Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hyperfactorial
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Number computed as a product of powers}} {{Use dmy dates|cs1-dates=ly|date=December 2021}} {{Use list-defined references|date=December 2021}} In [[mathematics]], and more specifically [[number theory]], the '''hyperfactorial''' of a positive [[integer]] <math>n</math> is the product of the numbers of the form <math>x^x</math> from <math>1^1</math> to {{nowrap|<math>n^n</math>.}} ==Definition== The '''hyperfactorial''' of a positive integer <math>n</math> is the product of the numbers <math>1^1, 2^2, \dots, n^n</math>. That is,{{r|oeis|summability}} <math display=block> H(n) = 1^1\cdot 2^2\cdot \cdots n^n = \prod_{i=1}^{n} i^i = n^n H(n-1).</math> Following the usual convention for the [[empty product]], the hyperfactorial of 0 is 1. The [[integer sequence|sequence]] of hyperfactorials, beginning with <math>H(0)=1</math>, is:{{r|oeis}} {{bi|left=1.6|1, 1, 4, 108, 27648, 86400000, 4031078400000, 3319766398771200000, ... {{OEIS|A002109}}}} ==Interpolation and approximation== The hyperfactorials were studied beginning in the 19th century by [[Hermann Kinkelin]]{{r|kinkelin|wilson}} and [[James Whitbread Lee Glaisher]].{{r|glaisher|wilson}} As Kinkelin showed, just as the [[factorial]]s can be [[continuous function|continuously]] interpolated by the [[gamma function]], the hyperfactorials can be continuously interpolated by the [[K-function]].{{r|kinkelin}} Glaisher provided an [[asymptotic analysis|asymptotic]] formula for the hyperfactorials, analogous to [[Stirling's formula]] for the factorials: <math display=block>H(n) = An^{(6n^2+6n+1)/12}e^{-n^2/4}\left(1+\frac{1}{720n^2}-\frac{1433}{7257600n^4}+\cdots\right)\!,</math> where <math>A\approx 1.28243</math> is the [[Glaisher–Kinkelin constant]].{{r|summability|glaisher}} ==Other properties== According to an analogue of [[Wilson's theorem]] on the behavior of factorials [[modular arithmetic|modulo]] [[prime number|prime]] numbers, when <math>p</math> is an [[parity (mathematics)|odd]] prime number <math display=block>H(p-1)\equiv(-1)^{(p-1)/2}(p-1)!!\pmod{p},</math> where <math>!!</math> is the notation for the [[double factorial]].{{r|wilson}} The hyperfactorials give the sequence of [[discriminant]]s of [[Hermite polynomials]] in their probabilistic formulation.{{r|oeis}} ==References== {{reflist|refs= <ref name=oeis>{{cite OEIS|1=A002109|2=Hyperfactorials: Product_{k = 1..n} k^k|mode=cs2}}</ref> <ref name=glaisher>{{citation | last = Glaisher | first = J. W. L. | author-link = James Whitbread Lee Glaisher | journal = [[Messenger of Mathematics]] | pages = 43–47 | title = On the product {{math|1<sup>1</sup>.2<sup>2</sup>.3<sup>3</sup>... ''n''<sup>''n''</sup>}} | url = https://archive.org/details/messengermathem01glaigoog/page/n56 | volume = 7 | year = 1877}}</ref> <ref name=kinkelin>{{citation | last = Kinkelin | first = H. | author-link = Hermann Kinkelin | doi = 10.1515/crll.1860.57.122 | journal = [[Crelle's Journal|Journal für die reine und angewandte Mathematik]] | language = de | pages = 122–138 | title = Ueber eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechung | trans-title = On a transcendental variation of the gamma function and its application to the integral calculus | volume = 1860 | year = 1860| issue = 57 | s2cid = 120627417 }}</ref> <ref name=summability>{{citation | last = Alabdulmohsin | first = Ibrahim M. | doi = 10.1007/978-3-319-74648-7 | isbn = 978-3-319-74647-0 | location = Cham | mr = 3752675 | pages = 5–6 | publisher = Springer | title = Summability Calculus: A Comprehensive Theory of Fractional Finite Sums | year = 2018| s2cid = 119580816 }}</ref> <ref name=wilson>{{citation | last1 = Aebi | first1 = Christian | last2 = Cairns | first2 = Grant | doi = 10.4169/amer.math.monthly.122.5.433 | issue = 5 | journal = [[The American Mathematical Monthly]] | jstor = 10.4169/amer.math.monthly.122.5.433 | mr = 3352802 | pages = 433–443 | title = Generalizations of Wilson's theorem for double-, hyper-, sub- and superfactorials | volume = 122 | year = 2015| s2cid = 207521192 }}</ref> }} ==External links== *{{MathWorld|id=Hyperfactorial|title=Hyperfactorial|mode=cs2}} [[Category:Integer sequences]] [[Category:Factorial and binomial topics]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Bi
(
edit
)
Template:MathWorld
(
edit
)
Template:Nowrap
(
edit
)
Template:R
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Use dmy dates
(
edit
)
Template:Use list-defined references
(
edit
)