Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inertial electrostatic confinement
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Fusion power research concept}} [[File:Deuterium Ionized.JPG|thumb|right|275px|A [[fusor]], exhibiting nuclear fusion in '''star''' mode]] '''Inertial electrostatic confinement''', or '''IEC''', is a class of [[fusion power]] devices that use [[electric field]]s to confine the [[plasma (physics)|plasma]] rather than the more common approach using [[magnetic field]]s found in [[magnetic confinement fusion]] (MCF) designs. Most IEC devices directly accelerate their fuel to fusion conditions, thereby avoiding energy losses seen during the longer heating stages of MCF devices. In theory, this makes them more suitable for using alternative [[aneutronic fusion]] fuels, which offer a number of major practical benefits and makes IEC devices one of the more widely studied approaches to fusion. IEC devices were the very first [[fusion power| fusion]] products to reach the commercial market in 2000, as neutron generators.<ref>{{Cite book| edition = 1st| publisher = Springer| isbn = 978-3-031-22905-3| last1 = Moynihan| first1 = Matthew| last2 = Bortz| first2 = Alfred B.| title = Fusion's Promise: How Technological Breakthroughs in Nuclear Fusion Can Conquer Climate Change on Earth| date = 2023-03-25}}</ref> A company called NSD-Gradel developed a compact IEC device that fused ions and created neutrons and sold the product for several hundred thousand dollars. As the negatively charged [[electron]]s and positively charged [[ion]]s in the plasma move in different directions in an electric field, the field has to be arranged in some fashion so that the two particles remain close together. Most IEC designs achieve this by pulling the electrons or ions across a potential well, beyond which the potential drops and the particles continue to move due to their [[inertia]]. Fusion occurs in this lower-potential area when ions moving in different directions collide. Because the motion provided by the field creates the energy levels needed for fusion, not random collisions with the rest of the fuel, the bulk of the plasma does not have to be hot and the systems as a whole work at much lower temperatures and energy levels than MCF devices. One of the simpler IEC devices is the [[fusor]], which consists of two concentric metal wire spherical grids. When the grids are charged to a high [[voltage]], the fuel gas ionizes. The field between the two then accelerates the fuel inward, and when it passes the inner grid the field drops and the ions continue inward toward the center. If they impact with another ion they may undergo fusion. If they do not, they travel out of the reaction area into the charged area again, where they are re-accelerated inward. Overall the physical process is similar to the [[colliding beam fusion]], although beam devices are linear instead of spherical. Other IEC designs, like the [[polywell]], differ largely in the arrangement of the fields used to create the potential well. A number of detailed theoretical studies have pointed out that the IEC approach is subject to a number of energy loss mechanisms that are not present if the fuel is evenly heated, or [[Maxwell–Boltzmann distribution|"Maxwellian"]]. These loss mechanisms appear to be greater than the rate of fusion in such devices, meaning they can never reach [[fusion breakeven]] and thus be used for power production. These mechanisms are more powerful when the [[atomic mass]] of the fuel increases, which suggests IEC also does not have any advantage with aneutronic fuels. Whether these critiques apply to specific IEC devices remains highly contentious. ==Mechanism== For every [[volt]] that an ion is accelerated across, its kinetic energy gain corresponds to an increase of temperature of 11,604 [[kelvin]]s (K). For example, a typical [[magnetic confinement fusion]] plasma is 15 keV, which corresponds to 170 megakelvin (MK). An ion with a charge of one can reach this temperature by being accelerated across a 15,000 V drop. This sort of voltage is easily achieved in common electrical devices; a typical [[cathode-ray tube]] operates in this range. In fusors, the voltage drop is made with a wire cage. However high [[electrical resistivity and conductivity|conduction]] losses occur in fusors because most ions fall into the cage before fusion can occur. This prevents current fusors from ever producing net power. [[File:Fusor Mechanism.png|thumb|center|500px|This is an illustration of the basic mechanism of fusion in fusors. (1) The fusor contains two concentric wire cages. The cathode is inside the anode. (2) Positive ions are attracted to the inner cathode. They fall down the voltage drop. The electric field does work on the ions heating them to fusion conditions. (3) The ions miss the inner cage. (4) The ions collide in the center and may fuse.<ref name="Tim Thorson 1996">{{cite thesis |last=Thorson |first=Timothy A. |title=Ion flow and fusion reactivity characterization of a spherically convergent ion focus |type=Ph. D. |date=1996 |institution=University of Wisconsin-Madison |oclc=615996599}}</ref><ref name="Tim Thorston 1997">{{cite journal |last1=Thorson |first1=T.A. |last2=Durst |first2=R.D. |last3=Fonck |first3=R.J. |last4=Sontag |first4=A.C. |title=Fusion reactivity characterization of a spherically convergent ion focus |date=17 July 1997 |publication-date=April 1998 |journal=Nuclear Fusion |volume=38 |issue=4 |pages=495–507 |publisher=International Atomic Energy Agency |bibcode=1998NucFu..38..495T |s2cid=250841151 |doi=10.1088/0029-5515/38/4/302}}</ref>]] ==History== ===1930s=== [[Mark Oliphant]] adapts [[John Cockcroft|Cockcroft]] and [[Ernest Walton|Walton]]'s particle accelerator at the [[Cavendish Laboratory]] to create [[tritium]] and [[helium-3]] by nuclear fusion.<ref>{{cite journal |last1=Oliphant |first1=M. L. E. |last2=Harteck |first2=P. |last3=Rutherford |first3=L. |title=Transmutation Effects Observed with Heavy Hydrogen |journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |publisher=The Royal Society |volume=144 |issue=853 |date=1934-05-01 |issn=1364-5021 |pages=692–703 |bibcode=1934RSPSA.144..692O |doi=10.1098/rspa.1934.0077 |doi-access=free}}</ref> ===1950s=== [[File:Illustrations of various IEC concepts.png|thumbnail|This picture shows the anode/cathode design for different IEC concepts and experiments.]] Three researchers at [[Los Alamos National Laboratory|LANL]] including [[James L. Tuck|Jim Tuck]] first explored the idea, theoretically, in a 1959 paper.<ref name="Elmore">{{cite journal |last1=Elmore |first1=William C. |last2=Tuck |first2=James L. |last3=Watson |first3=Kenneth M. |title=On the Inertial-Electrostatic Confinement of a Plasma |journal=Physics of Fluids |publisher=AIP Publishing |volume=2 |issue=3 |year=1959 |issn=0031-9171 |page=239 |bibcode=1959PhFl....2..239E |doi=10.1063/1.1705917}}</ref> The idea had been proposed by a colleague.<ref>W. H. Wells, Bendix Aviation Corporation (private communication, 1954)</ref> The concept was to capture electrons inside a positive cage. The electrons would accelerate the ions to fusion conditions. Other concepts were being developed which would later merge into the IEC field. These include the publication of the [[Lawson criterion]] by [[John D. Lawson (scientist)|John D. Lawson]] in 1957 in England.