Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Initial topology
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Coarsest topology making certain functions continuous}} In [[general topology]] and related areas of [[mathematics]], the '''initial topology''' (or '''induced topology'''<ref name=Rudin>{{Rudin Walter Functional Analysis| at=sections 3.8 and 3.11}}</ref><ref name=ad>{{cite book |chapter-url=https://link.springer.com/chapter/10.1007%2F978-0-8176-8126-5_3 |last=Adamson |first=Iain T. |title=A General Topology Workbook |chapter=Induced and Coinduced Topologies |date=1996 |publisher=Birkhäuser, Boston, MA |access-date=July 21, 2020 |quote=... the topology induced on E by the family of mappings ... |doi=10.1007/978-0-8176-8126-5_3|pages=23–30 |isbn=978-0-8176-3844-3 }}</ref> or '''strong topology''' or '''limit topology''' or '''projective topology''') on a [[Set (mathematics)|set]] <math>X,</math> with respect to a family of functions on <math>X,</math> is the [[coarsest topology]] on <math>X</math> that makes those functions [[Continuous function (topology)|continuous]]. The [[subspace topology]] and [[product topology]] constructions are both special cases of initial topologies. Indeed, the initial topology construction can be viewed as a generalization of these. The [[Duality (mathematics)|dual]] notion is the [[final topology]], which for a given family of functions mapping to a set <math>Y</math> is the [[finest topology]] on <math>Y</math> that makes those functions continuous. ==Definition== Given a set <math>X</math> and an [[indexed family]] <math>\left(Y_i\right)_{i \in I}</math> of [[topological space]]s with functions <math display=block>f_i : X \to Y_i,</math> the initial topology <math>\tau</math> on <math>X</math> is the [[coarsest topology]] on <math>X</math> such that each <math display=block>f_i : (X, \tau) \to Y_i</math> is [[continuous function (topology)|continuous]]. '''Definition in terms of open sets''' If <math>\left(\tau_i\right)_{i \in I}</math> is a family of topologies <math>X</math> indexed by <math>I \neq \varnothing,</math> then the {{em|[[least upper bound]] topology}} of these topologies is the coarsest topology on <math>X</math> that is finer than each <math>\tau_i.</math> This topology always exists and it is equal to the [[subbase|topology generated by]] <math>{\textstyle \bigcap\limits_{i \in I} \tau_i}.</math>{{sfn|Grothendieck|1973|p=1}} If for every <math>i \in I,</math> <math>\sigma_i</math> denotes the topology on <math>Y_i,</math> then <math>f_i^{-1}\left(\sigma_i\right) = \left\{f_i^{-1}(V) : V \in \sigma_i\right\}</math> is a topology on <math>X</math>, and the {{em|initial topology of the <math>Y_i</math> by the mappings <math>f_i</math>}} is the least upper bound topology of the <math>I</math>-indexed family of topologies <math>f_i^{-1}\left(\sigma_i\right)</math> (for <math>i \in I</math>).{{sfn|Grothendieck|1973|p=1}} Explicitly, the initial topology is the collection of open sets [[subbase|generated]] by all sets of the form <math>f_i^{-1}(U),</math> where <math>U</math> is an [[open set]] in <math>Y_i</math> for some <math>i \in I,</math> under finite intersections and arbitrary unions. Sets of the form <math>f_i^{-1}(V)</math> are often called {{em|[[cylinder set]]s}}. If <math>I</math> contains [[Singleton set|exactly one element]], then all the open sets of the initial topology <math>(X, \tau)</math> are cylinder sets. ==Examples== Several topological constructions can be regarded as special cases of the initial topology. * The [[subspace topology]] is the initial topology on the subspace with respect to the [[inclusion map]]. * The [[product topology]] is the initial topology with respect to the family of [[projection map]]s. * The [[inverse limit]] of any [[inverse system]] of spaces and continuous maps is the set-theoretic inverse