Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Identity by descent
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{distinguish|text=lineage-bonded society or [[isolation by distance]], another concept in population genetics with the acronym "IBD"}} {{short description|Identical nucleotide sequence due to inheritance without recombination from a common ancestor}} A [[DNA]] segment is '''identical by descent''' ('''IBD''') in two or more individuals if: * they have inherited it from a common ancestor without [[genetic recombination|recombination]], that is, the segment has the same ancestral origin in these individuals * the segment is maximal, that is, it is delimited at both ends by ancestral recombination events.<ref>{{Cite journal | last1 = Carmi | first1 = Shai | title = A renewal theory approach to IBD sharing | doi = 10.1016/j.tpb.2014.08.002 | journal = Theoretical Population Biology | volume = 97 | pages = 35-48 | year = 2014 | pmid = 25149691 | pmc = 4179929 }}</ref> [[File:Pedigree, recombination and resulting IBD segments, schematic representation.png|thumb|upright=2|alt=The origin of IBD segments is depicted via a pedigree.|The origin of IBD segments is depicted via a pedigree.]] [[File:Pedigree, recombination and resulting IBD segments, schematic representation modified.png|thumb|upright=2|alt=The origin of IBD segments is depicted via a pedigree.|A colorblind-friendly version of this image.]] == Theory == All individuals in a finite population are related if traced back long enough and will, therefore, share segments of their [[genomes]] IBD. During [[meiosis]] segments of IBD are broken up by recombination. Therefore, the expected length of an IBD segment depends on the number of generations since the [[most recent common ancestor]] at the locus of the segment. The length of IBD segments that result from a common ancestor ''n'' generations in the past (therefore involving 2''n'' meiosis) is exponentially distributed with mean 1/(2''n'') [[Centimorgan|Morgans]] (M).<ref name="Browning.2008">{{Cite journal | last1 = Browning | first1 = S. R. | title = Estimation of Pairwise Identity by Descent from Dense Genetic Marker Data in a Population Sample of Haplotypes | doi = 10.1534/genetics.107.084624 | journal = Genetics | volume = 178 | issue = 4 | pages = 2123–2132 | year = 2008 | pmid = 18430938 | pmc =2323802 }}</ref> The expected number of IBD segments decreases as the number of generations since the common ancestor at this locus increases. For a specific DNA segment, the probability of being IBD decreases as 2<sup>−2''n''</sup> since in each meiosis the probability of transmitting this segment is 1/2.<ref name="Thompson.2008">{{Cite journal | last1 = Thompson | first1 = E. A. | author1-link = Elizabeth A. Thompson | title = The IBD process along four chromosomes | doi = 10.1016/j.tpb.2007.11.011 | journal = Theoretical Population Biology | volume = 73 | issue = 3 | pages = 369–373 | year = 2008 | pmid = 18282591 | pmc =2518088 | bibcode = 2008TPBio..73..369T }}</ref> == Applications == Identified IBD segments can be used for a wide range of purposes. As noted above the amount (length and number) of IBD sharing depends on the familial relationships between the tested individuals. Therefore, one application of IBD segment detection is to quantify relatedness.