<ref>"Some Criteria for a Power Producing Thermonuclear Reactor" J D Lawson, Atomic Energy Research Establishment, Harwell, Berks, 2 November 1956</ref> This puts on minimum criteria on power plant designs which do fusion using hot [[Maxwell–Boltzmann distribution|Maxwellian]] plasma clouds. Also, work exploring how electrons behave inside the [[biconic cusp]], done by [[Harold Grad]] group at the [[Courant Institute of Mathematical Sciences|Courant Institute]] in 1957.<ref>Grad, H. Theory of Cusped Geometries, I. General Survey, NYO-7969, Inst. Math. Sci., N.Y.U., December 1, 1957</ref><ref>Berkowitz, J., Theory of Cusped Geometries, II. Particle Losses, NYO-2530, Inst. Math. Sci., N.Y.U., January 6, 1959.</ref> A biconic cusp is a device with two alike magnetic poles facing one another (i.e. north-north). Electrons and ions can be trapped between these. ===1960s=== [[File:US3386883 - fusor.png|thumb|upright=0.8|{{US patent|3,386,883}} - Schematic from Philo Farnsworth 1968 patent. This device has an inner cage to make the field, and four ion guns on the outside.]] In his work with vacuum tubes, [[Philo Farnsworth]] observed that electric charge would accumulate in regions of the tube. Today, this effect is known as the [[multipactor effect]].<ref>Cartlidge, Edwin. The Secret World of Amateur Fusion. Physics World, March 2007: IOP Publishing Ltd, pp. 10-11. {{ISSN|0953-8585}}.</ref> Farnsworth reasoned that if ions were concentrated high enough they could collide, and fuse. In 1962, he filed a patent on a design using a positive inner cage to concentrate plasma, in order to achieve nuclear fusion.<ref>US Patent 3,258,402 June 28, 1966</ref> During this time, [[Robert L. Hirsch]] joined the [[Philo Farnsworth|Farnsworth Television labs]] and began work on what became the [[fusor]]. Hirsch patented the design in 1966<ref>US Patent 3,386,883 June 4, 1968</ref> and published the design in 1967.<ref name="Hirsch">{{cite journal |last1=Hirsch |first1=Robert L. |title=Inertial-Electrostatic Confinement of Ionized Fusion Gases |journal=Journal of Applied Physics |volume=38 |issue=7 |pages=4522–4534 |year=1967 |bibcode=1967JAP....38.4522H |doi=10.1063/1.1709162}}</ref> The [[Robert L. Hirsch|Hirsch]] machine was a 17.8 cm diameter machine with 150 kV voltage drop across it and used ion beams to help inject material. Simultaneously, a key plasma physics text was published by [[Lyman Spitzer]] at [[Princeton University|Princeton]] in 1963.<ref>Lyman J Spitzer, "The Physics of Fully Ionized Gases" 1963</ref> Spitzer took the ideal gas laws and adapted them to an ionized plasma, developing many of the fundamental equations used to model a plasma. Meanwhile, [[magnetic mirror]] theory and [[direct energy conversion]] were developed by [[Richard F. Post]]'s group at [[LLNL]].<ref>{{cite journal |last=Kelley |first=G G |title=Elimination of ambipolar potential-enhanced loss in a magnetic trap |journal=Plasma Physics |publisher=IOP Publishing |volume=9 |issue=4 |date=1967-01-01 |pages=503–505 |issn=0032-1028 |doi=10.1088/0032-1028/9/4/412}}</ref><ref name="Mirror Systems 1969">"Mirror Systems: Fuel Cycles, loss reduction and energy recovery" by Richard F. Post, BNES Nuclear fusion reactor conferences at Culham laboratory, September 1969.</ref> A magnetic mirror or magnetic bottle is similar to a biconic cusp except that the poles are reversed. ===1980s=== In 1980 [[Robert W. Bussard]] developed a cross between a fusor and [[magnetic mirror]], the [[polywell]]. The idea was to confine a non-neutral plasma using magnetic fields. This would, in turn, attract ions. This idea had been published previously, notably by [[Oleg Lavrentiev]] in Russia.<ref>{{cite journal |last1=Sadowsky |first1=M |year=1969 |title=Spherical Multipole Magnets for Plasma Research |journal=Rev. Sci. Instrum. |volume=40 |issue=12 |page=1545 |bibcode=1969RScI...40.1545S |doi=10.1063/1.1683858}}</ref><ref>"Confinement d'un Plasma par un Systemem Polyedrique a' Courant Alternatif", ''Z. Naturforschung'' Vol. 21 n, pp. 1085–1089 (1966)</ref><ref>{{cite journal |year=1975 |last1=Lavrent'ev |first1=O.A. |title=Electrostatic and Electromagnetic High-Temperature Plasma Traps |journal=Ann. N.Y. Acad. Sci. |volume=251 |pages=152–178 |bibcode=1975NYASA.251..152L |s2cid=117830218 |doi=10.1111/j.1749-6632.1975.tb00089.x}}</ref> Bussard patented<ref name="ReferenceA">R.W.Bussard in U.S.Patent 4,826,646, "Method and apparatus for controlling charged particles", issued May 2, 1989</ref> the design and received funding from [[Defense Threat Reduction Agency]], [[DARPA]] and the US [[United States Navy|Navy]] to develop the idea.<ref>Dr. Robert Bussard (lecturer) (2006-11-09). "Should Google Go Nuclear? Clean, cheap, nuclear power (no, really)" (Flash video). Google Tech Talks. Google. Retrieved 2006-12-03.</ref> ===1990s=== Bussard and [[Nicholas Krall]] published theory and experimental results in the early nineties.<ref>{{cite journal |last1=Krall |first1=N. A. |last2=Coleman |first2=M. |last3=Maffei |first3=K. |last4=Lovberg |first4=J. |last5=Jacobsen |first5=R. |last6=Bussard |first6=R. W. |year=1995 |title=Forming and maintaining a potential well in a quasispherical magnetic trap |journal=Physics of Plasmas |volume=2 |issue=1 |pages=146–158 |bibcode=1995PhPl....2..146K |s2cid=55528467 |doi=10.1063/1.871103 |doi-access=free }}</ref><ref>"Inertial electrostatic fusion (IEF): A clean energy future" (Microsoft Word document). Energy/Matter Conversion Corporation. Retrieved 2006-12-03.</ref> In response, Todd Rider at [[MIT]], under [[Lawrence Lidsky]] developed general models of the device.<ref name="Plasma Physics 1995"/> Rider argued that the device was fundamentally limited. That same year, 1995, William Nevins at [[LLNL]] published a criticism of the polywell.<ref name=Nevins1995>{{cite journal |last=Nevins |first=W. M. |title=Can inertial electrostatic confinement work beyond the ion–ion collisional time scale? |journal=Physics of Plasmas |publisher=AIP Publishing |volume=2 |issue=10 |year=1995 |issn=1070-664X |pages=3804–3819 |bibcode=1995PhPl....2.3804N |doi=10.1063/1.871080 |osti=41400 |url=https://www.osti.gov/biblio/41400 |access-date=2020-09-09 |url-status= |archive-url= |archive-date=}}</ref> Nevins argued that the particles would build up [[angular momentum]], causing the dense core to degrade. In the mid-nineties, Bussard publications prompted the development of fusors at the [[University of Wisconsin–Madison]] and at the [[University of Illinois at Urbana–Champaign]]. Madison's machine was first built in 1995.<ref>{{cite web |title=Inertial Electrostatic Confinement Project - University of Wisconsin - Madison |website=iec.neep.wisc.edu |url=https://iec.neep.wisc.edu/results.php |access-date=2023-02-09 |archive-url=https://web.archive.org/web/20140202221946/http://iec.neep.wisc.edu/results.php |archive-date=2014-02-02}}</ref> [[George H. Miley]]'s team at Illinois built a 25 cm fusor which has produced 10<sup>7</sup> neutrons using deuterium gas<ref name="Physics Research 1999">{{cite journal |last=Miley |first=George H. |title=A portable neutron/tunable X-ray source based on inertial electrostatic confinement |journal=Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |publisher=Elsevier BV |volume=422 |issue=1–3 |year=1999 |issn=0168-9002 |pages=16–20 |bibcode=1999NIMPA.422...16M |doi=10.1016/s0168-9002(98)01108-5|citeseerx=10.1.1.567.7259 }}</ref> and discovered the "star mode" of fusor operation in 1994.