-dimensional cubes as its facets. The number of vertices of a hypercube of dimension <math>n</math> is <math>2^n</math> (a usual, <math>3</math>-dimensional cube has <math>2^3=8</math> vertices, for instance).<ref>{{Cite journal |author1=Miroslav Vořechovský |author2=Jan Mašek |author3=Jan Eliáš |title=Distance-based optimal sampling in a hypercube: Analogies to N-body systems |journal=Advances in Engineering Software |volume=137 |date=November 2019 |at=102709 |issn=0965-9978 |doi=10.1016/j.advengsoft.2019.102709}}</ref> The number of the <math>m</math>-dimensional hypercubes (just referred to as <math>m</math>-cubes from here on) contained in the boundary of an <math>n</math>-cube is :<math> E_{m,n} = 2^{n-m}{n \choose m} </math>,{{sfn|Coxeter|1973|p=122|loc=§7·25}} where <math>{n \choose m}=\frac{n!}{m!\,(n-m)!}</math> and <math>n!</math> denotes the [[factorial]] of <math>n</math>. For example, the boundary of a <math>4</math>-cube (<math>n=4</math>) contains <math>8</math> cubes (<math>3</math>-cubes), <math>24</math> squares (<math>2</math>-cubes), <math>32</math> line segments (<math>1</math>-cubes) and <math>16</math> vertices (<math>0</math>-cubes). This identity can be proven by a simple combinatorial argument: for each of the <math>2^n</math> vertices of the hypercube, there are <math>\tbinom n m</math> ways to choose a collection of <math>m</math> edges incident to that vertex. Each of these collections defines one of the <math>m</math>-dimensional faces incident to the considered vertex. Doing this for all the vertices of the hypercube, each of the <math>m</math>-dimensional faces of the hypercube is counted <math>2^m</math> times since it has that many vertices, and we need to divide <math>2^n\tbinom n m</math> by this number. The number of facets of the hypercube can be used to compute the <math>(n-1)</math>-dimensional volume of its boundary: that volume is <math>2n</math> times the volume of a <math>(n-1)</math>-dimensional hypercube; that is, <math>2ns^{n-1}</math> where <math>s</math> is the length of the edges of the hypercube. These numbers can also be generated by the linear [[recurrence relation]]. :<math>E_{m,n} = 2E_{m,n-1} + E_{m-1,n-1} \!</math>, with <math>E_{0,0}= 1</math>, and <math>E_{m,n}=0</math> when <math>n < m</math>, <math>n < 0</math>, or <math>m < 0</math>. For example, extending a square via its 4 vertices adds one extra line segment (edge) per vertex. Adding the opposite square to form a cube provides <math>E_{1,3}=12</math> line segments. The extended [[f-vector]] for an ''n''-cube can also be computed by expanding <math>(2x+1)^n</math> (concisely, (2,1)<sup>''n''</sup>), and reading off the coefficients of the resulting [[Polynomial#Multiplication|polynomial]]. For example, the elements of a tesseract is (2,1)<sup>4</sup> = (4,4,1)<sup>2</sup> = (16,32,24,8,1). {| class="wikitable" |+ Number <math>E_{m,n}</math> of <math>m</math>-dimensional faces of a <math>n</math>-dimensional hypercube {{OEIS|A038207}} |- ! || || || m|| 0|| 1|| 2|| 3|| 4|| 5|| 6|| 7|| 8|| 9|| 10 |- ! [[polytope|''n'']] ! ''n''-cube ! Names ![[Schläfli symbol|Schläfli]]<br>[[Coxeter–Dynkin diagram|Coxeter]]<br> ![[Vertex (geometry)|Vertex]]<br>0-face<br>|| [[Edge (geometry)|Edge]]<br>1-face<br>|| [[Face (geometry)|Face]]<br>2-face<br>|| [[Cell (geometry)|Cell]]<br>3-face<br>|| <br>4-face<br>||<br> 5-face<br>|| <br>6-face<br>|| <br>7-face<br>||<br> 8-face<br>|| <br>9-face<br>||<br>10-face<br> |- ! [[0-polytope|0]] ! 