Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ihara zeta function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]], the '''Ihara zeta function''' is a [[zeta function]] associated with a finite [[Graph (discrete mathematics)|graph]]. It closely resembles the [[Selberg zeta function]], and is used to relate closed walks to the [[Spectrum of a matrix|spectrum]] of the [[adjacency matrix]]. The Ihara zeta function was first defined by [[Yasutaka Ihara]] in the 1960s in the context of [[discrete group|discrete subgroups]] of the two-by-two [[p-adic number|p-adic]] [[special linear group]]. [[Jean-Pierre Serre]] suggested in his book ''Trees'' that Ihara's original definition can be reinterpreted graph-theoretically. It was [[Toshikazu Sunada]] who put this suggestion into practice in 1985. As observed by Sunada, a [[regular graph]] is a [[Ramanujan graph]] if and only if its Ihara zeta function satisfies an analogue of the [[Riemann hypothesis]].<ref>Terras (1999) p. 678</ref> ==Definition== The Ihara zeta function is defined as the analytic continuation of the infinite product :<math>\zeta_{G}(u)=\prod_{p}\frac{1}{1-u^{{L}(p)}},</math> where ''L''(''p'') is the ''length'' <math>L(p)</math> of <math>p</math>. The product in the definition is taken over all prime [[closed geodesic]]s <math>p</math> of the graph <math>G = (V, E)</math>, where geodesics which differ by a [[circular shift|cyclic rotation]] are considered equal. A ''closed geodesic'' <math>p</math> on <math>G</math> (known in graph theory as a "[[Cycle (graph theory)|reduced closed walk]]"; it is not a graph geodesic) is a finite sequence of vertices <math>p = (v_0, \ldots, v_{k-1})</math> such that :<math> (v_i, v_{(i+1)\bmod k}) \in E, </math> :<math> v_i \neq v_{(i+2) \bmod k}. </math> The integer <math>k</math> is the length <math>L(p)</math>. The closed geodesic <math>p</math> is ''prime'' if it cannot be obtained by repeating a closed geodesic <math>m</math> times, for an integer <math>m > 1</math>. This graph-theoretic formulation is due to Sunada. ==Ihara's formula== Ihara (and Sunada in the graph-theoretic setting) showed that for regular graphs the zeta function is a rational function. If <math>G</math> is a <math>q+1</math>-regular graph with [[adjacency matrix]] <math>A</math> then<ref>Terras (1999) p. 677</ref> :<math>\zeta_G(u) = \frac{1}{(1-u^2)^{r(G)-1}\det(I - Au + qu^2I)}, </math> where <math>r(G)</math> is the [[circuit rank]] of <math>G</math>. If <math>G</math> is connected and has <math>n</math> vertices, <math>r(G)-1=(q-1)n/2</math>. The Ihara zeta-function is in fact always the reciprocal of a [[graph polynomial]]: :<math>\zeta_G(u) = \frac{1}{\det (I-Tu)}~,</math> where <math>T</math> is Ki-ichiro Hashimoto's edge adjacency operator. [[Hyman Bass]] gave a determinant formula involving the adjacency operator. ==Applications== The Ihara zeta function plays an important role in the study of [[free group]]s, [[spectral graph theory]], and [[dynamical systems]], especially [[symbolic dynamics]], where the Ihara zeta function is an example of a [[Ruelle zeta function]].<ref name=T29>Terras (2010) p. 29</ref> == References == {{reflist}} * {{cite journal | first=Yasutaka | last=Ihara |authorlink=Yasutaka Ihara| title=On discrete subgroups of the two by two projective linear group over <math>{\mathfrak p}</math>-adic fields | journal= Journal of the Mathematical Society of Japan | volume=18 | year=1966 | pages=219β235 | zbl=0158.27702|mr=0223463|doi=10.2969/jmsj/01830219 | doi-access=free }} * {{cite book | first=Toshikazu | last=Sunada | authorlink=Toshikazu Sunada |title=Curvature and Topology of Riemannian Manifolds | volume=1201 | year=1986 | pages=266β284 | doi=10.1007/BFb0075662 | chapter=L-functions in geometry and some applications | series=[[Lecture Notes in Mathematics]] | isbn=978-3-540-16770-9 | zbl=0605.58046 }} * {{cite journal | first=Hyman | last=Bass | authorlink=Hyman Bass | title=The Ihara-Selberg zeta function of a tree lattice | journal= [[International Journal of Mathematics]]| volume=3 | year=1992 | pages=717β797 | doi=10.1142/S0129167X92000357 | issue=6 | zbl=0767.11025|mr=1194071 }} * {{cite book | first=Harold M. | last=Stark | authorlink=Harold Stark | chapter=Multipath zeta functions of graphs | pages=601β615 | title=Emerging Applications of Number Theory | editor1-first=Dennis A. | editor1-last=Hejhal | editor1-link=Dennis Hejhal | editor2-first=Joel | editor2-last=Friedman | editor3-first=Martin C. | editor3-last=Gutzwiller | editor3-link=Martin Gutzwiller | editor4-first=Andrew M. |display-editors = 3 | editor4-last=Odlyzko| editor4-link=Andrew Odlyzko | publisher=[[Springer Science+Business Media|Springer]] | year=1999 | isbn=0-387-98824-6 | zbl=0988.11040 | series=IMA Vol. Math. Appl. | volume=109 }} * {{cite book | first=Audrey | last=Terras | authorlink=Audrey Terras | chapter=A survey of discrete trace formulas | pages=643β681 | title=Emerging Applications of Number Theory | editor1-first=Dennis A. | editor1-last=Hejhal | editor1-link=Dennis Hejhal | editor2-first=Joel | editor2-last=Friedman | editor3-first=Martin C. | editor3-last=Gutzwiller | editor3-link=Martin Gutzwiller | editor4-first=Andrew M. |display-editors = 3 | editor4-last=Odlyzko| editor4-link=Andrew Odlyzko | publisher=Springer | year=1999 | isbn=0-387-98824-6 | zbl=0982.11031| series=IMA Vol. Math. Appl. | volume=109 }} * {{cite book | title=Zeta Functions of Graphs: A Stroll through the Garden | volume=128 | series=Cambridge Studies in Advanced Mathematics | first=Audrey | last=Terras | authorlink=Audrey Terras | publisher=[[Cambridge University Press]] | year=2010 | isbn=978-0-521-11367-0 | zbl=1206.05003 }} [[Category:Zeta and L-functions]] [[Category:Algebraic graph theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Reflist
(
edit
)