<ref name="Albrechtsen.2009">{{Cite journal | last1 = Albrechtsen | first1 = A. | last2 = Sand Korneliussen | first2 = T. | last3 = Moltke | first3 = I. | last4 = Van Overseem Hansen | first4 = T. | last5 = Nielsen | first5 = F. C. | last6 = Nielsen | first6 = R. | doi = 10.1002/gepi.20378 | title = Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium | journal = Genetic Epidemiology | volume = 33 | issue = 3 | pages = 266–274 | year = 2009 | pmid = 19025785 | pmc = | s2cid = 12029712 }}</ref><ref name="Browning.2010">{{Cite journal | last1 = Browning | first1 = S. R. | last2 = Browning | first2 = B. L. | doi = 10.1016/j.ajhg.2010.02.021 | title = High-Resolution Detection of Identity by Descent in Unrelated Individuals | journal = The American Journal of Human Genetics | volume = 86 | issue = 4 | pages = 526–539 | year = 2010 | pmid = 20303063 | pmc =2850444 }}</ref><ref name="Gusev.2009">{{Cite journal | last1 = Gusev | first1 = A. | last2 = Lowe | first2 = J. K. | last3 = Stoffel | first3 = M. | last4 = Daly | first4 = M. J. | last5 = Altshuler | first5 = D. | last6 = Breslow | first6 = J. L. | last7 = Friedman | first7 = J. M. | last8 = Pe'Er | first8 = I. | doi = 10.1101/gr.081398.108 | title = Whole population, genome-wide mapping of hidden relatedness | journal = Genome Research | volume = 19 | issue = 2 | pages = 318–326 | year = 2008 | pmid = 18971310 | pmc =2652213 }}</ref><ref name="Purcell.2007">{{Cite journal | last1 = Purcell | first1 = S. | last2 = Neale | first2 = B. | last3 = Todd-Brown | first3 = K. | last4 = Thomas | first4 = L. | last5 = Ferreira | first5 = M. A. R. | last6 = Bender | first6 = D. | last7 = Maller | first7 = J. | last8 = Sklar | first8 = P. | last9 = De Bakker | first9 = P. I. W. | last10 = Daly | first10 = M. J. | last11 = Sham | first11 = P. C. | doi = 10.1086/519795 | title = PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses | journal = The American Journal of Human Genetics | volume = 81 | issue = 3 | pages = 559–575 | year = 2007 | pmid = 17701901 | pmc =1950838 }}</ref> Measurement of relatedness can be used in [[forensic genetics]],<ref name="Evett.1998">{{cite book|author1=Ian W. Evett|author2=Bruce S. Weir|title=Interpreting DNA Evidence: Statistical Genetics for Forensic Scientists|url=https://books.google.com/books?id=J1V3QgAACAAJ|date=January 1998|publisher=Sinauer Associates, Incorporated|isbn=978-0-87893-155-2}}</ref> but can also increase information in [[genetic linkage]] mapping<ref name=" Albrechtsen.2009"/><ref name="Leutenegger.2003">{{Cite journal | last1 = Leutenegger | first1 = A. | last2 = Prum | first2 = B. | last3 = Genin | first3 = E. | last4 = Verny | first4 = C. | last5 = Lemainque | first5 = A. | last6 = Clergetdarpoux | first6 = F. | last7 = Thompson | first7 = E. | author7-link = Elizabeth A. Thompson | doi = 10.1086/378207 | title = Estimation of the Inbreeding Coefficient through Use of Genomic Data | journal = The American Journal of Human Genetics | volume = 73 | issue = 3 | pages = 516–523 | year = 2003 | pmid = 12900793 | pmc =1180677 }}</ref> and help to decrease [[Bias (statistics)|bias]] by undocumented relationships in standard [[Genetic association|association studies]].<ref name="Purcell.2007"/><ref name="Voight.2005">{{Cite journal | last1 = Voight | first1 = B. F. | last2 = Pritchard | first2 = J. K. | doi = 10.1371/journal.pgen.0010032 | title = Confounding from Cryptic Relatedness in Case-Control Association Studies | journal = PLOS Genetics | volume = 1 | issue = 3 | pages = e32 | year = 2005 | pmid = 16151517 | pmc =1200427 | doi-access = free }}</ref> Another application of IBD is [[Imputation (genetics)|genotype imputation]] and [[haplotype]] [[Gametic phase|phase]] inference.