0-cube | Point<br>'''Monon'''<br> | ( )<br>{{CDD|node}}<br> | 1|| ||rowspan=2| ||rowspan=3| ||rowspan=4| ||rowspan=5| ||rowspan=6| ||rowspan=7| ||rowspan=8| ||rowspan=9| ||rowspan=10| |- ! [[1-polytope|1]] ! 1-cube | [[Line segment]]<br>'''Dion'''<ref>Johnson, Norman W.; ''Geometries and Transformations'', Cambridge University Press, 2018, p.224.</ref><br> |{}<br>{{CDD|node_1}}<br> | 2|| 1 |- ! [[2-polytope|2]] ! 2-cube | [[Square (geometry)|Square]]<br>'''Tetragon'''<br> |{4}<br>{{CDD|node_1|4|node}}<br> | 4|| 4|| 1 |- ! [[3-polytope|3]] ! 3-cube | [[Cube]]<br>'''Hexahedron'''<br> |{4,3}<br>{{CDD|node_1|4|node|3|node}}<br> | 8|| 12|| 6|| 1 |- ! [[4-polytope|4]] ! 4-cube | [[Tesseract]]<br>'''Octachoron'''<br> |{4,3,3}<br>{{CDD|node_1|4|node|3|node|3|node}}<br> | 16|| 32|| 24|| 8|| 1 |- ! [[5-polytope|5]] ! [[5-cube]] | Penteract<br>'''Deca-5-tope'''<br> |{4,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node}}<br> | 32|| 80|| 80|| 40|| 10|| 1 |- ! [[6-polytope|6]] ! [[6-cube]] | Hexeract<br>'''Dodeca-6-tope'''<br> |{4,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node}}<br> | 64|| 192|| 240|| 160|| 60|| 12|| 1 |- ! [[7-polytope|7]] ! [[7-cube]] | Hepteract<br>'''Tetradeca-7-tope'''<br> |{4,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<br> | 128|| 448|| 672|| 560|| 280|| 84|| 14|| 1 |- ! [[8-polytope|8]] ! [[8-cube]] | Octeract<br>'''Hexadeca-8-tope'''<br> |{4,3,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<br> | 256|| 1024|| 1792|| 1792|| 1120|| 448|| 112|| 16|| 1 |- ! [[9-polytope|9]] ! [[9-cube]] | Enneract<br>'''Octadeca-9-tope'''<br> |{4,3,3,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}<br> | 512|| 2304|| 4608|| 5376|| 4032|| 2016|| 672|| 144|| 18|| 1 |- ! [[10-polytope|10]] ! [[10-cube]] | Dekeract<br>'''Icosa-10-tope'''<br> |{4,3,3,3,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}<br> |1024||5120||11520||15360||13440||8064||3360||960||180||20||1 |} === Graphs === An '''''n''-cube''' can be projected inside a regular 2''n''-gonal polygon by a [[Petrie polygon#The hypercube and orthoplex families|skew orthogonal projection]], shown here from the line segment to the 16-cube. {| class="wikitable skin-invert-image" |+ [[Petrie polygon]] [[Orthographic projection]]s |- align=center valign=bottom |[[File:1-simplex t0.svg|160px]]<br />[[Line segment]] |[[File:2-cube.svg|160px]]<br />[[Square (geometry)|Square]] |[[File:3-cube graph.svg|160px]]<br />[[Cube]] |[[File:4-cube graph.svg|160px]]<br />[[Tesseract]] |- align=center |[[File:5-cube graph.svg|160px]]<br />[[5-cube]] |[[File:6-cube graph.svg|160px]]<br />[[6-cube]] |[[File:7-cube graph.svg|160px]]<br />[[7-cube]] |[[File:8-cube.svg|160px]]<br />[[8-cube]] |- align=center |[[File:9-cube.svg|160px]]<br />[[9-cube]] |[[File:10-cube.svg|160px]]<br />[[10-cube]] |[[File:11-cube.svg|160px]]<br />[[11-cube]] |[[File:12-cube.svg|160px]]<br />[[12-cube]] |- align=center |[[File:13-cube.svg|160px]]<br />[[13-cube]] |[[File:14-cube.svg|160px]]<br />[[14-cube]] |[[File:15-cube.svg|160px]]<br />[[15-cube]] |<!--[[File:16-cube t0 A15.svg|160px]]<br />[[16-cube]] - this is not in the B16 Coxeter plane--> |} == Related families of polytopes == The hypercubes are one of the few families of [[regular polytope]]s that are represented in any number of dimensions.