<ref>Miley Abstract Accomplishments, www.avrc.com/Miley_abstract_accomplishments.doc</ref> The following year, the first "US-Japan Workshop on IEC Fusion" was conducted. This is now the premier conference for IEC researchers. At this time in Europe, an IEC device was developed as a commercial neutron source by [[DaimlerChrysler Aerospace|Daimler-Chrysler Aerospace]] under the name FusionStar.<ref>{{cite journal |year=2000 |title=The IEC star-mode fusion neutron source for NAA--status and next-step designs |journal=Appl Radiat Isot |volume=53 |issue=4–5 |pages=779–83 |pmid=11003520 |last1=Miley |first1=George H. |last2=Sved |first2=J. |doi=10.1016/s0969-8043(00)00215-3|bibcode=2000AppRI..53..779M }}</ref> In the late nineties, hobbyist Richard Hull began building amateur fusors in his home.<ref name=youtube1>"Living with a nuclear reactor" The Wall Street Journal, interview with Sam Schechner, https://www.youtube.com/watch?v=LJL3RQ4I-iE {{Webarchive|url=https://web.archive.org/web/20160722034843/https://www.youtube.com/watch?v=LJL3RQ4I-iE |date=2016-07-22}}</ref> In March 1999, he achieved a neutron rate of 10<sup>5</sup> neutrons per second.<ref name="prometheusfusionperfection.com">"The Neutron Club", Richard Hull, Accessed 6-9-2011, https://prometheusfusionperfection.com/category/fusor/ {{Webarchive|url=https://web.archive.org/web/20140201210343/http://prometheusfusionperfection.com/category/fusor/ |date=2014-02-01}}</ref> Hull and Paul Schatzkin started fusor.net in 1998.<ref>{{cite web |title=Fusor.net |website=fusor.net |url=https://fusor.net/ |access-date=2014-01-07 |url-status=live |archive-url=https://web.archive.org/web/20200904123324/http://www.fusor.net/ |archive-date=2020-09-04}}</ref> Through this open forum, a community of amateur fusioneers have done nuclear fusion using homemade fusors. ===2000s=== Despite demonstration in 2000 of 7200 hours of operation without degradation at high input power as a sealed reaction chamber with automated control the FusionStar project was canceled and the company NSD Ltd was founded. The spherical FusionStar technology was then further developed as a linear geometry system with improved efficiency and higher neutron output by NSD Ltd. which became [http://www.nsd-fusion.com NSD-Fusion] GmbH in 2005. In early 2000, Alex Klein developed a cross between a polywell and ion beams.<ref name=mix>"The Multipole Ion-beam eXperiment", Presentation, Alex Klien, 7–8 December 2011, 13th US-Japan IEC workshop, Sydney 2011</ref> Using [[Dennis Gabor|Gabor lensing]], Dr. Klein attempted to focus plasma into non-neutral clouds for fusion. He founded FP generation, which in April 2009 raised $3 million in financing from two venture funds.<ref>{{cite web |title=FP Generation fusion project was funded and built prototypes |website=NextBigFuture.com |date=2011-05-19 |url=https://www.nextbigfuture.com/2011/05/fp-generation-fusion-project-was-funded.html |access-date=2023-02-09 |url-status=live |archive-url=https://web.archive.org/web/20140202171340/http://nextbigfuture.com/2011/05/fp-generation-fusion-project-was-funded.html |archive-date=2014-02-02}}</ref><ref name="AlexPoster"/> The company developed the MIX and Marble machine, but ran into technical challenges and closed. In response to Riders' criticisms, researchers at [[LANL]] reasoned that a plasma oscillating could be at local thermodynamic equilibrium; this prompted the POPS and Penning trap machines.<ref name=Barnes2002>{{cite journal |last1=Barnes |first1=D. C. |last2=Chacón |first2=L. |last3=Finn |first3=J. M. |title=Equilibrium and low-frequency stability of a uniform density, collisionless, spherical Vlasov system |journal=Physics of Plasmas |publisher=AIP Publishing |volume=9 |issue=11 |year=2002 |issn=1070-664X |pages=4448–4464 |bibcode=2002PhPl....9.4448B |doi=10.1063/1.1510667}}</ref><ref name="ReferenceB">{{cite journal |last1=Mitchell |first1=T. B. |last2=Schauer |first2=M. M. |last3=Barnes |first3=D. C. |title=Observation of Spherical Focus in an Electron Penning Trap |journal=Physical Review Letters |publisher=American Physical Society (APS) |volume=78 |issue=1 |issn=0031-9007 |pages=58–61 |bibcode=1997PhRvL..78...58M |doi=10.1103/physrevlett.78.58 |date=1997-01-06}}</ref> At this time, [[MIT]] researchers became interested in fusors for space propulsion<ref>Ph.D. Thesis "Improving Particle Confinement in Inertial Electrostatic Fusion for Spacecraft Power and Propulsion", Carl Dietrich, Massachusetts Institute of Technology, February 2007</ref> and powering space vehicles.<ref>Ph.D. Thesis "Improved lifetimes and synchronization behavior in Mutlt-grid IEC fusion devices", Tom McGuire, Massachusetts Institute of Technology, February 2007</ref> Specifically, researchers developed [[fusor]]s with multiple inner cages. In 2005, Greg Piefer founded [[Phoenix Nuclear Labs]] to develop the fusor into a neutron source for the mass production of medical isotopes.<ref name=PNL>"Phoenix Nuclear Labs meets neutron production milestone", PNL press release May 1, 2013, Ross Radel, Evan Sengbusch</ref> [[Robert Bussard]] began speaking openly about the Polywell in 2006.<ref>SirPhilip (posting an e-mail from "RW Bussard") (2006-06-23). "Fusion, eh?". James Randi Educational Foundation forums. Retrieved 2006-12-03.</ref> He attempted to generate interest<ref name="Bussard6">"The Advent of Clean Nuclear Fusion: Super-performance Space Power and Propulsion", Robert W. Bussard, Ph.D., 57th International Astronautical Congress, October 2–6, 2006</ref> in the research, before passing away from multiple myeloma in 2007.<ref>M. Simon (2007-10-08). "Dr. Robert W. Bussard Has Passed". Classical Values. Retrieved 2007-10-09.</ref> His company was able to raise over ten million in funding from the US Navy in 2008<ref>"A—Polywell Fusion Device Research, Solicitation Number: N6893609T0011". Federal Business Opportunities. October 2008. Retrieved 2008-11-07.</ref><ref>"A—Spatially Resolved Plasma Densities/Particle Energies, Solicitation Number: N6893609T0019". Federal Business Opportunities. October 2008. Retrieved 2008-11-07.</ref> and 2009.<ref>"Statement of work for advanced gaseous electrostatic energy (AGEE) concept exploration" (PDF). United States Navy. June 2009. Retrieved 2009-06-18.</ref> ===2010s=== Bussard's publications prompted the [[University of Sydney]] to start research into electron trapping in polywells in 2010.