<ref name="Kong.2008">{{Cite journal | last1 = Kong | first1 = A. | last2 = Masson | first2 = G. | last3 = Frigge | first3 = M. L. | last4 = Gylfason | first4 = A. | last5 = Zusmanovich | first5 = P. | last6 = Thorleifsson | first6 = G. | last7 = Olason | first7 = P. I. | last8 = Ingason | first8 = A. | last9 = Steinberg | first9 = S. | last10 = Rafnar | first10 = T. | last11 = Sulem | first11 = P. | last12 = Mouy | first12 = M. | last13 = Jonsson | first13 = F. | last14 = Thorsteinsdottir | first14 = U. | last15 = Gudbjartsson | first15 = D. F. | last16 = Stefansson | first16 = H. | last17 = Stefansson | first17 = K. | title = Detection of sharing by descent, long-range phasing and haplotype imputation | doi = 10.1038/ng.216 | journal = Nature Genetics | volume = 40 | issue = 9 | pages = 1068–1075 | year = 2008 | pmid = 19165921 | pmc = 4540081}}</ref><ref name="Gusev.2012">{{Cite journal | last1 = Gusev | first1 = A. | last2 = Shah | first2 = M. J. | last3 = Kenny | first3 = E. E. | last4 = Ramachandran | first4 = A. | last5 = Lowe | first5 = J. K. | last6 = Salit | first6 = J. | last7 = Lee | first7 = C. C. | last8 = Levandowsky | first8 = E. C. | last9 = Weaver | first9 = T. N. | last10 = Doan | first10 = Q. C. | last11 = Peckham | first11 = H. E. | last12 = McLaughlin | first12 = S. F. | last13 = Lyons | first13 = M. R. | last14 = Sheth | first14 = V. N. | last15 = Stoffel | first15 = M. | last16 = De La Vega | first16 = F. M. | last17 = Friedman | first17 = J. M. | last18 = Breslow | first18 = J. L. | last19 = Pe'Er | first19 = I. | title = Low-Pass Genome-Wide Sequencing and Variant Inference Using Identity-by-Descent in an Isolated Human Population | doi = 10.1534/genetics.111.134874 | journal = Genetics | volume = 190 | issue = 2 | pages = 679–689 | year = 2011 | pmid = 22135348 | pmc =3276614 }}</ref><ref name="Browning.2009">{{Cite journal | last1 = Browning | first1 = B. L. | last2 = Browning | first2 = S. R. | doi = 10.1016/j.ajhg.2009.01.005 | title = A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals | journal = The American Journal of Human Genetics | volume = 84 | issue = 2 | pages = 210–223 | year = 2009 | pmid = 19200528 | pmc =2668004 }}</ref> Long shared segments of IBD, which are broken up by short regions may be indicative for phasing errors.<ref name="Gusev.2009"/><ref name="Hochreiter.2013"/>{{rp|SI}} === IBD mapping === IBD mapping<ref name=" Albrechtsen.2009"/> is similar to linkage analysis, but can be performed without a known pedigree on a cohort of unrelated individuals. IBD mapping can be seen as a new form of association analysis that increases the [[Statistical power|power]] to map genes or genomic regions containing multiple rare disease susceptibility variants.<ref name="Purcell.2007"/><ref name="Browning.2012b">{{Cite journal | last1 = Browning | first1 = S. R. | last2 = Thompson | first2 = E. A. | author2-link = Elizabeth A. Thompson | doi = 10.1534/genetics.111.136937 | title = Detecting Rare Variant Associations by Identity-by-Descent Mapping in Case-Control Studies | journal = Genetics | volume = 190 | issue = 4 | pages = 1521–1531 | year = 2012 | pmid = 22267498 | pmc =3316661 }}</ref> Using simulated data, Browning and [[Elizabeth A. Thompson|Thompson]] showed that IBD mapping has higher power than association testing when multiple rare variants within a gene contribute to disease susceptibility.<ref name="Browning.2012b"/> Via IBD mapping, genome-wide [[Statistical significance|significant]] regions in isolated populations as well as outbred populations were found while standard association tests failed.