Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hypernucleus
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Nucleus which contains at least one hyperon}} A '''hypernucleus''' is similar to a conventional [[atomic nucleus]], but contains at least one [[hyperon]] in addition to the normal [[proton]]s and [[neutron]]s. Hyperons are a category of [[baryon]] particles that carry non-zero [[strangeness]] quantum number, which is conserved by the [[strong interaction|strong]] and [[electromagnetic interaction]]s. A variety of reactions give access to depositing one or more units of strangeness in a nucleus. Hypernuclei containing the lightest hyperon, the [[lambda baryon|lambda]] (Λ), tend to be more tightly bound than normal nuclei, though they can decay via the weak force with a mean lifetime of around {{val|200|ul=ps}}. [[Sigma baryon|Sigma]] (Σ) hypernuclei have been sought, as have doubly-strange nuclei containing [[xi baryon]]s (Ξ) or two Λ's. == Nomenclature == Hypernuclei are named in terms of their [[atomic number]] and [[baryon number]], as in normal nuclei, plus the hyperon(s) which are listed in a left subscript of the symbol, with the caveat that atomic number is interpreted as the total charge of the hypernucleus, including charged hyperons such as the xi minus (Ξ<sup>−</sup>) as well as protons. For example, the hypernucleus {{PhysicsParticle|[[Oxygen|O]]|TL=16|BL=Λ}} contains 8 protons, 7 neutrons, and one Λ (which carries no charge).{{sfn|Gal|Hungerford|Millener|2016|p=2}} == History == The first was discovered by [[Marian Danysz]] and [[Jerzy Pniewski]] in 1952 using a [[nuclear emulsion]] plate exposed to [[cosmic ray]]s, based on their energetic but delayed decay. This event was inferred to be due to a nuclear fragment containing a Λ baryon.<ref>{{cite journal |last1=Danysz |first1=M. |last2=Pniewski |first2=J. |title=Delayed disintegration of a heavy nuclear fragment: I |journal=The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science |date=March 1953 |volume=44 |issue=350 |pages=348–350 |doi=10.1080/14786440308520318}}</ref> Experiments until the 1970s would continue to study hypernuclei produced in emulsions using cosmic rays, and later using [[pion]] (π) and [[kaon]] (K) beams from [[particle accelerator]]s.{{sfn|Gal|Hungerford|Millener|2016|p=2}} Since the 1980s, more efficient production methods using pion and kaon beams have allowed further investigation at various accelerator facilities, including [[CERN]], [[Brookhaven National Laboratory]], [[KEK]], [[DAφNE]], and [[JPARC]].{{sfn|Gal|Hungerford|Millener|2016|p=4}}{{sfn|Tolos|Fabbietti|2020|p=29}} In the 2010s, [[heavy ion]] experiments such as [[ALICE experiment|ALICE]] and [[STAR experiment|STAR]] first allowed the production and measurement of light hypernuclei formed through [[hadronization]] from [[quark–gluon plasma]].{{sfn|Tolos|Fabbietti|2020|pp=53–54}} == Properties == Hypernuclear physics differs from that of normal nuclei because a hyperon is distinguishable from the four nucleon [[Spin (physics)|spin]] and [[isospin]]. That is, a single hyperon is not restricted by the [[Pauli exclusion principle]], and can sink to the lowest energy level.<ref name="Feliciello"/> As such, hypernuclei are often smaller and more tightly bound than normal nuclei;<ref name=jpg08> {{cite journal |author=C. Samanta, P. Roy Chowdhury and D.N.Basu |date=2008 |title=Lambda hyperonic effect on the normal driplines |journal=[[Journal of Physics G]] |volume=35 |pages=065101–065110 |doi=10.1088/0954-3899/35/6/065101 |bibcode = 2008JPhG...35f5101S |issue=6 |arxiv = 0802.3172 |s2cid=118482655 }}</ref> for example, the [[lithium]] hypernucleus {{PhysicsParticle|Li|TL=7|BL=Λ}} is 19% smaller than the normal nucleus <sup>6</sup>Li.