<ref>{{cite journal|url=https://dx.doi.org/10.1016/0166-218X%2892%2990121-P|title=Transmitting in the n-dimensional cube|author1=Noga Alon|journal=Discrete Applied Mathematics |date=1992 |volume=37-38 |pages=9–11 |doi=10.1016/0166-218X(92)90121-P }}</ref> The '''hypercube (offset)''' family is one of three [[regular polytope]] families, labeled by [[Coxeter]] as ''γ<sub>n</sub>''. The other two are the hypercube dual family, the '''[[cross-polytope]]s''', labeled as ''β<sub>n,</sub>'' and the '''[[simplex|simplices]]''', labeled as ''α<sub>n</sub>''. A fourth family, the [[hypercubic honeycomb|infinite tessellations of hypercubes]], is labeled as ''δ<sub>n</sub>''. Another related family of semiregular and [[uniform polytope]]s is the '''[[demihypercube]]s''', which are constructed from hypercubes with alternate vertices deleted and [[simplex]] facets added in the gaps, labeled as ''hγ<sub>n</sub>''. ''n''-cubes can be combined with their duals (the [[cross-polytope]]s) to form compound polytopes: * In two dimensions, we obtain the [[octagram]]mic star figure {8/2}, * In three dimensions we obtain the [[compound of cube and octahedron]], * In four dimensions we obtain the compound of tesseract and 16-cell. == {{anchor|Relation to n-simplices}}Relation to (''n''−1)-simplices == The graph of the ''n''-hypercube's edges is [[isomorphism|isomorphic]] to the [[Hasse diagram]] of the (''n''−1)-[[simplex]]'s [[Convex polytope#The face lattice|face lattice]]. This can be seen by orienting the ''n''-hypercube so that two opposite vertices lie vertically, corresponding to the (''n''−1)-simplex itself and the null polytope, respectively. Each vertex connected to the top vertex then uniquely maps to one of the (''n''−1)-simplex's facets (''n''−2 faces), and each vertex connected to those vertices maps to one of the simplex's ''n''−3 faces, and so forth, and the vertices connected to the bottom vertex map to the simplex's vertices. This relation may be used to generate the face lattice of an (''n''−1)-simplex efficiently, since face lattice enumeration algorithms applicable to general polytopes are more computationally expensive. == Generalized hypercubes == Regular [[Complex polytope#Regular complex polytopes|complex polytopes]] can be defined in [[Complex number|complex]] [[Hilbert space]] called ''generalized hypercubes'', γ{{supsub|''p''|''n''}} = <sub>''p''</sub>{4}<sub>2</sub>{3}...<sub>2</sub>{3}<sub>2</sub>, or {{CDD|pnode_1|4|node|3}}..{{CDD|3|node|3|node}}. Real solutions exist with ''p'' = 2, i.e. γ{{supsub|2|''n''}} = γ<sub>''n''</sub> = <sub>2</sub>{4}<sub>2</sub>{3}...<sub>2</sub>{3}<sub>2</sub> = {4,3,..,3}. For ''p'' > 2, they exist in <math>\mathbb{C}^n</math>. The facets are generalized (''n''−1)-cube and the [[vertex figure]] are regular [[simplex]]es. The [[regular polygon]] perimeter seen in these orthogonal projections is called a [[Petrie polygon]]. The generalized squares (''n'' = 2) are shown with edges outlined as red and blue alternating color ''p''-edges, while the higher ''n''-cubes are drawn with black outlined ''p''-edges. The number of ''m''-face elements in a ''p''-generalized ''n''-cube are: <math>p^{n-m}{n \choose m}</math>. This is ''p''<sup>''n''</sup> vertices and ''pn'' facets.<ref>{{citation | last = Coxeter | first = H. S. M. | mr = 0370328 | page = 180 | publisher = [[Cambridge University Press]] | location = London & New York | title = Regular complex polytopes | year = 1974}}.</ref> {| class=wikitable |+ Generalized hypercubes ! || ''p''=2 || ||''p''=3 ||''p''=4||''p''=5||''p''=6||''p''=7||''p''=8 |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^2</math> |[[File:2-generalized-2-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|2}} = [[square|{4}]] = {{CDD|node_1|4|node}}<BR>4 vertices !valign=middle|<math>\mathbb{C}^2</math> |[[File:3-generalized-2-cube skew.