<ref name="Gusev.2012"/><ref name="Gusev.2011">{{Cite journal | last1 = Gusev | first1 = A. | last2 = Kenny | first2 = E. E. | last3 = Lowe | first3 = J. K. | last4 = Salit | first4 = J. | last5 = Saxena | first5 = R. | last6 = Kathiresan | first6 = S. | last7 = Altshuler | first7 = D. M. | last8 = Friedman | first8 = J. M. | last9 = Breslow | first9 = J. L. | last10 = Pe'Er | first10 = I. | doi = 10.1016/j.ajhg.2011.04.023 | title = DASH: A Method for Identical-by-Descent Haplotype Mapping Uncovers Association with Recent Variation | journal = The American Journal of Human Genetics | volume = 88 | issue = 6 | pages = 706–717 | year = 2011 | pmid = 21620352 | pmc =3113343 }}</ref> Houwen et al. used IBD sharing to identify the chromosomal location of a gene responsible for benign recurrent intrahepatic [[cholestasis]] in an isolated fishing population.<ref name="Houwen.1994">{{Cite journal | last1 = Houwen | first1 = R. H. J. | last2 = Baharloo | first2 = S. | last3 = Blankenship | first3 = K. | last4 = Raeymaekers | first4 = P. | last5 = Juyn | first5 = J. | last6 = Sandkuijl | first6 = L. A. | last7 = Freimer | first7 = N. B. | doi = 10.1038/ng1294-380 | title = Genome screening by searching for shared segments: Mapping a gene for benign recurrent intrahepatic cholestasis | journal = Nature Genetics | volume = 8 | issue = 4 | pages = 380–386 | year = 1994 | pmid = 7894490 | pmc = | hdl = 1765/55192 | s2cid = 8131209 | url = http://repub.eur.nl/pub/55192 | hdl-access = free }}</ref> Kenny et al. also used an isolated population to fine-map a signal found by a [[genome-wide association study]] (GWAS) of plasma [[plant sterol]] (PPS) levels, a surrogate measure of cholesterol absorption from the intestine.<ref name="Kenny.2009">{{Cite journal | last1 = Kenny | first1 = E. E. | last2 = Gusev | first2 = A. | last3 = Riegel | first3 = K. | last4 = Lutjohann | first4 = D. | last5 = Lowe | first5 = J. K. | last6 = Salit | first6 = J. | last7 = Maller | first7 = J. B. | last8 = Stoffel | first8 = M. | last9 = Daly | first9 = M. J. | last10 = Altshuler | first10 = D. M. | last11 = Friedman | first11 = J. M. | last12 = Breslow | first12 = J. L. | last13 = Pe'Er | first13 = I. | last14 = Sehayek | first14 = E. | title = Systematic haplotype analysis resolves a complex plasma plant sterol locus on the Micronesian Island of Kosrae | doi = 10.1073/pnas.0907336106 | journal = Proceedings of the National Academy of Sciences | volume = 106 | issue = 33 | pages = 13886–13891 | year = 2009 | pmid = 19667188 | pmc =2728990 | bibcode = 2009PNAS..10613886K | doi-access = free }}</ref> Francks et al. was able to identify a potential susceptibility locus for [[schizophrenia]] and [[bipolar disorder]] with genotype data of case-control samples.<ref name="Francks.2008">{{Cite journal | last1 = Francks | first1 = C. | last2 = Tozzi | first2 = F. | last3 = Farmer | first3 = A. | last4 = Vincent | first4 = J. B. | last5 = Rujescu | first5 = D. | last6 = St Clair | first6 = D. | last7 = Muglia | first7 = P. | doi = 10.1038/mp.2008.100 | title = Population-based linkage analysis of schizophrenia and bipolar case–control cohorts identifies a potential susceptibility locus on 19q13 | journal = Molecular Psychiatry | volume = 15 | issue = 3 | pages = 319–325 | year = 2008 | pmid = 18794890 | pmc = | doi-access = free | hdl = 11858/00-001M-0000-0012-C935-9 | hdl-access = free }}</ref> Lin et al. found a genome-wide significant linkage signal in a dataset of [[multiple sclerosis]] patients.