Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Index set
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical term}} {{distinguish|text = [[Indexed set|index'''ed''' sets]], or [[Index set (recursion theory)|index sets in computability theory]]}} In [[mathematics]], an '''index set''' is a set whose members label (or index) members of another set.<ref>{{cite web|last=Weisstein|first=Eric|title=Index Set|url=http://mathworld.wolfram.com/IndexSet.html|work=Wolfram MathWorld|publisher=Wolfram Research|access-date=30 December 2013}}</ref><ref>{{cite book|last=Munkres|first=James R.|title=Topology|volume= 2|location=Upper Saddle River|publisher=Prentice Hall|year=2000}}</ref> For instance, if the elements of a [[Set (mathematics)|set]] {{mvar|A}} may be ''indexed'' or ''labeled'' by means of the elements of a set {{mvar|J}}, then {{mvar|J}} is an index set. The indexing consists of a [[surjective function]] from {{mvar|J}} onto {{mvar|A}}, and the indexed collection is typically called an ''[[indexed family]]'', often written as {{math|{''A''<sub>''j''</sub>}<sub>''j''β''J''</sub>}}. ==Examples== *An [[enumeration]] of a set {{mvar|S}} gives an index set <math>J \sub \N</math>, where {{math|''f'' : ''J'' β ''S''}} is the particular enumeration of {{math|''S''}}. *Any [[countably infinite]] set can be (injectively) indexed by the set of [[natural numbers]] <math>\N</math>. *For <math>r \in \R</math>, the [[indicator function]] on {{math|''r''}} is the function <math>\mathbf{1}_r\colon \R \to \{0,1\}</math> given by <math display="block">\mathbf{1}_r (x) := \begin{cases} 0, & \mbox{if } x \ne r \\ 1, & \mbox{if } x = r. \end{cases} </math> The set of all such indicator functions, <math>\{ \mathbf{1}_r \}_{r\in\R}</math>, is an [[uncountable set]] indexed by <math>\mathbb{R}</math>. ==Other uses== In [[computational complexity theory]] and [[cryptography]], an index set is a set for which there exists an algorithm {{mvar|I}} that can sample the set efficiently; e.g., on input {{math|1''<sup>n</sup>''}}, {{mvar|I}} can efficiently select a poly(n)-bit long element from the set.<ref> {{cite book |title= Foundations of Cryptography: Volume 1, Basic Tools |last= Goldreich |first= Oded |year= 2001 |publisher= Cambridge University Press |isbn= 0-521-79172-3 }}</ref> ==See also== * [[Friendly-index set]] ==References== {{Reflist}} [[Category:Mathematical notation]] [[Category:Basic concepts in set theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Distinguish
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)