<ref>{{cite magazine |last=Brumfiel |first=Geoff |title=The Incredible Shrinking Nucleus |magazine=[[Physical Review Focus]] |volume=7 |issue=11 |date=1 March 2001 |url=http://physics.aps.org/story/v7/st11}}</ref><ref>{{cite journal |last1=Tanida |first1=K. |last2=Tamura |first2=H. |last3=Abe |first3=D. |last4=Akikawa |first4=H. |last5=Araki |first5=K. |last6=Bhang |first6=H. |last7=Endo |first7=T. |last8=Fujii |first8=Y. |last9=Fukuda |first9=T. |last10=Hashimoto |first10=O. |last11=Imai |first11=K. |last12=Hotchi |first12=H. |last13=Kakiguchi |first13=Y. |last14=Kim |first14=J. H. |last15=Kim |first15=Y. D. |last16=Miyoshi |first16=T. |last17=Murakami |first17=T. |last18=Nagae |first18=T. |last19=Noumi |first19=H. |last20=Outa |first20=H. |last21=Ozawa |first21=K. |last22=Saito |first22=T. |last23=Sasao |first23=J. |last24=Sato |first24=Y. |last25=Satoh |first25=S. |last26=Sawafta |first26=R. I. |last27=Sekimoto |first27=M. |last28=Takahashi |first28=T. |last29=Tang |first29=L. |last30=Xia |first30=H. H. |last31=Zhou |first31=S. H. |last32=Zhu |first32=L. H. |title=Measurement of the B(E2) of <math>^{7}_\Lambda\mathrm{Li}</math> and Shrinkage of the Hypernuclear Size |journal=Physical Review Letters |date=5 March 2001 |volume=86 |issue=10 |pages=1982–1985 |doi=10.1103/PhysRevLett.86.1982|pmid=11289835 }}</ref> However, the hyperons can decay via the [[weak force]]; the mean lifetime of a free Λ is {{val|263|2|ul=ps}}, and that of a Λ hypernucleus is usually slightly shorter.{{sfn|Gal|Hungerford|Millener|2016|p=18}} A generalized mass formula developed for both the non-strange normal nuclei and strange hypernuclei can estimate masses of hypernuclei containing Λ, ΛΛ, Σ, and Ξ hyperon(s).<ref name=WS06>{{cite book |author=C. Samanta |date=2006 |chapter=Mass formula from normal to hypernuclei |editor1=S. Stoica |editor2=L. Trache |editor3=R.E. Tribble |chapter-url=http://www.worldscibooks.com/physics/6222.html |title=Proceedings of the Carpathian Summer School of Physics 2005 |pages=29 |publisher=[[World Scientific]] |isbn=978-981-270-007-0 }}</ref><ref name=jpg06> {{cite journal |author=C. Samanta, P. Roy Chowdhury, D.N.Basu |date=2006 |journal=[[Journal of Physics G]] |volume=32 |pages=363–373 |title=Generalized mass formula for non-strange and hyper nuclei with SU(6) symmetry breaking |doi=10.1088/0954-3899/32/3/010 |arxiv = nucl-th/0504085 |bibcode = 2006JPhG...32..363S |issue=3 |s2cid=118870657 }}</ref> The neutron and proton [[Nuclear drip line|driplines]] for hypernuclei are predicted and existence of some exotic hypernuclei beyond the normal neutron and proton driplines are suggested.<ref name=jpg08/> This generalized mass formula was named the "Samanta formula" by Botvina and Pochodzalla and used to predict relative yields of hypernuclei in heavy-ion collisions.<ref name=bop07> {{cite journal |author1=A.S. Botvina |author2=J. Pochodzalla |date=2007 |title= Production of hypernuclei in multifragmentation of nuclear spectator matter |journal=[[Physical Review C]] |volume=76 |pages=024909–024912 |doi=10.1103/PhysRevC.76.024909 |bibcode = 2007PhRvC..76b4909B |issue=2 |arxiv = 0705.2968 |s2cid=119652113 }}</ref> == Types == === Λ hypernuclei === The simplest, and most well understood, type of hypernucleus includes only the lightest hyperon, the Λ.<ref name="Feliciello">{{cite journal |last1=Feliciello |first1=A |last2=Nagae |first2=T |title=Experimental review of hypernuclear physics: recent achievements and future perspectives |journal=Reports on Progress in Physics |date=1 September 2015 |volume=78 |issue=9 |pages=096301 |doi=10.1088/0034-4885/78/9/096301|pmid=26317857 |bibcode=2015RPPh...78i6301F |s2cid=25818699 |url=https://www.openaccessrepository.it/record/75858 |archive-url=https://web.archive.org/web/20220530112234/https://www.openaccessrepository.it/record/75858 |url-status=dead |archive-date=May 30, 2022 }}</ref> <!-- Wanted: Feynman diagrams (at the hadronic level) illustrating the dominant terms of the Λ–nucleon interaction --> While two nucleons can interact through the [[nuclear force]] mediated by a [[virtual particle|virtual]] pion, the Λ becomes a Σ baryon upon emitting a pion,{{efn|name=isospin|[[Isospin]] ({{math|''I''}}), a number describing the up and down quark content of the system, is preserved in the strong interaction. Since the isospin of a pion is 1, the Λ baryon ({{math|1=''I'' = 0}}) must become a Σ ({{math|1=''I'' = 1}}) upon emitting a pion.{{sfn|Gal|Hungerford|Millener|2016|p=20}}}} so the Λ–nucleon interaction is mediated solely by more massive mesons such as the [[eta meson|η]] and [[omega meson|ω]] mesons, or through the simultaneous exchange of two or more mesons.{{sfn|Gal|Hungerford|Millener|2016|pp=2,20–21}} This means that the Λ–nucleon interaction is weaker and has a shorter range than the standard nuclear force, and the [[potential well]] of a Λ in the nucleus is shallower than that of a nucleon;{{sfn|Gal|Hungerford|Millener|2016|p=6}} in hypernuclei, the depth of the Λ potential is approximately 30 [[MeV]].