<ref name="Lin.2013">{{Cite journal | last1 = Lin | first1 = R. | last2 = Charlesworth | first2 = J. | last3 = Stankovich | first3 = J. | last4 = Perreau | first4 = V. M. | last5 = Brown | first5 = M. A. | last6 = Anzgene | first6 = B. V. | last7 = Taylor | first7 = B. V. | editor1-last = Toland | editor1-first = Amanda Ewart | title = Identity-by-Descent Mapping to Detect Rare Variants Conferring Susceptibility to Multiple Sclerosis | doi = 10.1371/journal.pone.0056379 | journal = PLOS ONE | volume = 8 | issue = 3 | pages = e56379 | year = 2013 | pmid = 23472070 | pmc =3589405 | bibcode = 2013PLoSO...856379L | doi-access = free }}</ref> Letouzé et al. used IBD mapping to look for [[founder mutation]]s in [[cancer]] samples.<ref name="Letouze.2012">{{Cite journal | last1 = Letouzé | first1 = E. | last2 = Sow | first2 = A. | last3 = Petel | first3 = F. | last4 = Rosati | first4 = R. | last5 = Figueiredo | first5 = B. C. | last6 = Burnichon | first6 = N. | last7 = Gimenez-Roqueplo | first7 = A. P. | last8 = Lalli | first8 = E. | last9 = De Reyniès | first9 = A. L. | editor1-last = Mailund | editor1-first = Thomas | title = Identity by Descent Mapping of Founder Mutations in Cancer Using High-Resolution Tumor SNP Data | doi = 10.1371/journal.pone.0035897 | journal = PLOS ONE | volume = 7 | issue = 5 | pages = e35897 | year = 2012 | pmid = 22567117 | pmc =3342326 | bibcode = 2012PLoSO...735897L | doi-access = free }}</ref> [[File:IBD segment detected by HapFABIA in 1000Genomes.png|thumb|upright=2.0|alt=An IBD segment identified by HapFABIA in the 1000 Genomes|An IBD segment identified by HapFABIA in Asian genomes. Rare single nucleotide variants (SNVs) that tag the IBD segment are coloured purple. Below the turquoise bar, the IBD segment in ancient genomes is displayed.]] === IBD in population genetics === Detection of [[natural selection]] in the human genome is also possible via detected IBD segments. Selection will usually tend to increase the number of IBD segments among individuals in a population. By scanning for regions with excess IBD sharing, regions in the human genome that have been under strong, very recent selection can be identified.<ref name="Albrechtsen.2010">{{Cite journal | last1 = Albrechtsen | first1 = A. | last2 = Moltke | first2 = I. | last3 = Nielsen | first3 = R. | doi = 10.1534/genetics.110.113977 | title = Natural Selection and the Distribution of Identity-by-Descent in the Human Genome | journal = Genetics | volume = 186 | issue = 1 | pages = 295–308 | year = 2010 | pmid = 20592267 | pmc =2940294 }}</ref><ref name="Han.2013">{{Cite journal | last1 = Han | first1 = L. | last2 = Abney | first2 = M. | doi = 10.1002/gepi.20606 | title = Identity by descent estimation with dense genome-wide genotype data | journal = Genetic Epidemiology | volume = 35 | issue = 6 | pages = 557–567 | year = 2011 | pmid = 21769932 | pmc =3587128 }}</ref> In addition to that, IBD segments can be useful for measuring and identifying other influences on population structure.<ref name="Purcell.2007"/><ref name="Cockerham.1983">{{Cite journal | last1 = Cockerham | first1 = C. C. | last2 = Weir | first2 = B. S. | title = Variance of actual inbreeding | journal = Theoretical Population Biology | volume = 23 | issue = 1 | pages = 85–109 | year = 1983 | pmid = 6857551 | doi=10.1016/0040-5809(83)90006-0 | bibcode = 1983TPBio..23...85C }}</ref><ref name="Gusev.2012b">{{Cite journal | last1 = Gusev | first1 = A. | last2 = Palamara | first2 = P. F. | last3 = Aponte | first3 = G. | last4 = Zhuang | first4 = Z. | last5 = Darvasi | first5 = A. | last6 = Gregersen | first6 = P. | last7 = Pe'Er | first7 = I. | doi = 10.1093/molbev/msr133 | title = The Architecture of Long-Range Haplotypes Shared within and across Populations | journal = Molecular Biology and Evolution | volume = 29 | issue = 2 | pages = 473–486 | year = 2011 | pmid = 21984068 | pmc =3350316 }}</ref><ref name="Palamara.2012">{{Cite journal | last1 = Palamara | first1 = P. F. | last2 = Lencz | first2 = T. | last3 = Darvasi | first3 = A. | last4 = Pe’Er | first4 = I. | title = Length Distributions of Identity by Descent Reveal Fine-Scale Demographic History | doi = 10.1016/j.ajhg.2012.08.030 | journal = The American Journal of Human Genetics | volume = 91 | issue = 5 | pages = 809–822 | year = 2012 | pmid = 23103233 | pmc =3487132 }}</ref><ref name="Palamara.2013">{{Cite journal | last1 = Palamara | first1 = P. F. | last2 = Pe'Er | first2 = I. | doi = 10.1093/bioinformatics/btt239 | title = Inference of historical migration rates via haplotype sharing | journal = Bioinformatics | volume = 29 | issue = 13 | pages = i180–i188 | year = 2013 | pmid = 23812983 | pmc =3694674 }}</ref> Gusev et al. showed that IBD segments can be used with additional modeling to estimate demographic history including [[Population bottleneck|bottlenecks]] and [[Genetic admixture|admixture]].<ref name="Gusev.2012b"/> Using similar models Palamara et al. and Carmi et al. reconstructed the [[Historical demography|demographic history]] of [[Ashkenazi Jewish]] and Kenyan [[Maasai people|Maasai]] individuals.<ref name="Palamara.2012"/><ref name="Palamara.2013"/><ref name="Carmi.2013">{{Cite journal | last1 = Carmi | first1 = S. | last2 = Palamara | first2 = P. F. | last3 = Vacic | first3 = V. | last4 = Lencz | first4 = T. | last5 = Darvasi | first5 = A. | last6 = Pe'Er | first6 = I. | doi = 10.1534/genetics.112.147215 | title = The Variance of Identity-by-Descent Sharing in the Wright-Fisher Model | journal = Genetics | volume = 193 | issue = 3 | pages = 911–928 | year = 2013 | pmid = 23267057 | pmc =3584006 | arxiv = 1206.4745 }}</ref> Botigué et al. investigated differences in African ancestry among European populations.<ref name="Botigue.2013">{{Cite journal | last1 = Botigue | first1 = L. R. | last2 = Henn | first2 = B. M. | last3 = Gravel | first3 = S. | last4 = Maples | first4 = B. K. | last5 = Gignoux | first5 = C. R. | last6 = Corona | first6 = E. | last7 = Atzmon | first7 = G. | last8 = Burns | first8 = E. | last9 = Ostrer | first9 = H. | last10 = Flores | first10 = C. | last11 = Bertranpetit | first11 = J. | last12 = Comas | first12 = D. | last13 = Bustamante | first13 = C. D. | title = Gene flow from North Africa contributes to differential human genetic diversity in southern Europe | doi = 10.1073/pnas.1306223110 | journal = Proceedings of the National Academy of Sciences | volume = 110 | issue = 29 | pages = 11791–11796 | year = 2013 | pmid = 23733930 | pmc =3718088 | bibcode = 2013PNAS..11011791B | doi-access = free }}</ref> Ralph and Coop used IBD detection to quantify the common ancestry of different European populations<ref name="Ralph.2013">{{Cite journal | last1 = Ralph | first1 = P. | last2 = Coop | first2 = G. | editor1-last = Tyler-Smith | editor1-first = Chris | doi = 10.1371/journal.pbio.1001555 | title = The Geography of Recent Genetic Ancestry across Europe | journal = PLOS Biology | volume = 11 | issue = 5 | pages = e1001555 | year = 2013 | pmid = 23667324 | pmc =3646727 | doi-access = free }}</ref> and Gravel et al. similarly tried to draw conclusions of the genetic history of populations in the Americas.