Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Injective function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Function that preserves distinctness}} {{Redirect|Injective|other uses|Injective module|and|Injective object}} {{Functions}} In [[mathematics]], an '''injective function''' (also known as '''injection''', or '''one-to-one function'''<ref>Sometimes ''one-one function'', in Indian mathematical education. {{Cite web |title=Chapter 1:Relations and functions |url=https://ncert.nic.in/ncerts/l/lemh101.pdf |via=NCERT |url-status=live |archive-url=https://web.archive.org/web/20231226194119/https://ncert.nic.in/ncerts/l/lemh101.pdf |archive-date= Dec 26, 2023 }}</ref> ) is a [[function (mathematics)|function]] {{math|''f''}} that maps [[Distinct (mathematics)|distinct]] elements of its domain to distinct elements of its codomain; that is, {{math|1=''x''<sub>1</sub> ≠ ''x''<sub>2</sub>}} implies {{math|''f''(''x''<sub>1</sub>) {{≠}} ''f''(''x''<sub>2</sub>)}} (equivalently by [[contraposition]], {{math|''f''(''x''<sub>1</sub>) {{=}} ''f''(''x''<sub>2</sub>)}} implies {{math|1=''x''<sub>1</sub> = ''x''<sub>2</sub>}}). In other words, every element of the function's [[codomain]] is the [[Image (mathematics)|image]] of {{em|at most}} one element of its [[Domain of a function|domain]].<ref name=":0">{{Cite web|url=https://www.mathsisfun.com/sets/injective-surjective-bijective.html|title=Injective, Surjective and Bijective|website=Math is Fun |access-date=2019-12-07}}</ref> The term {{em|one-to-one function}} must not be confused with {{em|one-to-one correspondence}} that refers to [[bijective function]]s, which are functions such that each element in the codomain is an image of exactly one element in the domain. A [[homomorphism]] between [[algebraic structure]]s is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for [[vector space]]s, an {{em|injective homomorphism}} is also called a {{em|[[monomorphism]]}}. However, in the more general context of [[category theory]], the definition of a monomorphism differs from that of an injective homomorphism.<ref>{{Cite web|url=https://stacks.math.columbia.edu/tag/00V5|title=Section 7.3 (00V5): Injective and surjective maps of presheaves |website=The Stacks project |access-date=2019-12-07}}</ref> This is thus a theorem that they are equivalent for algebraic structures; see {{slink|Homomorphism|Monomorphism}} for more details. A function <math>f</math> that is not injective is sometimes called many-to-one.<ref name=":0" /> == Definition == [[file:Injection.svg|thumb|An injective function, which is not also [[Surjective function|surjective]].]] {{Further|topic=notation|Function (mathematics)#Notation}} Let <math>f</math> be a function whose domain is a set <math>X.</math> The function <math>f</math> is said to be '''injective''' provided that for all <math>a</math> and <math>b</math> in <math>X,</math> if <math>f(a) = f(b),</math> then <math>a = b</math>; that is, <math>f(a) = f(b)</math> implies <math>a=b.</math> Equivalently, if <math>a \neq b,</math> then <math>f(a) \neq f(b)</math> in the [[Contraposition|contrapositive]] statement. Symbolically,<math display="block">\forall a,b \in X, \;\; f(a)=f(b) \Rightarrow a=b,</math> which is logically equivalent to the [[Contraposition|contrapositive]],<ref>{{Cite web|url=http://www.math.umaine.edu/~farlow/sec42.pdf|title=Section 4.2 Injections, Surjections, and Bijections |last=Farlow|first=S. J.|author-link= Stanley Farlow |website=Mathematics & Statistics - University of Maine |access-date=2019-12-06 |url-status=dead |archive-url= https://web.archive.org/web/20191207035302/http://www.math.umaine.edu/~farlow/sec42.pdf |archive-date= Dec 7, 2019 }}</ref><math display="block">\forall a, b \in X, \;\; a \neq b \Rightarrow f(a) \neq f(b).</math>An injective function (or, more generally, a monomorphism) is often denoted by using the specialized arrows ↣ or ↪ (for example, <math>f:A\rightarrowtail B</math> or <math>f:A\hookrightarrow B</math>), although some authors specifically reserve ↪ for an [[inclusion map]].<ref>{{Cite web |title=What are usual notations for surjective, injective and bijective functions? |url=https://math.stackexchange.com/questions/46678/what-are-usual-notations-for-surjective-injective-and-bijective-functions |access-date=2024-11-24 |website=Mathematics Stack Exchange |language=en}}</ref> == Examples == ''For visual examples, readers are directed to the [[#Gallery|gallery section.]]'' * For any set <math>X</math> and any subset <math>S \subseteq X,</math> the [[inclusion map]] <math>S \to X</math> (which sends any element <math>s \in S</math> to itself) is injective. In particular, the [[identity function]] <math>X \to X</math> is always injective (and in fact bijective). * If the domain of a function is the [[empty set]], then the function is the [[empty function]], which is injective. * If the domain of a function has one element (that is, it is a [[singleton set]]), then the function is always injective. * The function <math>f : \R \to \R</math> defined by <math>f(x) = 2 x + 1</math> is injective. * The function <math>g : \R \to \R</math> defined by <math>g(x) = x^2</math> is {{em|not}} injective, because (for example) <math>g(1) = 1 = g(-1).</math> However, if <math>g</math> is redefined so that its domain is the non-negative real numbers <nowiki>[0,+∞)</nowiki>, then <math>g</math> is injective. * The [[exponential function]] <math>\exp : \R \to \R</math> defined by <math>\exp(x) = e^x</math> is injective (but not [[Surjective function|surjective]], as no real value maps to a negative number). * The [[natural logarithm]] function <math>\ln : (0, \infty) \to \R</math> defined by <math>x \mapsto \ln x</math> is injective. * The function <math>g : \R \to \R</math> defined by <math>g(x) = x^n - x</math> is not injective, since, for example, <math>g(0) = g(1) = 0.