limit together with the initial topology determined by the canonical morphisms. * The [[weak topology]] on a [[locally convex space]] is the initial topology with respect to the [[continuous linear form]]s of its [[dual space]]. * Given a [[indexed family|family]] of topologies <math>\left\{\tau_i\right\}</math> on a fixed set <math>X</math> the initial topology on <math>X</math> with respect to the functions <math>\operatorname{id}_i : X \to \left(X, \tau_i\right)</math> is the [[supremum]] (or join) of the topologies <math>\left\{\tau_i\right\}</math> in the [[lattice of topologies]] on <math>X.</math> That is, the initial topology <math>\tau</math> is the topology generated by the [[union (set theory)|union]] of the topologies <math>\left\{\tau_i\right\}.</math> * A topological space is [[completely regular]] if and only if it has the initial topology with respect to its family of ([[bounded function|bounded]]) real-valued continuous functions. * Every topological space <math>X</math> has the initial topology with respect to the family of continuous functions from <math>X</math> to the [[Sierpiński space]]. ==Properties== ===Characteristic property=== The initial topology on <math>X</math> can be characterized by the following characteristic property:<br> A function <math>g</math> from some space <math>Z</math> to <math>X</math> is continuous if and only if <math>f_i \circ g</math> is continuous for each <math>i \in I.</math>{{sfn|Grothendieck|1973|p=2}} [[Image:InitialTopology-01.png|center|Characteristic property of the initial topology]] Note that, despite looking quite similar, this is not a [[universal property]]. A categorical description is given below. A [[Filter (set theory)|filter]] <math>\mathcal{B}</math> on <math>X</math> [[Convergent filter|converges to]] a point <math>x \in X</math> if and only if the [[prefilter]] <math>f_i(\mathcal{B})</math> [[Convergent prefilter|converges to]] <math>f_i(x)</math> for every <math>i \in I.</math>{{sfn|Grothendieck|1973|p=2}} ===Evaluation=== By the universal property of the [[product topology]], we know that any family of continuous maps <math>f_i : X \to Y_i</math> determines a unique continuous map <math display=block>\begin{alignat}{4} f :\;&& X &&\;\to \;& \prod_i Y_i \\[0.3ex] && x &&\;\mapsto\;& \left(f_i(x)\right)_{i \in I} \\ \end{alignat}</math> This map is known as the '''{{visible anchor|evaluation map}}'''.{{cn|reason=Such a counterintuitive term must be reliably sourced|date=February 2024}} A family of maps <math>\{f_i : X \to Y_i\}</math> is said to ''[[Separating set|{{visible anchor|separate points}}]]'' in <math>X</math> if for all <math>x \neq y</math> in <math>X</math> there exists some <math>i</math> such that <math>f_i(x) \neq f_i(y).</math> The family <math>\{f_i\}</math> separates points if and only if the associated evaluation map <math>f</math> is [[injective]]. The evaluation map <math>f</math> will be a [[topological embedding]] if and only if <math>X</math> has the initial topology determined by the maps <math>\{f_i\}</math> and this family of maps separates points in <math>X.</math> ===Hausdorffness=== If <math>X</math> has the initial topology induced by <math>\left\{f_i : X \to Y_i\right\}</math> and if every <math>Y_i</math> is Hausdorff, then <math>X</math> is a [[Hausdorff space]] if and only if these maps [[#separate points|separate points]] on <math>X.</math>{{sfn|Grothendieck|1973|p=1}} ===Transitivity of the initial topology=== If <math>X</math> has the initial topology induced by the <math>I</math>-indexed family of mappings <math>\left\{f_i : X \to Y_i\right\}</math> and if for every <math>i \in I,</math> the topology on <math>Y_i</math> is the initial topology induced by some <math>J_i</math>-indexed family of mappings <math>\left\{g_j : Y_i \to Z_j\right\}</math> (as <math>j</math> ranges over <math>J_i</math>), then the initial topology on <math>X</math> induced by <math>\left\{f_i : X \to Y_i\right\}</math> is equal to the initial topology induced by the <math>{\textstyle \bigcup\limits_{i \in I} J_i}</math>-indexed family of mappings <math>\left\{g_j \circ f_i : X \to Z_j\right\}</math> as <math>i</math> ranges over <math>I</math> and <math>j</math> ranges over <math>J_i.