{{sfn|Tolos|Fabbietti|2020|p=50}} However, one-pion exchange in the Λ–nucleon interaction does cause quantum-mechanical mixing of the Λ and Σ baryons in hypernuclei (which does not happen in free space), especially in neutron-rich hypernuclei.{{sfn|Gal|Hungerford|Millener|2016|pp=20–21}}{{sfn|Tolos|Fabbietti|2020|p=52}}<ref>{{cite journal |last1=Umeya |first1=A. |last2=Harada |first2=T. |title=Λ–Σ coupling effect in the neutron-rich Λ hypernucleus <math>^{10}_{\Lambda}\mathrm{Li}</math> in a microscopic shell-model calculation |journal=Physical Review C |date=20 February 2009 |volume=79 |issue=2 |pages=024315 |doi=10.1103/PhysRevC.79.024315|arxiv=0810.4591|s2cid=117921775 }}</ref> Additionally, the [[three-body force]] between a Λ and two nucleons is expected to be more important than the three-body interaction in nuclei, since the Λ can exchange two pions with a virtual Σ intermediate, while the equivalent process in nucleons requires a relatively heavy [[delta baryon]] (Δ) intermediate.{{sfn|Gal|Hungerford|Millener|2016|pp=2,20–21}} Like all hyperons, Λ hypernuclei can decay through the [[weak interaction]], which changes it to a lighter baryon and emits a meson or a [[lepton]]–antilepton pair. In free space, the Λ usually decays via the weak force to a proton and a π<sup>–</sup> meson, or a neutron and a π<sup>0</sup>, with a total half-life of {{val|263|2|ul=ps}}.<ref name="PDG">{{cite web|first1=C.|last1=Amsler|collaboration=Particle Data Group|display-authors=etal|year=2008|series=Particle listings|title={{Subatomic particle|Lambda}}|publisher=Lawrence Berkeley Laboratory|url=http://pdg.lbl.gov/2008/listings/s018.pdf}}</ref> A nucleon in the hypernucleus can cause the Λ to decay via the weak force without emitting a pion; this process becomes dominant in heavy hypernuclei, due to suppression of the pion-emitting decay mode.{{sfn|Tolos|Fabbietti|2020|p=50–51}} The half-life of the Λ in a hypernucleus is considerably shorter, plateauing to about {{val|215|14|u=ps}} near {{physics particle|[[Iron|Fe]]|TL=56|BL=Λ}},<ref>{{cite journal |last1=Sato |first1=Y. |last2=Ajimura |first2=S. |last3=Aoki |first3=K. |last4=Bhang |first4=H. |last5=Hasegawa |first5=T. |last6=Hashimoto |first6=O. |last7=Hotchi |first7=H. |last8=Kim |first8=Y. D. |last9=Kishimoto |first9=T. |last10=Maeda |first10=K. |last11=Noumi |first11=H. |last12=Ohta |first12=Y. |last13=Omata |first13=K. |last14=Outa |first14=H. |last15=Park |first15=H. |last16=Sekimoto |first16=M. |last17=Shibata |first17=T. |last18=Takahashi |first18=T. |last19=Youn |first19=M. |title=Mesonic and nonmesonic weak decay widths of medium-heavy Λ hypernuclei |journal=Physical Review C |date=9 February 2005 |volume=71 |issue=2 |pages=025203 |doi=10.1103/PhysRevC.71.025203|arxiv=nucl-ex/0409007v2|bibcode=2005PhRvC..71b5203S |s2cid=119428665 }}</ref> but some empirical measurements substantially disagree with each other or with theoretical predictions.{{sfn|Gal|Hungerford|Millener|2016|pp=17–18}} ===Hypertriton=== The simplest hypernucleus is the [[hypertriton]] ({{PhysicsParticle|[[Hydrogen|H]]|TL=3|BL=Λ}}), which consists of one proton, one neutron, and one Λ hyperon. The Λ in this system is very loosely bound, having a [[separation energy]] of 130 keV and a large radius of 10.6 [[Femtometer|fm]],{{sfn|Tolos|Fabbietti|2020|p=53}} compared to about {{val|2.13|u=fm}} for the [[deuteron]].<ref>{{cite journal |last1=Tiesinga |first1=Eite |last2=Mohr |first2=Peter J. |last3=Newell |first3=David B. |last4=Taylor |first4=Barry N. |title=CODATA Recommended Values of the Fundamental Physical Constants: 2018 |journal=Journal of Physical and Chemical Reference Data |date=1 September 2021 |volume=50 |issue=3 |pages=033105 |doi=10.1063/5.0064853 |pmid=36733295 |pmc=9890581 |bibcode=2021JPCRD..50c3105T |language=en |issn=0047-2689}}</ref> This loose binding would imply a lifetime similar to a free Λ. However, the measured hypertriton lifetime averaged across all experiments (about {{val|206|15|13|u=ps}}) is substantially shorter than predicted by theory, as the non-mesonic decay mode is expected to be relatively minor; some experimental results are substantially shorter or longer than this average.