<ref>{{cite journal |last1=Carr |first1=M. |last2=Khachan |first2=J. |year=2010 |title=The dependence of the virtual cathode in a Polywell™ on the coil current and background gas pressure |journal=Physics of Plasmas |volume=17 |issue=5 |page=052510 |bibcode=2010PhPl...17e2510C |doi=10.1063/1.3428744 |url=https://zenodo.org/record/1244060 |access-date=2019-12-11 |url-status=live |archive-url=https://web.archive.org/web/20200922145423/https://zenodo.org/record/1244060 |archive-date=2020-09-22}}</ref> The group has explored theory,<ref>{{cite journal |last1=Carr |first1=Matthew |year=2011 |title=Low beta confinement in a Polywell modeled with conventional point cusp theories |journal=Physics of Plasmas |volume=18 |issue=11 |page=11 |bibcode=2011PhPl...18k2501C |doi=10.1063/1.3655446 |url=https://zenodo.org/record/1244053 |access-date=2019-12-11 |url-status=live |archive-url=https://web.archive.org/web/20200922144501/https://zenodo.org/record/1244053 |archive-date=2020-09-22}}</ref> modeled devices,<ref name="Oct12013Paper">{{cite journal |last1=Gummershall |first1=Devid |last2=Carr |first2=Matthew |last3=Cornish |first3=Scott |year=2013 |title=Scaling law of electron confinement in a zero beta polywell device |journal=Physics of Plasmas |volume=20 |issue=10 |page=102701 |bibcode=2013PhPl...20j2701G |doi=10.1063/1.4824005}}</ref> built devices, measured trapping<ref name="Carr, M. 2013">{{cite journal |last1=Carr |first1=M. |last2=Khachan |first2=J. |year=2013 |title=A biased probe analysis of potential well formation in an electron only, low beta Polywell magnetic field |journal=Physics of Plasmas |volume=20 |issue=5 |page=052504 |bibcode=2013PhPl...20e2504C |doi=10.1063/1.4804279 |url=https://zenodo.org/record/1244056 |access-date=2019-12-11 |url-status=live |archive-url=https://web.archive.org/web/20200731210347/https://zenodo.org/record/1244056 |archive-date=2020-07-31}}</ref> and simulated trapping. These machines were all low power and cost and all had a small [[plasma beta|beta]] ratio. In 2010, Carl Greninger founded the northwest nuclear consortium, an organization which teaches nuclear engineering principles to high school students, using a 60 kvolt fusor.<ref name="lobby.nwnc.us.com">{{cite web |title=My Account | .xyz | for every website, everywhere® |url=http://lobby.nwnc.us.com/_layouts/15/start.aspx |access-date=2014-01-25 |url-status=usurped |archive-url=https://web.archive.org/web/20131203015356/http://lobby.nwnc.us.com/_layouts/15/start.aspx#/SitePages/Home.aspx |archive-date=2013-12-03}}</ref><ref name="ReferenceC">{{cite web |title=Overview of the North West Nuclear Consortium in 2012 |last=Carl Greninger |via=YouTube |date=16 September 2012 |url=https://www.youtube.com/watch?v=KbeAcFy3ErM |url-status=live |archive-url=https://ghostarchive.org/varchive/youtube/20211221/KbeAcFy3ErM |archive-date=2021-12-21}}{{cbignore}}</ref> In 2012, Mark Suppes received attention,<ref>{{cite web |title=Mark Suppes News, Videos, Reviews and Gossip - Gizmodo |website=Gizmodo |date=23 June 2010 |url=https://gizmodo.com/tag/mark-suppes |access-date=2017-09-09 |url-status=live |archive-url=https://web.archive.org/web/20170427195423/http://gizmodo.com/tag/mark-suppes |archive-date=2017-04-27}}</ref><ref>{{cite web |title=Prometheus Fusion Perfection |website=Prometheus Fusion Perfection |url=https://prometheusfusionperfection.com/ |access-date=2014-01-25 |url-status=live |archive-url=https://web.archive.org/web/20140206174327/http://prometheusfusionperfection.com/ |archive-date=2014-02-06}}</ref> for a fusor. Suppes also measured electron trapping inside a polywell.<ref>{{cite web |title=Man builds web pages by day and nuclear fusion reactors by night |first=Cassie |last=Spodak |publisher=CNN |url=https://www.cnn.com/2010/US/06/24/new.york.nuclear.hobby/ |access-date=2014-01-28 |url-status=live |archive-url=https://web.archive.org/web/20140203125021/http://www.cnn.com/2010/US/06/24/new.york.nuclear.hobby/ |archive-date=2014-02-03}}</ref> In 2013, the first IEC textbook was published by [[George H. Miley]].<ref>Inertial Electrostatic Confinement (IEC) Fusion, fundamentals and applications, {{ISBN|978-1-4614-9337-2}} (Print) 978-1-4614-9338-9, published December 26, 2013</ref> ===2020s=== Avalanche Energy is a start-up with about $51 million in venture/DOD funding that is working on small (tens of centimetres), modular, fusion batteries producing 5kWe. They are targeting 600 kV for their device to achieve certain design goals. Their Orbitron concept electrostatically (magnetron-augmented) confines ions orbiting around a high voltage (100s of kVs) cathode in a high vacuum environment (p< 10 −8 Torr) surrounded by one or two anode shells separated by a dielectric. Concerns include breakdown of the vacuum/dielectric and insulator surface flashover. [[Permanent magnet]]/electromagnet magnetic field generators are arranged coaxially around the anode. The magnetic field strength is targeted to exceed a [[cavity magnetron#Hull or single-anode magnetron|Hull cut-off condition]], ranging from 50-4,000 kV. Candidate ions include protons (m/z=1), deuterium (m/z=2), tritium (m/z=3), lithium-6 (m/z=6), and boron-11 (m/z=11). Recent progress includes successful testing of a 300 kV [[bushing (electrical)|bushing]].<ref>{{cite web |last=Wang |first=Brian |title=Avalanche Energy Making Technical Progress to a Lunchbox Size Nuclear Fusion Device |date=2023-02-08 |website=NextBigFuture.com |url=https://www.nextbigfuture.com/2023/02/avalanche-energy-making-technical-progress-to-a-lunchbox-size-nuclear-fusion-device.html |access-date=2023-02-09}}</ref> ==Designs with cage== ===Fusor=== The best known IEC device is the fusor.<ref name="Hirsch"/> This device typically consists of two wire cages inside a vacuum chamber. These cages are referred to as grids. The inner cage is held at a negative voltage against the outer cage. A small amount of [[nuclear fuel#Fusion fuels|fusion fuel]] is introduced ([[deuterium]] gas being the most common). The voltage between the grids causes the fuel to ionize. The positive ions fall down the voltage drop toward the negative inner cage. As they accelerate, the [[electric field]] does [[work (electrical)|work]] on the ions, accelerating them to fusion conditions. If these ions collide, they can fuse. Fusors can also use [[particle accelerator|ion gun]]s rather than electric grids. Fusors are popular with amateurs,<ref>{{cite web |title=The Open Source Fusor Research Consortium |website=fusor.net |url=https://fusor.net/ |access-date=January 7, 2014 |url-status=live |archive-url=https://web.archive.org/web/20200904123324/http://www.fusor.net/ |archive-date=September 4, 2020 |quote=Since its inception in 1998, Fusor.net has provided valuable educational resources for hundreds of amateur scientists around the world. There is absolutely no cost to users for these abundant resources.}}</ref> because they can easily be constructed, can regularly produce fusion and are a practical way to study [[nuclear physics]]. Fusors have also been used as a commercial [[neutron generator]] for industrial applications.<ref>{{cite web |title=- Gradel - Neutron generators of the latest technology with multiple possible applications. |first=awesome Webdesign Bremen |last=Oldenburg |website=nsd-fusion.com |url=http://www.nsd-fusion.com/ |access-date=2014-01-09 |url-status=live |archive-url=https://web.archive.org/web/20201020063106/http://www.nsd-fusion.com/ |archive-date=2020-10-20}}</ref> No fusor has come close to producing a significant amount of [[fusion power]]. They can be dangerous if proper care is not taken because they require high voltages and can produce harmful radiation ([[neutrons]] and [[X-ray]]s). Often, ions collide with the cages or wall. This [[electrical conductor|conducts]] energy away from the device limiting its performance. In addition, collisions heat the grids, which limits high-power devices. Collisions also spray high-mass ions into the reaction chamber, pollute the plasma, and cool the fuel. ===POPS=== In examining [[nonthermal plasma]], workers at [[Los Alamos National Laboratory|LANL]] realized that scattering was more likely than fusion. This was due to the [[Coulomb collision|coulomb scattering]] cross section being larger than the fusion cross section.