</math>{{sfn|Grothendieck|1973|pp=1-2}} Several important corollaries of this fact are now given. In particular, if <math>S \subseteq X</math> then the subspace topology that <math>S</math> inherits from <math>X</math> is equal to the initial topology induced by the [[inclusion map]] <math>S \to X</math> (defined by <math>s \mapsto s</math>). Consequently, if <math>X</math> has the initial topology induced by <math>\left\{f_i : X \to Y_i\right\}</math> then the subspace topology that <math>S</math> inherits from <math>X</math> is equal to the initial topology induced on <math>S</math> by the restrictions <math>\left\{\left.f_i\right|_S : S \to Y_i\right\}</math> of the <math>f_i</math> to <math>S.</math>{{sfn|Grothendieck|1973|p=2}} The [[product topology]] on <math>\prod_i Y_i</math> is equal to the initial topology induced by the canonical projections <math>\operatorname{pr}_i : \left(x_k\right)_{k \in I} \mapsto x_i</math> as <math>i</math> ranges over <math>I.</math>{{sfn|Grothendieck|1973|p=2}} Consequently, the initial topology on <math>X</math> induced by <math>\left\{f_i : X \to Y_i\right\}</math> is equal to the inverse image of the product topology on <math>\prod_i Y_i</math> by the [[#evaluation map|evaluation map]] <math display=inline>f : X \to \prod_i Y_i\,.</math>{{sfn|Grothendieck|1973|p=2}} Furthermore, if the maps <math>\left\{f_i\right\}_{i \in I}</math> [[#separate points|separate points]] on <math>X</math> then the evaluation map is a [[homeomorphism]] onto the subspace <math>f(X)</math> of the product space <math>\prod_i Y_i.</math>{{sfn|Grothendieck|1973|p=2}} ===Separating points from closed sets=== If a space <math>X</math> comes equipped with a topology, it is often useful to know whether or not the topology on <math>X</math> is the initial topology induced by some family of maps on <math>X.</math> This section gives a sufficient (but not necessary) condition. A family of maps <math>\left\{f_i : X \to Y_i\right\}</math> ''separates points from closed sets'' in <math>X</math> if for all [[closed set]]s <math>A</math> in <math>X</math> and all <math>x \not\in A,</math> there exists some <math>i</math> such that <math display=block>f_i(x) \notin \operatorname{cl}(f_i(A))</math> where <math>\operatorname{cl}</math> denotes the [[Closure (topology)|closure operator]]. :'''Theorem'''. A family of continuous maps <math>\left\{f_i : X \to Y_i\right\}</math> separates points from closed sets if and only if the cylinder sets <math>f_i^{-1}(V),</math> for <math>V</math> open in <math>Y_i,</math> form a [[Base (topology)|base for the topology]] on <math>X.</math> It follows that whenever <math>\left\{f_i\right\}</math> separates points from closed sets, the space <math>X</math> has the initial topology induced by the maps <math>\left\{f_i\right\}.</math> The converse fails, since generally the cylinder sets will only form a subbase (and not a base) for the initial topology. If the space <math>X</math> is a [[T0 space|T<sub>0</sub> space]], then any collection of maps <math>\left\{f_i\right\}</math> that separates points from closed sets in <math>X</math> must also separate points. In this case, the evaluation map will be an embedding. ===Initial uniform structure=== {{Main|Uniform space}} If <math>\left(\mathcal{U}_i\right)_{i \in I}</math> is a family of [[uniform structure]]s on <math>X</math> indexed by <math>I \neq \varnothing,</math> then the {{em|[[least upper bound]] uniform structure}} of <math>\left(\mathcal{U}_i\right)_{i \in I}</math> is the coarsest uniform structure on <math>X</math> that is finer than each <math>\mathcal{U}_i.