{{sfn|Tolos|Fabbietti|2020|pp=52–53}}<ref>{{cite journal |author=ALICE Collaboration |title=<math>^{3}_{\Lambda}\mathrm{H}</math> and <math>\overline{^{3}_{\Lambda}\mathrm{H}}</math> lifetime measurement in Pb–Pb collisions at s NN = 5.02 TeV via two-body decay |journal=Physics Letters B |date=October 2019 |volume=797 |pages=134905 |doi=10.1016/j.physletb.2019.134905| s2cid=204776807 |doi-access=free |arxiv=1907.06906 }}</ref> === Σ hypernuclei === The existence of hypernuclei containing a Σ baryon is less clear. Several experiments in the early 1980s reported bound hypernuclear states above the Λ [[separation energy]] and presumed to contain one of the slightly heavier Σ baryons, but experiments later in the decade ruled out the existence of such states.<ref name="Feliciello"/> Results from [[exotic atoms]] containing a Σ<sup>−</sup> bound to a nucleus by the [[electromagnetic force]] have found a net repulsive Σ–nucleon interaction in medium-sized and large hypernuclei, which means that no Σ hypernuclei exist in such mass range.<ref name="Feliciello"/> However, an experiment in 1998 definitively observed the light Σ hypernucleus {{PhysicsParticle|[[Helium|He]]|TL=4|BL=Σ}}.<ref name="Feliciello"/> === ΛΛ and Ξ hypernuclei === Hypernuclei containing two Λ baryons have been made. However, such hypernuclei are much harder to produce due to containing two strange quarks and, as of 2016, only seven candidate ΛΛ hypernuclei have been observed.{{sfn|Gal|Hungerford|Millener|2016|p=41}} Like the Λ–nucleon interaction, empirical and theoretical models predict that the Λ–Λ interaction is mildly attractive.{{sfn|Tolos|Fabbietti|2020|pp=43–45,59}}<ref>{{cite journal |author=ALICE Collaboration|title=Study of the Λ–Λ interaction with femtoscopy correlations in pp and p–Pb collisions at the LHC |journal=Physics Letters B |date=10 October 2019 |volume=797 |pages=134822 |doi=10.1016/j.physletb.2019.134822 |arxiv=1905.07209 |bibcode=2019PhLB..79734822A |s2cid=161048820 |url=https://www.sciencedirect.com/science/article/pii/S0370269319305362 |language=en |issn=0370-2693}}</ref> Hypernuclei containing a Ξ baryon are known.{{citation needed|date=January 2024}} Empirical studies and theoretical models indicate that the Ξ<sup>–</sup>–proton interaction is attractive, but weaker than the Λ–nucleon interaction.{{sfn|Tolos|Fabbietti|2020|pp=43–45,59}} Like the Σ<sup>–</sup> and other negatively charged particles, the Ξ<sup>–</sup> can also form an exotic atom. When a Ξ<sup>–</sup> is bound in an exotic atom or a hypernucleus, it quickly decays to a ΛΛ hypernucleus or to two Λ hypernuclei by exchanging a strange quark with a proton, which releases about 29 MeV of energy in free space:{{efn|name=qvalue|The initial proton and Ξ<sup>–</sup> have respective masses of approximately 938.3 and 1321.7 MeV, while the outgoing Λ's are each about 1115.7 MeV;<ref>{{cite journal |last1=Workman |first1=R L |last2=Burkert |first2=V D |last3=Crede |first3=V |last4=Klempt |first4=E |last5=Thoma |first5=U |last6=Tiator |first6=L |display-authors=1|collaboration=Particle Data Group|title=Review of Particle Physics |journal=Progress of Theoretical and Experimental Physics |date=8 August 2022 |volume=2022 |issue=8 |page=083C01 |doi=10.1093/ptep/ptac097|doi-access=free |hdl=11585/900713 |hdl-access=free }}</ref> the energy that is released is equal to the amount of mass that is lost (times ''c''<sup>2</sup>).}} :Ξ<sup>−</sup> + p → Λ + Λ<ref name="JPARC E07"/>{{sfn|Gal|Hungerford|Millener|2016|pp=16,43}}{{sfn|Tolos|Fabbietti|2020|p=53}} === Ω hypernuclei === Hypernuclei containing the [[omega baryon]] (Ω) were predicted using [[lattice QCD]] in 2018; in particular, the proton–Ω and Ω–Ω [[dibaryon]]s (bound systems containing two baryons) are expected to be stable.<ref>{{cite journal |last1=Iritani |first1=Takumi |collaboration=HALQCD Collaboration |title=NΩ dibaryon from lattice QCD near the physical point |journal=Physics Letters B |date=May 2019 |volume=792 |pages=284–289 |doi=10.1016/j.physletb.2019.03.050|arxiv=1810.03416 |bibcode=2019PhLB..792..284I |s2cid=102481007 }}</ref><ref>{{cite journal |last1=Gongyo |first1=Shinya |collaboration=HALQCD Collaboration |title=Most Strange Dibaryon from Lattice QCD |journal=Physical Review Letters |date=23 May 2018 |volume=120 |issue=21 |pages=212001 |doi=10.1103/PhysRevLett.120.212001|pmid=29883161 |arxiv=1709.00654 |bibcode=2018PhRvL.120u2001G |s2cid=43958833 }}</ref> {{As of|2022}}, no such hypernuclei have been observed under any conditions, but the lightest such species could be produced in heavy-ion collisions,<ref>{{cite journal |last1=Zhang |first1=Liang |last2=Zhang |first2=Song |last3=Ma |first3=Yu-Gang |title=Production of ΩNN and ΩΩN in ultra-relativistic heavy-ion collisions |journal=The European Physical Journal C |date=May 2022 |volume=82 |issue=5 |pages=416 |doi=10.1140/epjc/s10052-022-10336-7|arxiv=2112.02766 |bibcode=2022EPJC...82..416Z |s2cid=244908731 |doi-access=free }}</ref> and measurements by the STAR experiment are consistent with the existence of the proton–Ω dibaryon.