<ref>{{cite journal |last1=Evstatiev |first1=E. G. |last2=Nebel |first2=R. A. |last3=Chacón |first3=L. |last4=Park |first4=J. |last5=Lapenta |first5=G. |year=2007 |title=Space charge neutralization in inertial electrostatic con?nement plasmas |journal=Phys. Plasmas |volume=14 |issue=4 |page=042701 |bibcode=2007PhPl...14d2701E |doi=10.1063/1.2711173 |url=https://zenodo.org/record/1232027 |access-date=2019-12-11 |url-status=live |archive-url=https://web.archive.org/web/20220712185644/https://zenodo.org/record/1232027 |archive-date=2022-07-12}}</ref> In response they built POPS,<ref>{{cite journal |last1=Park |first1=J. |last2=Nebel |first2=R. A. |last3=Stange |first3=S. |last4=Murali |first4=S. Krupakar |title=Periodically oscillating plasma sphere |journal=Physics of Plasmas |volume=12 |issue=5 |pages=056315 |issn=1070-664X |doi=10.1063/1.1888822 |date=2005 |bibcode=2005PhPl...12e6315P |url=https://zenodo.org/records/1231941/files/article.pdf |archive-url= |archive-date=}}</ref><ref name="park">{{cite journal |last1=Park |first1=J. |display-authors=etal |year=2005 |title=Experimental Observation of a Periodically Oscillating Plasma Sphere in a Gridded Inertial Electrostatic Confinement Device |journal=Phys. Rev. Lett. |volume=95 |issue=1 |page=015003 |bibcode=2005PhRvL..95a5003P |pmid=16090625 |doi=10.1103/PhysRevLett.95.015003 |url=https://zenodo.org/record/1233951 |access-date=2020-09-09 |url-status=live |archive-url=https://web.archive.org/web/20201023003428/https://zenodo.org/record/1233951 |archive-date=2020-10-23}}</ref> a machine with a wire cage, where ions are moving at steady-state, or oscillating around. Such plasma can be at local thermodynamic equilibrium.<ref name=Barnes1998}<ref>R. A. Nebel and D. C. Barnes, ''Fusion Technol.'' 38, 28, 1998.</ref> The ion oscillation is predicted to maintain the equilibrium distribution of the ions at all times, which would eliminate any power loss due to Coulomb scattering, resulting in a [[net energy gain]]. Working off this design, researchers in Russia simulated the POPS design using [[particle-in-cell]] code in 2009.<ref>{{cite journal |last1=Kurilenkov |first1=Yu. K. |last2=Tarakanov |first2=V. P. |last3=Gus'kov |first3=S. Yu. |title=Inertial electrostatic confinement and nuclear fusion in the interelectrode plasma of a nanosecond vacuum discharge. II: Particle-in-cell simulations |journal=Plasma Physics Reports |publisher=Pleiades Publishing Ltd |volume=36 |issue=13 |year=2010 |issn=1063-780X |pages=1227–1234 |bibcode=2010PlPhR..36.1227K |s2cid=123118883 |doi=10.1134/s1063780x10130234}}</ref> This reactor concept becomes increasingly efficient as the size of the device shrinks. However, very high transparencies (>99.999%) are required for successful operation of the POPS concept. To this end S. Krupakar Murali et al., suggested that [[carbon nanotube]]s can be used to construct the cathode grids.<ref name="S. Krupakar Murali">S. Krupakar Murali et al.,"Carbon Nanotubes in IEC Fusion Reactors", ANS 2006 Annual Meeting, June 4–8, Reno, Nevada.</ref> This is also the first (suggested) application of carbon nanotubes directly in any fusion reactor. ==Designs with fields== Several schemes attempt to combine [[magnetic confinement fusion|magnetic confinement]] and [[electrostatics|electrostatic]] fields with IEC. The goal is to eliminate the inner wire cage of the fusor, and the resulting problems. ===Polywell=== <!-- Deleted image removed: [[File:Polywell WB-6 complete.jpg|thumb|An example of a polywell's electromagnets]] --> The polywell uses a magnetic field to trap electrons. When electrons or ions move into a dense field, they can be reflected by the magnetic mirror effect.<ref name="Mirror Systems 1969"/> A polywell is designed to trap electrons in the center, with a dense magnetic field surrounding them.<ref name="Carr, M. 2013"/><ref>"Vlasov–Poisson calculations of electron confinement times in Polywell(TM) devices using a steady-state particle-in-cell method". The DPP13 Meeting of The American Physical Society. Retrieved 2013-10-01.</ref><ref>"Electrostatic potential measurements and point cusp theories applied to a low beta polywell fusion device" PhD Thesis, Matthew Carr, 2013, The University of Sydney</ref> This is typically done using six electromagnets in a box. Each magnet is positioned so their poles face inward, creating a [[null (physics)|null point]] in the center. The electrons trapped in the center form a "virtual electrode"<ref name="bussard">{{cite journal |last1=Bussard |first1=R.W. |year=1991 |title=Some Physics Considerations of Magnetic Inertial-Electrostatic Confinement: A New Concept for Spherical Converging-flow Fusion |journal=Fusion Technology |volume=19 |issue=2 |page=273 |bibcode=1991FuTec..19..273B |doi=10.13182/FST91-A29364}}</ref> Ideally, this electron cloud accelerates ions to fusion conditions.<ref name="ReferenceA"/> ===Penning trap=== [[File:Penning Trap.svg|thumb|300px|Penning trap cross-section. Axis is vertical. Electrons orbit the center under DC electrostatic (blue) and DC magnetic (red) confinement. In this diagram the confined particles are positive; to confine electrons, the electrodes' polarities must be swapped.]] A [[Penning trap]] uses both an electric and a magnetic field to trap particles, a magnetic field to confine particles radially and a quadrupole electric field to confine the particles axially.<ref>{{cite web |title=Penning Traps |url=https://web2.ph.utexas.edu/~iheds/IntroductionPlasmaPhysics/375%20P%207%20(Penning).pdf |access-date=2014-01-07 |url-status=live |archive-url=https://web.archive.org/web/20130120015434/http://www.ph.utexas.edu/~iheds/IntroductionPlasmaPhysics/375%20P%207%20(Penning).pdf |archive-date=2013-01-20}}</ref> In a Penning trap fusion reactor, first the magnetic and electric fields are turned on. Then, electrons are emitted into the trap, caught and measured. The electrons form a virtual electrode similar to that in a polywell, described above. These electrons are intended to then attract ions, accelerating them to fusion conditions.<ref name="barnes">{{cite journal |last1=Barnes |first1=D. C. |last2=Nebel |first2=R. A. |last3=Turner |first3=Leaf |title=Production and application of dense Penning trap plasmas |journal=Physics of Fluids B: Plasma Physics |publisher=AIP Publishing |volume=5 |issue=10 |year=1993 |issn=0899-8221 |pages=3651–3660 |bibcode=1993PhFlB...5.3651B |doi=10.1063/1.860837}}</ref> In the 1990s, researchers at [[LANL]] built a Penning trap to do fusion experiments. Their device (PFX) was a small (millimeters) and low power (one fifth of a [[tesla (unit)|tesla]], less than ten thousand volts) machine.<ref name="ReferenceB"/> ===Marble=== <!-- Deleted image removed: [[File:The multipole Ion-beam experiment magnet.png|thumbnail|The electromagnet used in the MIX system]] --> MARBLE (multiple [[non-neutral plasma|ambipolar]] recirculating beam line experiment) was a device which moved electrons and ions back and forth in a line.