</math> This uniform always exists and it is equal to the [[Filter (set theory)|filter]] on <math>X \times X</math> generated by the [[filter subbase]] <math>{\textstyle \bigcup\limits_{i \in I} \mathcal{U}_i}.</math>{{sfn|Grothendieck|1973|p=3}} If <math>\tau_i</math> is the topology on <math>X</math> induced by the uniform structure <math>\mathcal{U}_i</math> then the topology on <math>X</math> associated with least upper bound uniform structure is equal to the least upper bound topology of <math>\left(\tau_i\right)_{i \in I}.</math>{{sfn|Grothendieck|1973|p=3}} Now suppose that <math>\left\{f_i : X \to Y_i\right\}</math> is a family of maps and for every <math>i \in I,</math> let <math>\mathcal{U}_i</math> be a uniform structure on <math>Y_i.</math> Then the {{em|initial uniform structure of the <math>Y_i</math> by the mappings <math>f_i</math>}} is the unique coarsest uniform structure <math>\mathcal{U}</math> on <math>X</math> making all <math>f_i : \left(X, \mathcal{U}\right) \to \left(Y_i, \mathcal{U}_i\right)</math> [[uniformly continuous]].{{sfn|Grothendieck|1973|p=3}} It is equal to the least upper bound uniform structure of the <math>I</math>-indexed family of uniform structures <math>f_i^{-1}\left(\mathcal{U}_i\right)</math> (for <math>i \in I</math>).{{sfn|Grothendieck|1973|p=3}} The topology on <math>X</math> induced by <math>\mathcal{U}</math> is the coarsest topology on <math>X</math> such that every <math>f_i : X \to Y_i</math> is continuous.{{sfn|Grothendieck|1973|p=3}} The initial uniform structure <math>\mathcal{U}</math> is also equal to the coarsest uniform structure such that the identity mappings <math>\operatorname{id} : \left(X, \mathcal{U}\right) \to \left(X, f_i^{-1}\left(\mathcal{U}_i\right)\right)</math> are uniformly continuous.{{sfn|Grothendieck|1973|p=3}} '''Hausdorffness''': The topology on <math>X</math> induced by the initial uniform structure <math>\mathcal{U}</math> is [[Hausdorff space|Hausdorff]] if and only if for whenever <math>x, y \in X</math> are distinct (<math>x \neq y</math>) then there exists some <math>i \in I</math> and some entourage <math>V_i \in \mathcal{U}_i</math> of <math>Y_i</math> such that <math>\left(f_i(x), f_i(y)\right) \not\in V_i.</math>{{sfn|Grothendieck|1973|p=3}} Furthermore, if for every index <math>i \in I,</math> the topology on <math>Y_i</math> induced by <math>\mathcal{U}_i</math> is Hausdorff then the topology on <math>X</math> induced by the initial uniform structure <math>\mathcal{U}</math> is Hausdorff if and only if the maps <math>\left\{f_i : X \to Y_i\right\}</math> [[#separate points|separate points]] on <math>X</math>{{sfn|Grothendieck|1973|p=3}} (or equivalently, if and only if the [[#evaluation map|evaluation map]] <math display=inline>f : X \to \prod_i Y_i</math> is injective) '''Uniform continuity''': If <math>\mathcal{U}</math> is the initial uniform structure induced by the mappings <math>\left\{f_i : X \to Y_i\right\},</math> then a function <math>g</math> from some uniform space <math>Z</math> into <math>(X, \mathcal{U})</math> is [[uniformly continuous]] if and only if <math>f_i \circ g : Z \to Y_i</math> is uniformly continuous for each <math>i \in I.</math>{{sfn|Grothendieck|1973|p=3}} '''Cauchy filter''': A [[Filter (set theory)|filter]] <math>\mathcal{B}</math> on <math>X</math> is a [[Cauchy filter]] on <math>(X, \mathcal{U})</math> if and only if <math>f_i\left(\mathcal{B}\right)</math> is a Cauchy prefilter on <math>Y_i</math> for every <math>i \in I.