<ref>{{cite journal |author=STAR Collaboration |title=The proton–Ω correlation function in Au + Au collisions at s NN = 200 GeV |journal=Physics Letters B |date=March 2019 |volume=790 |pages=490–497 |doi=10.1016/j.physletb.2019.01.055| s2cid=127339678 |doi-access=free |hdl=11368/2940231 |hdl-access=free }}</ref> === Hypernuclei with higher strangeness === Since the Λ is electrically neutral and its nuclear force interactions are attractive, there are predicted to be arbitrarily large hypernuclei with high strangeness and small net charge, including species with no nucleons. [[nuclear binding energy|Binding energy]] per baryon in multi-strange hypernuclei can reach up to 21 MeV/''A'' under certain conditions,<ref name=jpg08/> compared to 8.80 MeV/''A'' for the ordinary nucleus [[Nickel-62|<sup>62</sup>Ni]].<ref>{{cite web |url=http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin2.html |website=hyperphysics.phy-astr.gsu.edu |title=The Most Tightly Bound Nuclei |accessdate=October 23, 2019 }}</ref> Additionally, formation of Ξ baryons should quickly become energetically favorable, unlike when there are no Λ's, because the exchange of strangeness with a nucleon would be impossible due to the Pauli exclusion principle.{{sfn|Gal|Hungerford|Millener|2016|p=43}} == Production == Several modes of production have been devised to make hypernuclei through bombardment of normal nuclei. ===Strangeness exchange and production=== One method of producing a K<sup>−</sup> meson exchanges a strange quark with a nucleon and changes it to a Λ:{{sfn|Gal|Hungerford|Millener|2016|pp=6–10}} :p + K<sup>−</sup> → Λ + π<sup>0</sup> :n + K<sup>−</sup> → Λ + π<sup>−</sup> The [[cross section (physics)|cross section]] for the formation of a hypernucleus is maximized when the momentum of the kaon beam is approximately 500 MeV/''c''.{{sfn|Tolos|Fabbietti|2020|p=49}} Several variants of this setup exist, including ones where the incident kaons are either brought to rest before colliding with a nucleus.{{sfn|Gal|Hungerford|Millener|2016|pp=6–10}} In rare cases, the incoming K<sup>−</sup> can instead produce a Ξ hypernucleus via the reaction: :p + K<sup>−</sup> → Ξ<sup>−</sup> + K<sup>+</sup>{{sfn|Gal|Hungerford|Millener|2016|p=16}} The equivalent [[strangeness production]] reaction involves a π<sup>+</sup> meson reacts with a neutron to change it to a Λ:{{sfn|Gal|Hungerford|Millener|2016|pp=10–12}} :n + π<sup>+</sup> → Λ + K<sup>+</sup> This reaction has a maximum cross section at a beam momentum of 1.05 GeV/''c'', and is the most efficient production route for Λ hypernuclei, but requires larger targets than strangeness exchange methods.{{sfn|Gal|Hungerford|Millener|2016|pp=10–12}} ===Elastic scattering=== [[Electron scattering]] off of a proton can change it to a Λ and produce a K<sup>+</sup>:{{sfn|Gal|Hungerford|Millener|2016|p=12}} :p + e<sup>−</sup> → Λ + e<sup>−</sup>{{prime}} + K<sup>+</sup> where the prime symbol denotes a scattered electron. The energy of an electron beam can be more easily tuned than pion or kaon beams, making it easier to measure and calibrate hypernuclear energy levels.{{sfn|Gal|Hungerford|Millener|2016|p=12}} Initially theoretically predicted in the 1980s, this method was first used experimentally in the early 2000s.<ref>{{cite journal |last1=Nakamura |first1=Satoshi N. |last2=Fujii |first2=Yuu |last3=Tsukada |first3=Kyo |title=Precision spectroscopy of lambda hypernuclei using electron beams |journal=Nippon Butsuri Gakkai-Shi |date=2013 |volume=68 |issue=9 |pages=584–592 |url=https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=45008322 |issn=0029-0181}}</ref> ===Hyperon capture=== The capture of a Ξ<sup>−</sup> baryon by a nucleus can make a Ξ<sup>−</sup> exotic atom or hypernucleus.<ref name="JPARC E07"/> Upon capture, it changes to a ΛΛ hypernucleus or two Λ hypernuclei.{{sfn|Gal|Hungerford|Millener|2016|p=16,43}} The disadvantage is that the Ξ<sup>−</sup> baryon is harder to make into a beam than singly strange hadrons.