<ref name="AlexPoster">"The Multiple Ambipolar Recirculating Beam Line Experiment" Poster presentation, 2011 US-Japan IEC conference, Dr. Alex Klein</ref> Particle beams were reflected using [[electrostatic lens|electrostatic optics]].<ref>"Dynamics of Ions in an Electrostatic Ion Beam Trap", http://www.weizmann.ac.il/conferences/frisno8/presentations05/thursday/Zajfman.pdf {{Webarchive|url=https://web.archive.org/web/20140108011658/http://www.weizmann.ac.il/conferences/frisno8/presentations05/thursday/Zajfman.pdf |date=2014-01-08}} Presentation, [[Daniel Zajfman]]</ref> These optics made static voltage surfaces in free space.{{citation needed|date=January 2014}} Such surfaces reflect only particles with a specific kinetic energy, while higher-energy particles can traverse these surfaces unimpeded, although not unaffected. Electron trapping and plasma behavior was measured by [[Langmuir probe]].<ref name="AlexPoster"/> Marble kept ions on orbits that do not intersect grid wires—the latter also improves the space charge limitations by multiple nesting of ion beams at several energies.<ref>{{cite web |title=Our Technology |website=Beam Fusion |url=http://www.beamfusion.org/technology/index.html |url-status=dead |archive-url=https://web.archive.org/web/20130406024952/http://www.beamfusion.org/technology/index.html |archive-date=2013-04-06}}</ref> Researchers encountered problems with ion losses at the reflection points. Ions slowed down when turning, spending much time there, leading to high [[electrical conductor|conduction]] losses.<ref>Alex Klein, in person interview, April 30, 2013</ref> ===MIX=== The multipole ion-beam experiment (MIX) accelerated ions and electrons into a negatively charged electromagnet.<ref name=mix/> Ions were focused using [[Dennis Gabor|Gabor]] lensing. Researcher had problems with a very thin ion-turning region very close to a solid surface<ref name=mix/> where ions could be conducted away. ===Magnetically insulated=== Devices have been proposed where the negative cage is magnetically insulated from the incoming plasmas.<ref>{{cite journal |arxiv=1510.01788 |title=Fusion in a magnetically-shielded-grid inertial electrostatic confinement device |first1=John |last1=Hedditch |first2=Richard |last2=Bowden-Reid |first3=Joe |last3=Khachan |journal=Physics of Plasmas |volume=22 |issue=10 |date=1 October 2015 |pages=102705 |bibcode=2015PhPl...22j2705H |doi=10.1063/1.4933213}}</ref> ==General criticism== In 1995, Todd Rider critiqued all fusion power schemes using plasma systems not at thermodynamic equilibrium.<ref name="Plasma Physics 1995">{{cite thesis|title="Fundamental limitations on plasma fusions systems not in thermodynamic equilibrium", Thesis (Ph.D), Dept. of Electrical Engineering and Computer Science|author=Todd Rider |publisher=Massachusetts Institute of Technology |date=June 1995 |hdl=1721.1/11412 |url=http://hdl.handle.net/1721.1/11412}}</ref> Rider assumed that plasma clouds at equilibrium had the following properties: * They were [[plasma (physics)|quasineutral]], where the positives and negatives are equally mixed together.<ref name="Plasma Physics 1995"/> * They had evenly mixed fuel.<ref name="Plasma Physics 1995"/> * They were [[isotropy|isotropic]], meaning that its behavior was the same in any given direction.<ref name="Plasma Physics 1995"/> * The plasma had a uniform energy and temperature throughout the cloud.<ref name="Plasma Physics 1995"/> * The plasma was an unstructured [[Gaussian surface#Spherical surface|Gaussian sphere]]. Rider argued that if such system was sufficiently heated, it could not be expected to produce net power, due to high [[Bremsstrahlung|X-ray]] losses. Other fusion researchers such as [[Nicholas Krall]],<ref name="krall">{{cite journal |last1=Rosenberg |first1=M. |last2=Krall |first2=Nicholas A. |title=The effect of collisions in maintaining a non-Maxwellian plasma distribution in a spherically convergent ion focus |journal=Physics of Fluids B: Plasma Physics |publisher=AIP Publishing |volume=4 |issue=7 |year=1992 |issn=0899-8221 |pages=1788–1794 |bibcode=1992PhFlB...4.1788R |doi=10.1063/1.860034|doi-access=free }}</ref> [[Robert W. Bussard]],<ref name="bussard"/> Norman Rostoker, and Monkhorst disagreed with this assessment. They argue that the plasma conditions inside IEC machines are not quasineutral and have [[plasma (physics)#Thermal vs. non-thermal plasmas|non-thermal]] energy distributions.<ref>{{cite journal |title=Feasibility of a Colliding Beam Fusion Reactor |first=W. M. |last=Nevins |journal=Science |volume=281 |issue=5375 |date=17 July 1998 |pages=307a–307 |bibcode=1998Sci...281..307C |doi=10.1126/science.281.5375.307a |doi-access=}}</ref> Because the electron has a mass and diameter much smaller than the ion, the [[electron temperature]] can be several orders of magnitude different than the ions. This may allow the plasma to be optimized, whereby cold electrons would reduce [[radiation]] losses and hot ions would raise [[nuclear fusion|fusion]] rates.<ref name="Bussard6"/> ===Thermalization=== [[File:Thermalized Ion populations.jpg|thumbnail|This is an energy distribution comparison of thermalized and non-thermalized ions]] The primary problem that Rider has raised is the thermalization of ions. Rider argued that, in a quasineutral plasma where all the positives and negatives are distributed equally, the ions will interact. As they do, they exchange energy, causing their energy to spread out (in a [[Wiener process]]) heading to a bell curve (or [[Gaussian function]]) of energy. Rider focused his arguments within the ion population and did not address electron-to-ion energy exchange or [[plasma (physics)#Thermal vs. non-thermal plasmas|non-thermal]] plasmas. This spreading of energy causes several problems. One problem is making more and more cold ions, which are too cold to fuse. This would lower output power. Another problem is higher energy ions which have so much energy that they can escape the machine. This lowers fusion rates while raising conduction losses, because as the ions leave, energy is carried away with them. ===Radiation=== Rider estimated that once the plasma is thermalized the [[radiation]] losses would outpace any amount of [[nuclear fusion|fusion]] energy generated. He focused on a specific type of radiation: [[bremsstrahlung|X-ray]] radiation. A particle in a plasma will radiate light anytime it speeds up or slows down. This can be estimated using the [[Larmor formula]]. Rider estimated this for D–T (deuterium–tritium fusion), D–D (deuterium fusion), and D–He3 (deuterium–helium 3 fusion), and that breakeven operation with any fuel except D–T is difficult.<ref name="Plasma Physics 1995"/> ===Core focus=== In 1995, Nevins argued that such machines would need to expend a great deal of energy maintaining ion focus in the center. The ions need to be focused so that they can find one another, collide, and fuse. Over time the positive ions and negative electrons would naturally intermix because of [[electrostatic]] attraction. This causes the focus to be lost. This is core degradation. Nevins argued mathematically, that the fusion gain (ratio of fusion power produced to the power required to maintain the non-equilibrium ion distribution function) is limited to 0.1 assuming that the device is fueled with a mixture of [[deuterium]] and [[tritium]].