<ref name=" Gravel.2013">{{Cite journal | last1 = Gravel | first1 = S. | last2 = Zakharia | first2 = F. | last3 = Moreno-Estrada | first3 = A. | last4 = Byrnes | first4 = J. K. | last5 = Muzzio | first5 = M. | last6 = Rodriguez-Flores | first6 = J. L. | last7 = Kenny | first7 = E. E. | last8 = Gignoux | first8 = C. R. | last9 = Maples | first9 = B. K. | last10 = Guiblet | first10 = W. | last11 = Dutil | first11 = J. | last12 = Via | first12 = M. | last13 = Sandoval | first13 = K. | last14 = Bedoya | first14 = G. | last15 = 1000 Genomes | first15 = T. K. | last16 = Oleksyk | first16 = A. | last17 = Ruiz-Linares | first17 = E. G. | last18 = Burchard | first18 = J. C. | last19 = Martinez-Cruzado | first19 = C. D. | last20 = Bustamante | first20 = C. D. | editor1-last = Williams | editor1-first = Scott M | title = Reconstructing Native American Migrations from Whole-Genome and Whole-Exome Data | doi = 10.1371/journal.pgen.1004023 | journal = PLOS Genetics | volume = 9 | issue = 12 | pages = e1004023 | year = 2013 | pmid = 24385924 | pmc =3873240 | arxiv = 1306.4021 | doi-access = free }}</ref> Ringbauer et al. utilized geographic structure of IBD segments to estimate dispersal within Eastern Europe during the last centuries.<ref>{{Cite journal|last1=Ringbauer|first1=Harald|last2=Coop|first2=Graham|last3=Barton|first3=Nicholas H.|date=2017-03-01|title=Inferring Recent Demography from Isolation by Distance of Long Shared Sequence Blocks|url=http://www.genetics.org/content/205/3/1335|journal=Genetics|language=en|volume=205|issue=3|pages=1335–1351|doi=10.1534/genetics.116.196220|issn=0016-6731|pmid=28108588|pmc=5340342}}</ref> Using the [[1000 Genomes Project|1000 Genomes]] data Hochreiter found differences in IBD sharing between African, Asian and European populations as well as IBD segments that are shared with ancient genomes like the [[Neanderthal]] or [[Denisova hominin|Denisova]].<ref name="Hochreiter.2013">{{Cite journal | last1 = Hochreiter | first1 = S. | doi = 10.1093/nar/gkt1013 | title = HapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data | journal = Nucleic Acids Research | year = 2013 | pmid = 24174545 | pmc =3905877| volume=41 | issue=22 | pages=e202 }}</ref> == Methods and software == Programs for the detection of IBD segments in unrelated individuals: * [https://www.biorxiv.org/content/early/2017/01/26/103325 RAPID]: Ultra-fast Identity by Descent Detection in Biobank-Scale Cohorts using Positional Burrows–Wheeler Transform <ref name="Naseri 2017">Naseri A, Liu X, Zhang S, Zhi D. Ultra-fast Identity by Descent Detection in Biobank-Scale Cohorts using Positional Burrows–Wheeler Transform BioRxiv 2017.</ref> * [http://parente.stanford.edu/ Parente]: identifies IBD segments between pairs of individuals in unphased genotype data<ref name="Rodriguez 2013">Rodriguez JM, Batzoglou S, Bercovici S. An accurate method for inferring relatedness in large datasets of unphased genotypes via an embedded likelihood-ratio test. RECOMB 2013, LNBI 7821:212-229.</ref> * [http://faculty.washington.edu/browning/beagle/beagle.html BEAGLE/fastIBD]: finds segments of IBD between pairs of individuals in genome-wide [[Single-nucleotide polymorphism|SNP]] data<ref name="Browning.2011">{{Cite journal | last1 = Browning | first1 = B. L. | last2 = Browning | first2 = S. R. | doi = 10.1016/j.ajhg.2011.01.010 | title = A Fast, Powerful Method for Detecting Identity by Descent | journal = The American Journal of Human Genetics | volume = 88 | issue = 2 | pages = 173–182 | year = 2011 | pmid = 21310274 | pmc =3035716 }}</ref> * [https://web.archive.org/web/20131231192206/http://faculty.washington.edu/browning/beagle/b4.html BEAGLE/RefinedIBD]: finds IBD segments in pairs of individuals using a hashing method and evaluates their significance via a likelihood ratio<ref name="Browning.2013b">{{Cite journal | last1 = Browning | first1 = B. L. | last2 = Browning | first2 = S. R. | doi = 10.1534/genetics.113.150029 | title = Improving the Accuracy and Efficiency of Identity-by-Descent Detection in Population Data | journal = Genetics | volume = 194 | issue = 2 | pages = 459–471 | year = 2013 | pmid = 23535385 | pmc =3664855 }}</ref> * [http://faculty.washington.edu/browning/ibdseq.html IBDseq]: detects pairwise IBD segments in sequencing data<ref name="Browning.2013">{{Cite journal | last1 = Browning | first1 = B. L. | last2 = Browning | first2 = S. R. | doi = 10.1016/j.ajhg.2013.09.014 | title = Detecting Identity by Descent and Estimating Genotype Error Rates in Sequence Data | journal = The American Journal of Human Genetics | volume = 93 | issue = 5 | pages = 840–851 | year = 2013 | pmid = 24207118 | pmc =3824133 }}</ref> * [http://gusevlab.org/projects/germline/ GERMLINE]: discovers in linear-time IBD segments in pairs of individuals<ref name="Gusev.2009"/> * [http://www1.cs.columbia.edu/~gusev/dash/ DASH]: builds upon pairwise IBD segments to infer clusters of individuals likely to be sharing a single haplotype<ref name="Gusev.2011"/> * [https://web.archive.org/web/20131124040826/http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml PLINK]: is a tool set for [[whole genome association]] and population-based linkage analyses including a method for pairwise IBD segment detection<ref name="Purcell.2007"/> * [http://www.popgen.dk/software/index.php/Relate Relate]: estimates the probability of IBD between pairs of individuals at a specific locus using SNPs<ref name=" Albrechtsen.2009"/> * [http://people.binf.ku.dk/ida/Software/MCMC_IBDfinder/ MCMC_IBDfinder]: is based on [[Markov chain Monte Carlo]] (MCMC) for finding IBD segments in multiple individuals<ref name="Moltke.2011">{{Cite journal | last1 = Moltke | first1 = I. | last2 = Albrechtsen | first2 = A. | last3 = Hansen | first3 = T. V. O. | last4 = Nielsen | first4 = F. C. | last5 = Nielsen | first5 = R. | title = A method for detecting IBD regions simultaneously in multiple individuals--with applications to disease genetics | doi = 10.1101/gr.115360.110 | journal = Genome Research | volume = 21 | issue = 7 | pages = 1168–1180 | year = 2011 | pmid = 21493780 | pmc =3129259 }}</ref> * [http://www.cs.ucla.edu/~danhe/Software/IBDGroupon.html IBD-Groupon]: detects group-wise IBD segments based on pairwise IBD relationships<ref name="He.2013">{{Cite journal | last1 = He | first1 = D. | title = IBD-Groupon: An efficient method for detecting group-wise identity-by-descent regions simultaneously in multiple individuals based on pairwise IBD relationships | doi = 10.1093/bioinformatics/btt237 | journal = Bioinformatics | volume = 29 | issue = 13 | pages = i162–i170 | year = 2013 | pmid = 23812980 | pmc =3694672 }}</ref> * [http://www.bioinf.jku.at/research/short-IBD/ HapFABIA]: identifies very short IBD segments characterized by rare variants in large [[DNA sequencing|sequencing]] data simultaneously in multiple individuals<ref name="Hochreiter.2013"/> == See also == * [[Association mapping]] * [[Genetic association]] * [[Genetic linkage]] * [[Genome-wide association study]] * [[Identity by type]] * [[Linkage disequilibrium]] * [[Population genetics]] == References == {{Reflist}} {{Population genetics}} {{Personal genomics}} {{DEFAULTSORT:Identity by descent}} [[Category:Classical genetics]] [[Category:Population genetics]] [[Category:Human genome projects]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Distinguish
(
edit
)
Template:Navbox
(
edit
)
Template:Personal genomics
(
edit
)
Template:Population genetics
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)