{{sfn|Tolos|Fabbietti|2020|p=43}} However, an experiment at [[J-PARC]] begun in 2020 will compile data on Ξ and ΛΛ hypernuclei using a similar, non-beam setup where scattered Ξ<sup>−</sup> baryons rain onto an emulsion target.<ref name="JPARC E07">{{cite journal |last1=Yoshida |first1=J. |collaboration=The J-PARC 07 Collaboration|title=J-PARC E07: Systematic Study of Double Strangeness System with Hybrid Emulsion Method |journal=Proceedings of the 3rd J-PARC Symposium (J-PARC2019) |date=25 March 2021 |volume=33 |page=011112 |doi=10.7566/jpscp.33.011112 |bibcode=2021jprc.confa1112Y |isbn=978-4-89027-146-7 |s2cid=233692057 |doi-access=free }}</ref> ===Heavy-ion collisions=== {{empty section|date=December 2022}} == Similar species == ===Kaonic nuclei=== The K<sup>–</sup> meson can orbit a nucleus in an exotic atom, such as in [[kaonic hydrogen]].<ref>{{cite journal |last1=Iwasaki |first1=M. |last2=Hayano |first2=R. S. |last3=Ito |first3=T. M. |last4=Nakamura |first4=S. N. |last5=Terada |first5=T. P. |last6=Gill |first6=D. R. |last7=Lee |first7=L. |last8=Olin |first8=A. |last9=Salomon |first9=M. |last10=Yen |first10=S. |last11=Bartlett |first11=K. |last12=Beer |first12=G. A. |last13=Mason |first13=G. |last14=Trayling |first14=G. |last15=Outa |first15=H. |last16=Taniguchi |first16=T. |last17=Yamashita |first17=Y. |last18=Seki |first18=R. |title=Observation of Kaonic Hydrogen K α X Rays |journal=Physical Review Letters |date=21 April 1997 |volume=78 |issue=16 |pages=3067–3069 |doi=10.1103/PhysRevLett.78.3067|bibcode=1997PhRvL..78.3067I }}</ref> Although the K<sup>–</sup>-proton strong interaction in kaonic hydrogen is repulsive,<ref>{{cite journal |last1=Bazzi |first1=M. |last2=Beer |first2=G. |last3=Bombelli |first3=L. |last4=Bragadireanu |first4=A.M. |last5=Cargnelli |first5=M. |last6=Corradi |first6=G. |last7=Curceanu (Petrascu) |first7=C. |last8=dʼUffizi |first8=A. |last9=Fiorini |first9=C. |last10=Frizzi |first10=T. |last11=Ghio |first11=F. |last12=Girolami |first12=B. |last13=Guaraldo |first13=C. |last14=Hayano |first14=R.S. |last15=Iliescu |first15=M. |last16=Ishiwatari |first16=T. |last17=Iwasaki |first17=M. |last18=Kienle |first18=P. |last19=Levi Sandri |first19=P. |last20=Longoni |first20=A. |last21=Lucherini |first21=V. |last22=Marton |first22=J. |last23=Okada |first23=S. |last24=Pietreanu |first24=D. |last25=Ponta |first25=T. |last26=Rizzo |first26=A. |last27=Romero Vidal |first27=A. |last28=Scordo |first28=A. |last29=Shi |first29=H. |last30=Sirghi |first30=D.L. |last31=Sirghi |first31=F. |last32=Tatsuno |first32=H. |last33=Tudorache |first33=A. |last34=Tudorache |first34=V. |last35=Vazquez Doce |first35=O. |last36=Widmann |first36=E. |last37=Zmeskal |first37=J. |title=A new measurement of kaonic hydrogen X-rays |journal=Physics Letters B |date=October 2011 |volume=704 |issue=3 |pages=113–117 |doi=10.1016/j.physletb.2011.09.011|arxiv=1105.3090|bibcode=2011PhLB..704..113S |s2cid=118473154 }}</ref> the K<sup>–</sup>–nucleus interaction is attractive for larger systems, so this meson can enter a strongly bound state closely related to a hypernucleus;<ref name="Feliciello"/> in particular, the K<sup>–</sup>–proton–proton system is experimentally known and more tightly bound than a normal nucleus.<ref>{{cite journal |last1=Sakuma |first1=F. |last2=Ajimura |first2=S. |last3=Akaishi |first3=T. |last4=Asano |first4=H. |last5=Bazzi |first5=M. |last6=Beer |first6=G. |last7=Bhang |first7=H. |last8=Bragadireanu |first8=M. |last9=Buehler |first9=P. |last10=Busso |first10=L. |last11=Cargnelli |first11=M. |last12=Choi |first12=S. |last13=Clozza |first13=A. |last14=Curceanu |first14=C. |last15=Enomoto |first15=S. |last16=Fujioka |first16=H. |last17=Fujiwara |first17=Y. |last18=Fukuda |first18=T. |last19=Guaraldo |first19=C. |last20=Hashimoto |first20=T. |last21=Hayano |first21=R. S. |last22=Hiraiwa |first22=T. |last23=Iio |first23=M. |last24=Iliescu |first24=M. |last25=Inoue |first25=K. |last26=Ishiguro |first26=Y. |last27=Ishikawa |first27=T. |last28=Ishimoto |first28=S. |last29=Itahashi |first29=K. |last30=Iwasaki |first30=M. |last31=Iwai |first31=M. |last32=Kanno |first32=K. |last33=Kato |first33=K. |last34=Kato |first34=Y. |last35=Kawasaki |first35=S. |last36=Kienle |first36=P. |last37=Kou |first37=H. |last38=Ma |first38=Y. |last39=Marton |first39=J. |last40=Matsuda |first40=Y. |last41=Miliucci |first41=M. |last42=Mizoi |first42=Y. |last43=Morra |first43=O. |last44=Murayama |first44=R. |last45=Nagae |first45=T. |last46=Noumi |first46=H. |last47=Ohnishi |first47=H. |last48=Okada |first48=S. |last49=Outa |first49=H. |last50=Ozawa |first50=K. |last51=Piscicchia |first51=K. |last52=Sada |first52=Y. |last53=Sakaguchi |first53=A. |last54=Sato |first54=M. |last55=Scordo |first55=A. |last56=Sekimoto |first56=M. |last57=Shi |first57=H. |last58=Shirotori |first58=K. |last59=Simon |first59=M. |last60=Sirghi |first60=D. |last61=Sirghi |first61=F. |last62=Suzuki |first62=S. |last63=Suzuki |first63=T. |last64=Tanida |first64=K. |last65=Tatsuno |first65=H. |last66=Tokuda |first66=M. |last67=Tomono |first67=D. |last68=Toyoda |first68=A. |last69=Tsukada |first69=K. |last70=Doce |first70=O. Vázquez |last71=Widmann |first71=E. |last72=Yamaga |first72=T. |last73=Yamazaki |first73=T. |last74=Yoshida |first74=C. |last75=Zhang |first75=Q. |last76=Zmeskal |first76=J.|display-authors= 1 |title=Recent Results and Future Prospects of Kaonic Nuclei at J-PARC |journal=Few-Body Systems |date=December 2021 |volume=62 |issue=4 |pages=103 |doi=10.1007/s00601-021-01692-3|arxiv=2110.03150 |bibcode=2021FBS....62..103S |s2cid=238419423 }}</ref> ===Charmed hypernuclei=== Nuclei containing a [[charm quark]] have been predicted theoretically since 1977,<ref>{{cite journal |last1=Dover |first1=C. B. |last2=Kahana |first2=S. H. |title=Possibility of Charmed Hypernuclei |journal=Physical Review Letters |date=12 December 1977 |volume=39 |issue=24 |pages=1506–1509 |doi=10.1103/PhysRevLett.39.1506|bibcode=1977PhRvL..39.1506D }}</ref> and are described as '''charmed hypernuclei''' despite the possible absence of strange quarks.<ref name="Gastão">{{cite book |last1=Krein |first1=Gastão |title=Central European Symposium on Thermophysics 2019 (Cest) |chapter=Charmed hypernuclei and nuclear-bound charmonia |date=2019 |volume=2133 |pages=020022 |doi=10.1063/1.5118390|s2cid=201510645 }}</ref> In particular, the lightest charmed baryons, the Λ<sub>c</sub> and Σ<sub>c</sub> baryons,{{efn|name=csub|The subscript ''c'' in the symbols for charmed baryons indicate that a strange quark in a hyperon is replaced with a charm quark; the superscript, if present, still represents the total charge of the baryon.}} are predicted to exist in bound states in charmed hypernuclei, and could be created in processes analogous to those used to make hypernuclei.<ref name="Gastão"/> The depth of the Λ<sub>c</sub> potential in nuclear matter is predicted to be 58 MeV,<ref name="Gastão"/> but unlike Λ hypernuclei, larger hypernuclei containing the positively charged Λ<sub>c</sub> would be less stable than the corresponding Λ hypernuclei due to [[Coulomb repulsion]].<ref>{{cite journal |last1=Güven |first1=H. |last2=Bozkurt |first2=K. |last3=Khan |first3=E. |last4=Margueron |first4=J. |title=Ground state properties of charmed hypernuclei within a mean field approach |journal=Physical Review C |date=10 December 2021 |volume=104 |issue=6 |pages=064306 |doi=10.1103/PhysRevC.104.064306|arxiv=2106.04491 |bibcode=2021PhRvC.104f4306G |s2cid=235368356 }}</ref> The mass difference between the Λ<sub>c</sub> and the {{physics particle|Σ|TR=+|BR=c}} is too large for appreciable mixing of these baryons to occur in hypernuclei.<ref>{{cite journal |last1=Vidaña |first1=I. |last2=Ramos |first2=A. |last3=Jiménez-Tejero |first3=C. E. |title=Charmed nuclei within a microscopic many-body approach |journal=Physical Review C |date=23 April 2019 |volume=99 |issue=4 |pages=045208 |doi=10.1103/PhysRevC.99.045208|arxiv=1901.09644 |bibcode=2019PhRvC..99d5208V |s2cid=119100085 }}</ref> Weak decays of charmed hypernuclei have strong [[special relativity|relativistic]] corrections compared to those in ordinary hypernuclei, as the energy released in the decay process is comparable to the mass of the Λ baryon.<ref>{{cite journal |last1=Fontoura |first1=C E |last2=Krmpotić |first2=F |last3=Galeão |first3=A P |last4=Conti |first4=C De |last5=Krein |first5=G |title=Nonmesonic weak decay of charmed hypernuclei |journal=Journal of Physics G: Nuclear and Particle Physics |date=1 January 2018 |volume=45 |issue=1 |pages=015101 |doi=10.1088/1361-6471/aa982a|arxiv=1711.04579 |bibcode=2018JPhG...45a5101F |s2cid=119184293 }}</ref> === Antihypernuclei === In August 2024 the [[STAR collaboration|STAR Collaboration]] reported the observation of the heaviest [[antimatter]] nucleus known, antihyperhydrogen-4 <math>{}_{\bar{{\boldsymbol{\Lambda }}}}{}^{{\bf{4}}}\bar{{\bf{H}}}</math> consisting of one [[antiproton]], two [[Antineutron|antineutrons]] and an [[antihyperon]].