<ref name=Nevins1995/> The core focus problem was also identified in fusors by Tim Thorson at the [[University of Wisconsin–Madison]] during his 1996 doctoral work.<ref name="Tim Thorson 1996"/> Charged ions would have some motion before they started accelerating in the center. This motion could be a twisting motion, where the ion had [[angular momentum]], or simply a tangential velocity. This initial motion causes the cloud in the center of the fusor to be unfocused. ===Brillouin limit=== In 1945, Columbia University professor Léon Brillouin, suggested that there was a limit to how many electrons one could pack into a given volume.<ref>{{cite journal |last=Brillouin |first=Leon |title=A Theorem of Larmor and Its Importance for Electrons in Magnetic Fields |journal=Physical Review |publisher=American Physical Society (APS) |volume=67 |issue=7–8 |date=1945-04-01 |pages=260–266 |issn=0031-899X |bibcode=1945PhRv...67..260B |doi=10.1103/physrev.67.260}}</ref> This limit is commonly referred to as the Brillouin limit or Brillouin density,<ref>"Brillouin limit for electron plasmas confined on magnetic surfaces" Allen H. Boozer Department of Applied Physics and Applied Mathematics Columbia University, New York NY 10027, http://www-fusion.ciemat.es/SW2005/abstracts/BoozerAH_SW.pdf {{Webarchive|url=https://web.archive.org/web/20100404003718/http://www-fusion.ciemat.es/SW2005/abstracts/BoozerAH_SW.pdf |date=2010-04-04}}</ref> this is shown below.<ref name="ReferenceB"/> :<math>N=\frac{B^2}{2\mu_{0}mc^2}</math> Where B is the magnetic field, <math>\mu_{0}</math> the permeability of free space, m the mass of confined particles, and c the speed of light. This may limit the charge density inside IEC devices. ==Commercial applications== Since fusion reactions generates neutrons, the [[fusor]] has been developed into a family of compact sealed reaction chamber neutron generators<ref name="nsd-fusion.com">{{cite web |title=- Gradel - Neutron generators of the latest technology with multiple possible applications. |first=awesome Webdesign Bremen |last=Oldenburg |website=nsd-fusion.com |url=http://www.nsd-fusion.com/ |access-date=2014-01-09 |url-status=live |archive-url=https://web.archive.org/web/20201020063106/http://www.nsd-fusion.com/ |archive-date=2020-10-20}}</ref> for a wide range of applications that need moderate neutron output rates at a moderate price. Very high output neutron sources may be used to make products such as [[molybdenum-99]]<ref name=PNL/> and [[nitrogen-13]], medical isotopes used for [[positron emission tomography|PET]] scans.<ref>Talk. "Commercial Applications of IEC Devices" Web presentation, Performed by Devlin Baker, December 3, 2013. http://sproutvideo.com/videos/189bd8bd131be6c290 {{Webarchive|url=https://web.archive.org/web/20140107060822/http://sproutvideo.com/videos/189bd8bd131be6c290 |date=2014-01-07}}</ref> ==Devices== ===Government and commercial=== *[[Los Alamos National Laboratory]] Researchers developed<ref name=Barnes1998>{{cite journal |last1=Barnes |first1=D. C. |last2=Nebel |first2=R. A. |title=Stable, thermal equilibrium, large-amplitude, spherical plasma oscillations in electrostatic confinement devices |journal=Physics of Plasmas |publisher=AIP Publishing |volume=5 |issue=7 |year=1998 |issn=1070-664X |pages=2498–2503 |bibcode=1998PhPl....5.2498B |doi=10.1063/1.872933}}</ref> POPS and Penning trap<ref name=Barnes2002/> *[[Turkish Atomic Energy Authority]] In 2013 this team built a {{val|30|u=cm}} fusor at the Saraykoy Nuclear Research and Training center in Turkey. This fusor can reach {{val|85|u=kV}} and do deuterium fusion, producing {{val|2.4e4}} neutrons per second.<ref>{{cite journal |last1=Bölükdemir |first1=A. S. |last2=Akgün |first2=Y. |last3=Alaçakır |first3=A. |title=Preliminary Results of Experimental Studies from Low Pressure Inertial Electrostatic Confinement Device |journal=Journal of Fusion Energy |publisher=Springer Science and Business Media LLC |volume=32 |issue=5 |date=2013-05-23 |pages=561–565 |issn=0164-0313 |bibcode=2013JFuE...32..561B |s2cid=120272975 |doi=10.1007/s10894-013-9607-z}}</ref> *[[ITT Corporation]] [[Robert L. Hirsch|Hirschs]] original machine was a 17.{{val|8|u=cm}} diameter machine with {{val|150|u=kV}} voltage drop across it.<ref name="Hirsch"/> This machine used ion beams. *[[Phoenix Nuclear Labs]] has developed a commercial neutron source based on a fusor, achieving {{val|3e11}} neutrons per second with the deuterium-deuterium fusion reaction for 132 hours of continuous operation.<ref name=PNL/> * Energy Matter Conversion Inc Is a company in Santa Fe which has developed large high powered polywell devices for the US Navy. * NSD-Gradel-Fusion sealed IEC neutron generators for DD (2.5 MeV) or DT (14 MeV) with a range of maximum outputs are manufactured by Gradel sárl in Luxembourg.<ref name="nsd-fusion.com"/> *[[Atomic Energy Organization of Iran]] Researchers at Shahid Beheshti University in Iran have built a {{val|60|u=cm}} diameter fusor which can produce {{val|2e7}} neutrons per second at 80 kilovolts using deuterium gas.<ref>"Experimental Study of the Iranian Inertial Electrostatic Confinement Fusion Device as a Continuous Neutron Generator" V. Damideh, Journal of Fusion Energy, June 11, 2011</ref> *Avalanche Energy has received $5 million in venture capital to build their prototype.<ref>{{cite news |last1=Wesoff |first1=Eric |title=This tiny fusion reactor is made out of commercially available parts |work=Canary Media |date=26 May 2022 |url=https://www.canarymedia.com/articles/nuclear/this-tiny-fusion-reactor-is-made-out-of-commercially-available-parts |access-date=27 May 2022 |url-status=live |archive-url=https://web.archive.org/web/20220526143123/https://www.canarymedia.com/articles/nuclear/this-tiny-fusion-reactor-is-made-out-of-commercially-available-parts |archive-date=26 May 2022}}</ref> *CPP-IPR in India, has achieved a significant milestone by pioneering the development of India's first Inertial Electrostatic Confinement Fusion (IECF) neutron source. The device is capable of reaching an energy potential of -92kV. It can generate a neutron yield of up to 10<sup>7</sup> neutrons per second by deuterium fusion. The primary objective of this program is to propel the advancement of portable and handheld neutron sources, characterized by both linear and spherical geometries.<ref>{{cite web | url=http://www.cppipr.res.in/iecf.html | title=Centre of Plasma Physics }}</ref> ===Universities=== *[[Tokyo Institute of Technology]] has four IEC devices of different shapes: a spherical machine, a cylindrical device, a co-axial double cylinder and a magnetically assisted device.<ref>"Overview of IEC Research at Tokyo Tech." Eiki Hotta, 15th annual US-Japan IEC workshop, October 7, 2013, http://www.iae.kyoto-u.ac.jp/beam/iec2013/presentation/1-2.pdf {{Webarchive|url=https://web.archive.org/web/20131221011421/http://www.iae.kyoto-u.ac.jp/beam/iec2013/presentation/1-2.pdf |date=2013-12-21}}</ref> *[[University of Wisconsin–Madison]] – A group at Wisconsin–Madison has several large devices, since 1995.