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|2}} = {{CDD|3node_1|4|node}}<BR>9 vertices |[[File:4-generalized-2-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|4|2}} = {{CDD|4node_1|4|node}}<BR>16 vertices |[[File:5-generalized-2-cube skew.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|5|2}} = {{CDD|5node_1|4|node}}<BR>25 vertices |[[File:6-generalized-2-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|6|2}} = {{CDD|6node_1|4|node}}<BR>36 vertices |[[File:7-generalized-2-cube skew.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|7|2}} = {{CDD|7node_1|4|node}}<BR>49 vertices |[[File:8-generalized-2-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|8|2}} = {{CDD|8node_1|4|node}}<BR>64 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^3</math> |[[File:2-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|3}} = [[cube|{4,3}]] = {{CDD|node_1|4|node|3|node}}<BR>8 vertices !valign=middle|<math>\mathbb{C}^3</math> |[[File:3-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|3}} = {{CDD|3node_1|4|node|3|node}}<BR>27 vertices |[[File:4-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|4|3}} = {{CDD|4node_1|4|node|3|node}}<BR>64 vertices |[[File:5-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|5|3}} = {{CDD|5node_1|4|node|3|node}}<BR>125 vertices |[[File:6-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|6|3}} = {{CDD|6node_1|4|node|3|node}}<BR>216 vertices |[[File:7-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|7|3}} = {{CDD|7node_1|4|node|3|node}}<BR>343 vertices |[[File:8-generalized-3-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|8|3}} = {{CDD|8node_1|4|node|3|node}}<BR>512 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^4</math> |[[File:2-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|4}} = [[tesseract|{4,3,3}]]<BR>= {{CDD|node_1|4|node|3|node|3|node}}<BR>16 vertices !valign=middle|<math>\mathbb{C}^4</math> |[[File:3-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|4}} = {{CDD|3node_1|4|node|3|node|3|node}}<BR>81 vertices |[[File:4-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|4|4}} = {{CDD|4node_1|4|node|3|node|3|node}}<BR>256 vertices |[[File:5-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|5|4}} = {{CDD|5node_1|4|node|3|node|3|node}}<BR>625 vertices |[[File:6-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|6|4}} = {{CDD|6node_1|4|node|3|node|3|node}}<BR>1296 vertices |[[File:7-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|7|4}} = {{CDD|7node_1|4|node|3|node|3|node}}<BR>2401 vertices |[[File:8-generalized-4-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|8|4}} = {{CDD|8node_1|4|node|3|node|3|node}}<BR>4096 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^5</math> |[[File:2-generalized-5-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|5}} = [[5-cube|{4,3,3,3}]]<BR>= {{CDD|node_1|4|node|3|node|3|node|3|node}}<BR>32 vertices !valign=middle|<math>\mathbb{C}^5</math> |[[File:3-generalized-5-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|5}} = {{CDD|3node_1|4|node|3|node|3|node|3|node}}<BR>243 vertices |[[File:4-generalized-5-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|4|5}} = {{CDD|4node_1|4|node|3|node|3|node|3|node}}<BR>1024 vertices |[[File:5-generalized-5-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|5|5}} = {{CDD|5node_1|4|node|3|node|3|node|3|node}}<BR>3125 vertices |[[File:6-generalized-5-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|6|5}} = {{CDD|6node_1|4|node|3|node|3|node|3|node}}<BR>7776 vertices |γ{{supsub|7|5}} = {{CDD|7node_1|4|node|3|node|3|node|3|node}}<BR>16,807 vertices |γ{{supsub|8|5}} = {{CDD|8node_1|4|node|3|node|3|node|3|node}}<BR>32,768 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^6</math> |[[File:2-generalized-6-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|6}} = [[6-cube|{4,3,3,3,3}]]<BR>= {{CDD|node_1|4|node|3|node|3|node|3|node|3|node}}<BR>64 vertices !valign=middle|<math>\mathbb{C}^6</math> |[[File:3-generalized-6-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|6}} = {{CDD|3node_1|4|node|3|node|3|node|3|node|3|node}}<BR>729 vertices |[[File:4-generalized-6-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|4|6}} = {{CDD|4node_1|4|node|3|node|3|node|3|node|3|node}}<BR>4096 vertices |[[File:5-generalized-6-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|5|6}} = {{CDD|5node_1|4|node|3|node|3|node|3|node|3|node}}<BR>15,625 vertices |γ{{supsub|6|6}} = {{CDD|6node_1|4|node|3|node|3|node|3|node|3|node}}<BR>46,656 vertices |γ{{supsub|7|6}} = {{CDD|7node_1|4|node|3|node|3|node|3|node|3|node}}<BR>117,649 vertices |γ{{supsub|8|6}} = {{CDD|8node_1|4|node|3|node|3|node|3|node|3|node}}<BR>262,144 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^7</math> |[[File:2-generalized-7-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|7}} = [[7-cube|{4,3,3,3,3,3}]]<BR>= {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<br>128 vertices !valign=middle|<math>\mathbb{C}^7</math> |[[File:3-generalized-7-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|7}} = {{CDD|3node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>2187 vertices |γ{{supsub|4|7}} = {{CDD|4node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>16,384 vertices |γ{{supsub|5|7}} = {{CDD|5node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>78,125 vertices |γ{{supsub|6|7}} = {{CDD|6node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>279,936 vertices |γ{{supsub|7|7}} = {{CDD|7node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>823,543 vertices |γ{{supsub|8|7}} = {{CDD|8node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<BR>2,097,152 vertices |- align=center valign=bottom !valign=middle|<math>\mathbb{R}^8</math> |[[File:2-generalized-8-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|2|8}} = [[8-cube|{4,3,3,3,3,3,3}]]<BR>= {{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>256 vertices !valign=middle|<math>\mathbb{C}^8</math> |[[File:3-generalized-8-cube.svg|class=skin-invert-image|100px]]<BR>γ{{supsub|3|8}} = {{CDD|3node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>6561 vertices |γ{{supsub|4|8}} = {{CDD|4node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>65,536 vertices |γ{{supsub|5|8}} = {{CDD|5node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>390,625 vertices |γ{{supsub|6|8}} = {{CDD|6node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>1,679,616 vertices |γ{{supsub|7|8}} = {{CDD|7node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>5,764,801 vertices |γ{{supsub|8|8}} = {{CDD|8node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<BR>16,777,216 vertices |} == Relation to exponentiation == Any positive integer raised to another positive integer power will yield a third integer, with this third integer being a specific type of [[figurate number]] corresponding to an ''n''-cube with a number of dimensions corresponding to the exponential. For example, the exponent 2 will yield