</math>{{sfn|Grothendieck|1973|p=3}} '''Transitivity of the initial uniform structure''': If the word "topology" is replaced with "uniform structure" in the statement of "[[#Transitivity of the initial topology|transitivity of the initial topology]]" given above, then the resulting statement will also be true. ==Categorical description== In the language of [[category theory]], the initial topology construction can be described as follows. Let <math>Y</math> be the [[functor]] from a [[discrete category]] <math>J</math> to the [[category of topological spaces]] <math>\mathrm{Top}</math> which maps <math>j\mapsto Y_j</math>. Let <math>U</math> be the usual [[forgetful functor]] from <math>\mathrm{Top}</math> to <math>\mathrm{Set}</math>. The maps <math>f_j : X \to Y_j</math> can then be thought of as a [[cone (category theory)|cone]] from <math>X</math> to <math>UY.</math> That is, <math>(X,f)</math> is an object of <math>\mathrm{Cone}(UY) := (\Delta\downarrow{UY})</math>—the [[category of cones]] to <math>UY.</math> More precisely, this cone <math>(X,f)</math> defines a <math>U</math>-structured cosink in <math>\mathrm{Set}.</math> The forgetful functor <math>U : \mathrm{Top} \to \mathrm{Set}</math> induces a functor <math>\bar{U} : \mathrm{Cone}(Y) \to \mathrm{Cone}(UY)</math>. The characteristic property of the initial topology is equivalent to the statement that there exists a [[universal morphism]] from <math>\bar{U}</math> to <math>(X,f);</math> that is, a [[terminal object]] in the category <math>\left(\bar{U}\downarrow(X,f)\right).</math><br/> Explicitly, this consists of an object <math>I(X,f)</math> in <math>\mathrm{Cone}(Y)</math> together with a morphism <math>\varepsilon : \bar{U} I(X,f) \to (X,f)</math> such that for any object <math>(Z,g)</math> in <math>\mathrm{Cone}(Y)</math> and morphism <math>\varphi : \bar{U}(Z,g) \to (X,f)</math> there exists a unique morphism <math>\zeta : (Z,g) \to I(X,f)</math> such that the following diagram commutes: [[File:UniversalPropInitialTop.jpg|300px|center]] The assignment <math>(X,f) \mapsto I(X,f)</math> placing the initial topology on <math>X</math> extends to a functor <math>I : \mathrm{Cone}(UY) \to \mathrm{Cone}(Y)</math> which is [[adjoint functor|right adjoint]] to the forgetful functor <math>\bar{U}.</math> In fact, <math>I</math> is a right-inverse to <math>\bar{U}</math>; since <math>\bar{U}I</math> is the identity functor on <math>\mathrm{Cone}(UY).</math> ==See also== * {{annotated link|Final topology}} * {{annotated link|Product topology}} * {{annotated link|Quotient space (topology)}} * {{annotated link|Subspace topology}} ==References== {{reflist}} ==Bibliography== * {{Bourbaki General Topology Part I Chapters 1-4}} <!--{{sfn|Bourbaki|1989|p=}}--> * {{Bourbaki General Topology Part II Chapters 5-10}} <!--{{sfn|Bourbaki|1989|p=}}--> * {{Dugundji Topology}} <!--{{sfn|Dugundji|1966|p=}}--> * {{Grothendieck Topological Vector Spaces}} <!--{{sfn|Grothendieck|1973|p=}}--> * {{Willard General Topology}} <!--{{sfn|Willard|2004|p=}}--> * {{cite book | last=Willard | first=Stephen | title=General Topology | url=https://archive.org/details/generaltopology00will_0 | url-access=registration | publisher=Addison-Wesley | location=Reading, Massachusetts | year=1970 | isbn=0-486-43479-6}} ==External links== * {{PlanetMath |urlname=initialtopology |title=Initial topology}} * {{PlanetMath |urlname=producttopologyandsubspacetopology |title=Product topology and subspace topology}} {{Topology|expanded}} [[Category:General topology]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Bourbaki General Topology Part II Chapters 5-10
(
edit
)
Template:Bourbaki General Topology Part I Chapters 1-4
(
edit
)
Template:Cite book
(
edit
)
Template:Cn
(
edit
)
Template:Dugundji Topology
(
edit
)
Template:Em
(
edit
)
Template:Grothendieck Topological Vector Spaces
(
edit
)
Template:Main
(
edit
)
Template:PlanetMath
(
edit
)
Template:Reflist
(
edit
)
Template:Rudin Walter Functional Analysis
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Topology
(
edit
)
Template:Visible anchor
(
edit
)
Template:Willard General Topology
(
edit
)