<ref>{{Cite journal |last1=Abdulhamid |first1=M. I. |last2=Aboona |first2=B. E. |last3=Adam |first3=J. |last4=Adamczyk |first4=L. |last5=Adams |first5=J. R. |last6=Aggarwal |first6=I. |last7=Aggarwal |first7=M. M. |last8=Ahammed |first8=Z. |last9=Aschenauer |first9=E. C. |last10=Aslam |first10=S. |last11=Atchison |first11=J. |last12=Bairathi |first12=V. |last13=Cap |first13=J. G. Ball |last14=Barish |first14=K. |last15=Bellwied |first15=R. |date=2024-08-21 |title=Observation of the antimatter hypernucleus $${}_{\bar{{\boldsymbol{\Lambda }}<nowiki>}}{}^</nowiki>{{\bf{4}}}\bar{{\bf{H}}}$$ |url=https://www.nature.com/articles/s41586-024-07823-0 |journal=Nature |volume=632 |issue=8027 |language=en |pages=1026–1031 |doi=10.1038/s41586-024-07823-0 |pmid=39169195 |issn=1476-4687}}</ref><ref>{{Cite web |author1=Ben Turner |date=2024-08-21 |title=Heaviest antimatter particle ever discovered could hold secrets to our universe's origins |url=https://www.livescience.com/physics-mathematics/particle-physics/scientists-discover-the-heaviest-antimatter-particle-ever-and-it-could-hold-secrets-to-our-universes-origins |access-date=2024-08-26 |website=livescience.com |language=en}}</ref><ref>{{Cite web |last=Egede |first=Ulrik |date=2024-08-21 |title=Heaviest antimatter observation yet will fine-tune numbers for dark matter search |url=https://theconversation.com/heaviest-antimatter-observation-yet-will-fine-tune-numbers-for-dark-matter-search-237127 |access-date=2024-08-26 |website=The Conversation |language=en-US}}</ref> The anti-lambda hyperon <math>\bar{\Lambda }</math><ref>{{Cite journal |last1=Prowse |first1=D. J. |last2=Baldo-Ceolin |first2=M. |date=1958-09-01 |title=Anti-Lambda Hyperon |url=https://link.aps.org/doi/10.1103/PhysRevLett.1.179 |journal=Physical Review Letters |language=en |volume=1 |issue=5 |pages=179–180 |doi=10.1103/PhysRevLett.1.179 |bibcode=1958PhRvL...1..179P |issn=0031-9007|url-access=subscription }}</ref> and the antihypertriton <math>{}_{\bar{\Lambda }}{}^{3}\bar{{\rm{H}}}</math><ref>{{Cite journal |last1=The STAR Collaboration |last2=Abelev |first2=B. I. |last3=Aggarwal |first3=M. M. |last4=Ahammed |first4=Z. |last5=Alakhverdyants |first5=A. V. |last6=Alekseev |first6=I. |last7=Anderson |first7=B. D. |last8=Arkhipkin |first8=D. |last9=Averichev |first9=G. S. |last10=Balewski |first10=J. |last11=Barnby |first11=L. S. |last12=Baumgart |first12=S. |last13=Beavis |first13=D. R. |last14=Bellwied |first14=R. |last15=Betancourt |first15=M. J. |date=2010-04-02 |title=Observation of an Antimatter Hypernucleus |url=https://www.science.org/doi/10.1126/science.1183980 |journal=Science |language=en |volume=328 |issue=5974 |pages=58–62 |doi=10.1126/science.1183980 |pmid=20203011 |issn=0036-8075|arxiv=1003.2030 |bibcode=2010Sci...328...58. }}</ref> have also been previously observed. ==See also== *[[Strangelet]], a hypothetical form of matter that also contains strange quarks ==Notes== {{reflist|group=lower-alpha}} ==References== {{Reflist|30em}} *{{cite journal |last1=Gal |first1=A. |last2=Hungerford |first2=E.V. |last3=Millener |first3=D.J. |title=Strangeness in nuclear physics |journal=Reviews of Modern Physics |date=26 August 2016 |volume=88 |issue=3 |page=035004 |doi=10.1103/RevModPhys.88.035004|arxiv=1605.00557|bibcode=2016RvMP...88c5004G |s2cid=118395559}} *{{cite journal |last1=Tolos |first1=L. |last2=Fabbietti |first2=L. |title=Strangeness in nuclei and neutron stars |journal=Progress in Particle and Nuclear Physics |date=May 2020 |volume=112 |pages=103770 |doi=10.1016/j.ppnp.2020.103770|arxiv=2002.09223|bibcode=2020PrPNP.11203770T |s2cid=211252559 }} {{Authority control}} [[Category:Exotic matter]] [[Category:Nuclear physics]] [[Category:Strange quark]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:As of
(
edit
)
Template:Authority control
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite magazine
(
edit
)
Template:Cite web
(
edit
)
Template:Efn
(
edit
)
Template:Empty section
(
edit
)
Template:PhysicsParticle
(
edit
)
Template:Physics particle
(
edit
)
Template:Prime
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Val
(
edit
)