a [[square number]] or "perfect square", which can be arranged into a square shape with a side length corresponding to that of the base. Similarly, the exponent 3 will yield [[Cube (algebra)#In integers|a perfect cube]], an integer which can be arranged into a cube shape with a side length of the base. As a result, the act of raising a number to 2 or 3 is more commonly referred to as "[[Square (algebra)|squaring]]" and "cubing", respectively. However, the names of higher-order hypercubes do not appear to be in common use for higher powers. == See also == {{Portal|Mathematics}} * [[Multiple instruction, multiple data#Hypercube interconnection network|Hypercube interconnection network]] of computer architecture * [[Hyperoctahedral group]], the symmetry group of the hypercube * [[Hypersphere]] * [[Simplex]] * [[Parallelohedron#Parallelotope|Parallelotope]] * ''[[Crucifixion (Corpus Hypercubus)]]'', a painting by Salvador Dalí featuring an unfolded 4-cube == Notes == {{reflist}} == References == * {{cite journal|author-link=Jonathan Bowen |last=Bowen |first=J. P. | title=Hypercube | journal=[[Practical Computing]] | volume=5 | issue=4 | pages=97–99 | date=April 1982 |url=http://www.jpbowen.com/publications/ndcubes.html |archive-url=https://web.archive.org/web/20080630081518/http://www.jpbowen.com/publications/ndcubes.html |url-status=dead |archive-date=2008-06-30 | access-date=June 30, 2008 }} * {{cite book |author-link = Harold Scott MacDonald Coxeter |last = Coxeter |first = H. S. M. |title = [[Regular Polytopes (book)|Regular Polytopes]] |edition = 3rd |publisher = [[Dover Publications|Dover]] |year = 1973 |pages = [https://archive.org/details/regularpolytopes0000coxe/page/122 122-123] |chapter= §7.2. see illustration Fig. 7-2c |isbn = 0-486-61480-8 }} p. 296, Table I (iii): Regular Polytopes, three regular polytopes in ''n'' dimensions (''n'' ≥ 5) * {{cite book |first = Frederick J. |last = Hill |author2 = Gerald R. Peterson |title = Introduction to Switching Theory and Logical Design: Second Edition |year = 1974 |publisher = [[John Wiley & Sons]] |place = New York |isbn = 0-471-39882-9 }} Cf Chapter 7.1 "Cubical Representation of Boolean Functions" wherein the notion of "hypercube" is introduced as a means of demonstrating a distance-1 code ([[Gray code]]) as the vertices of a hypercube, and then the hypercube with its vertices so labelled is squashed into two dimensions to form either a [[Veitch diagram]] or [[Karnaugh map]]. == External links == {{Commons category|Hypercubes}} * {{MathWorld|title=Hypercube|urlname=Hypercube}} * {{MathWorld|title=Hypercube graphs|urlname=HypercubeGraph}} * ''[http://demonstrations.wolfram.com/RotatingAHypercube/ Rotating a Hypercube]'' by Enrique Zeleny, [[Wolfram Demonstrations Project]]. * [https://web.archive.org/web/20130326090312/http://www.cs.sjsu.edu/~rucker/hypercube.htm Rudy Rucker and Farideh Dormishian's Hypercube Downloads] * [https://oeis.org/A001787 A001787 Number of edges in an n-dimensional hypercube.] at [[OEIS]] {{Dimension topics}} {{Polytopes}} [[Category:Regular polytopes]] [[Category:Cubes]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Anchor
(
edit
)
Template:CDD
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Commons category
(
edit
)
Template:Dimension topics
(
edit
)
Template:MathWorld
(
edit
)
Template:Multiple image
(
edit
)
Template:Nowrap
(
edit
)
Template:OEIS
(
edit
)
Template:Other uses
(
edit
)
Template:Polytopes
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Supsub
(
edit
)