<ref>R.P. Ashley, G.L. Kulcinski, J.F. Santarius, S.K. Murali, G. Piefer, 18th IEEE/NPSS Symposium on Fusion Engineering, IEEE #99CH37050, (1999)</ref> *[[University of Illinois at Urbana–Champaign]] – The fusion studies laboratory has built a ~25 cm fusor which has produced {{10^|7}} neutrons using deuterium gas.<ref name="Physics Research 1999"/> *[[Massachusetts Institute of Technology]] – For his doctoral thesis in 2007, [[Terrafugia|Carl Dietrich]] built a fusor and studied its potential use in spacecraft propulsion.<ref name="auto">"Improving Particle Confinement in Inertial Electrostatic Fusion for Spacecraft Power and Propulsion" submitted to the Department of Aeronautics and Astronautics, Carl Dietrich, February 2007</ref> Also, [[high beta fusion reactor|Thomas McGuire]] studied multiple well [[fusor]]s for applications in spaceflight.<ref name="auto"/> *[[University of Sydney]] has built several IEC devices and also low power, low [[plasma beta|beta ratio]] [[polywell]]s. The first was constructed of Teflon rings and was about the size of a coffee cup. The second has ~12" diameter full casing, metal rings. *Eindhoven Technical University<ref>{{cite web |title=Fusor of the TU/E Fusion Group |url=https://www.tue.nl/en/department-of-applied-physics/research/research-groups/science-and-technology-of-nuclear-fusion/research-in-the-fusion-group/fusor-of-the-tue-fusion-group |access-date=2014-07-23 |archive-url=https://web.archive.org/web/20140812190714/http://www.tue.nl/en/university/departments/applied-physics/research/plasma-physics-and-radiation-technology/science-and-technology-of-nuclear-fusion/fusion-research/fusor/ |archive-date=2014-08-12}}</ref> *Amirkabir University of Technology and Atomic Energy Organization of Iran have investigated the effect of strong pulsed magnetic fields on the neutron production rate of IEC device. Their study showed that by 1-2 Tesla magnetic field it is possible to increase the discharge current and neutron production rate more than ten times with respect to the ordinary operation.<ref>{{cite journal |last1=Zaeem |first1=Alireza Asle |last2=Ghafoorifard |first2=Hassan |last3=Sadighzadeh |first3=Asghar |title=Discharge current enhancement in inertial electrostatic confinement fusion by impulse high magnetic field |journal=Vacuum |publisher=Elsevier BV |volume=166 |year=2019 |issn=0042-207X |pages=286–291 |bibcode=2019Vacuu.166..286Z |s2cid=164364500 |doi=10.1016/j.vacuum.2019.05.012}}</ref> *The Institute of Space Systems at the [[University of Stuttgart]] is developing IEC devices for plasma physics research, and as an [[electric propulsion]] device, the IECT (Inertial Electrostatic Confinement Thruster).<ref>{{cite journal |last1=Chan |first1=Yung-An |last2=Herdrich |first2=Georg |title=Jet extraction and characterization in an inertial electrostatic confinement device |journal=Vacuum |publisher=Elsevier BV |volume=167 |year=2019 |pages=482–489 |bibcode=2019Vacuu.167..482C |s2cid=104748598 |doi=10.1016/j.vacuum.2018.07.053}}</ref><ref>{{cite journal |last1=Chan |first1=Yung-An |last2=Herdrich |first2=Georg |title=Influence of Cathode Dimension on Discharge Characteristics of Inertial Electrostatic Confinement Thruster |journal=International Electric Propulsion Conference 2019 |year=2019 |pages=IEPC-2019–292}}</ref><ref>{{cite web |title=Inertial Electrostatic Confinement Thruster (IECT) (English shop) – Cuvillier Verlag |website=cuvillier.de |url=https://cuvillier.de/en/shop/publications/8696-inertial-electrostatic-confinement-thruster-iect |access-date=2023-05-16}}</ref> ==See also== {{Portal|Nuclear technology}} {{Div col}} * [[Fusor]] * [[List of fusion experiments]] * [[Northwest Nuclear Consortium]] * [[Philo Farnsworth]] * [[Phoenix Nuclear labs]] * [[Polywell]] * [[Robert W. Bussard|Robert Bussard]] * [[Taylor Wilson]] {{Div col end}} ==Patents== * P.T. Farnsworth, {{US patent|3258402}}, June 1966 (Electric discharge — Nuclear interaction) * P.T. Farnsworth, {{US patent|3386883}}. June 1968 (Method and apparatus) * Hirsch, Robert, {{US patent|3530036}}. September 1970 (Apparatus) * Hirsch, Robert, {{US patent|3530497}}. September 1970 (Generating apparatus — Hirsch/Meeks) * Hirsch, Robert, {{US patent|3533910}}. October 1970 (Lithium-Ion source) * Hirsch, Robert, {{US patent|3655508}}. April 1972 (Reduce plasma leakage) * Hirsch, Robert, {{US patent|3664920}}. May 1972 (Electrostatic containment) * R.W. Bussard, "Method and apparatus for controlling charged particles", {{US patent|4826646}}, May 1989 (Method and apparatus — Magnetic grid fields) * R.W. Bussard, "Method and apparatus for creating and controlling nuclear fusion reactions", {{US patent|5160695}}, November 1992 (Method and apparatus — Ion acoustic waves) * S.T. Brookes, "Nuclear fusion reactor", UK patent GB2461267, May 2012 * T.V. Stanko, "Nuclear fusion device", UK patent GB2545882, July 2017 ==References== {{Reflist|30em}} ==External links== *[https://www.microsoft.com/en-us/research/video/polywell-fusion-electrostatic-fusion-in-a-magnetic-cusp/ Polywell Fusion: Electrostatic Fusion in a Magnetic Cusp], talk at Microsoft Research *[https://iec.neep.wisc.edu/ University of Wisconsin-Madison IEC homepage] *[https://web.archive.org/web/20070715113146/http://fti.neep.wisc.edu/iec/IEC_Overview.pdf IEC Overview] *From Proceedings of the 1999 Fusion Summer Study (Snowmass, Colorado): **[http://sites.apam.columbia.edu/SMproceedings/7.EmergingConcepts/7.Physics.pdf Summary of Physics Aspects of Some Emerging Concepts] {{Webarchive|url=https://web.archive.org/web/20060314204954/http://www.ap.columbia.edu/SMproceedings/7.EmergingConcepts/7.Physics.pdf |date=2006-03-14}} **[http://sites.apam.columbia.edu/SMproceedings/11.ContributedPapers/11.Nadler.pdf Inertial-Electrostatic Confinement (IEC) of a Fusion Plasma with Grids] {{Webarchive|url=https://web.archive.org/web/20060314204952/http://www.ap.columbia.edu/SMproceedings/11.ContributedPapers/11.Nadler.pdf |date=2006-03-14}} *[https://www.americanscientist.org/article/fusion-from-television Fusion from Television? (American Scientist Magazine, July-August 1999)] {{Webarchive|url=https://web.archive.org/web/20170604124145/http://www.americanscientist.org/template/AssetDetail/assetid/15723 |date=2017-06-04}} *[http://video.google.com/videoplay?docid=1996321846673788606 Should Google Go Nuclear? Clean, cheap, nuclear power (no, really)] {{Webarchive|url=https://web.archive.org/web/20071110091614/http://video.google.com/videoplay?docid=1996321846673788606 |date=2007-11-10}} *[http://www.nsd-fusion.com/ NSD-Gradel-Fusion], NSD-Gradel-Fusion (Luxembourg) {{Fusion power}} [[Category:Fusion power]] [[de:Elektrostatischer Trägheitseinschluss]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:10^
(
edit
)
Template:Catalog lookup link
(
edit
)
Template:Cbignore
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite news
(
edit
)
Template:Cite thesis
(
edit
)
Template:Cite web
(
edit
)
Template:Digits
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:Error-small
(
edit
)
Template:Fusion power
(
edit
)
Template:ISBN
(
edit
)
Template:ISSN
(
edit
)
Template:Main other
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Replace
(
edit
)
Template:Short description
(
edit
)
Template:Trim
(
edit
)
Template:US patent
(
edit
)
Template:Val
(
edit
)
Template:Webarchive
(
edit
)
Template:Yesno-no
(
edit
)