</math> More generally, when <math>X</math> and <math>Y</math> are both the [[real line]] <math>\R,</math> then an injective function <math>f : \R \to \R</math> is one whose graph is never intersected by any horizontal line more than once. This principle is referred to as the {{em|[[horizontal line test]]}}.<ref name=":0" /> == Injections can be undone == Functions with [[Inverse function#Left and right inverses|left inverses]] are always injections. That is, given <math>f : X \to Y,</math> if there is a function <math>g : Y \to X</math> such that for every <math>x \in X</math>, <math>g(f(x)) = x</math>, then <math>f</math> is injective. In this case, <math>g</math> is called a [[Retract (category theory)|retraction]] of <math>f.</math> Conversely, <math>f</math> is called a [[Retract (category theory)|section]] of <math>g.</math> Conversely, every injection <math>f</math> with a non-empty domain has a left inverse <math>g</math>. It can be defined by choosing an element <math>a</math> in the domain of <math>f</math> and setting <math>g(y)</math> to the unique element of the pre-image <math>f^{-1}[y]</math> (if it is non-empty) or to <math>a</math> (otherwise).{{refn|Unlike the corresponding statement that every surjective function has a right inverse, this does not require the [[axiom of choice]], as the existence of <math>a</math> is implied by the non-emptiness of the domain. However, this statement may fail in less conventional mathematics such as [[constructive mathematics]]. In constructive mathematics, the inclusion <math>\{ 0, 1 \} \to \R</math> of the two-element set in the reals cannot have a left inverse, as it would violate [[Indecomposability (constructive mathematics)|indecomposability]], by giving a [[Retract (category theory)|retraction]] of the real line to the set {0,1}.}} The left inverse <math>g</math> is not necessarily an [[Inverse function|inverse]] of <math>f,</math> because the composition in the other order, <math>f \circ g,</math> may differ from the identity on <math>Y.</math> In other words, an injective function can be "reversed" by a left inverse, but is not necessarily [[Inverse function|invertible]], which requires that the function is bijective. == Injections may be made invertible == In fact, to turn an injective function <math>f : X \to Y</math> into a bijective (hence invertible) function, it suffices to replace its codomain <math>Y</math> by its actual image <math>J = f(X).</math> That is, let <math>g : X \to J</math> such that <math>g(x) = f(x)</math> for all <math>x \in X</math>; then <math>g</math> is bijective. Indeed, <math>f</math> can be factored as <math>\operatorname{In}_{J,Y} \circ g,</math> where <math>\operatorname{In}_{J,Y}</math> is the [[inclusion function]] from <math>J</math> into <math>Y.</math> More generally, injective [[partial function]]s are called [[partial bijection]]s. == Other properties == {{See also|List of set identities and relations#Functions and sets}} [[Image:Injective composition2.svg|thumb|300px|The composition of two injective functions is injective.]] * If <math>f</math> and <math>g</math> are both injective then <math>f \circ g</math> is injective. * If <math>g \circ f</math> is injective, then <math>f</math> is injective (but <math>g</math> need not be). * <math>f : X \to Y</math> is injective if and only if, given any functions <math>g,</math> <math>h : W \to X</math> whenever <math>f \circ g = f \circ h,</math> then <math>g = h.</math> In other words, injective functions are precisely the [[monomorphism]]s in the [[category theory|category]] '''[[Category of sets|Set]]''' of sets. * If <math>f : X \to Y</math> is injective and <math>A</math> is a [[subset]] of <math>X,</math> then <math>f^{-1}(f(A)) = A.</math> Thus, <math>A</math> can be recovered from its [[Image (function)|image]] <math>f(A).</math> * If <math>f : X \to Y</math> is injective and <math>A</math> and <math>B</math> are both subsets of <math>X,</math> then <math>f(A \cap B) = f(A) \cap f(B).</math> * Every function <math>h : W \to Y</math> can be decomposed as <math>h = f \circ g</math> for a suitable injection <math>f</math> and surjection <math>g.</math> This decomposition is unique [[up to isomorphism]], and <math>f</math> may be thought of as the [[inclusion function]] of the range <math>h(W)</math> of <math>h</math> as a subset of the codomain <math>Y</math> of <math>h.</math> * If <math>f : X \to Y</math> is an injective function, then <math>Y</math> has at least as many elements as <math>X,</math> in the sense of [[cardinal number]]s. In particular, if, in addition, there is an injection from <math>Y</math> to <math>X,</math> then <math>X</math> and <math>Y</math> have the same cardinal number. (This is known as the [[Cantor–Bernstein–Schroeder theorem]].) * If both <math>X</math> and <math>Y</math> are [[Finite set|finite]] with the same number of elements, then <math>f : X \to Y</math> is injective if and only if <math>f</math> is surjective (in which case <math>f</math> is bijective). * An injective function which is a homomorphism between two algebraic structures is an [[embedding]]. * Unlike surjectivity, which is a relation between the graph of a function and its codomain, injectivity is a property of the graph of the function alone; that is, whether a function <math>f</math> is injective can be decided by only considering the graph (and not the codomain) of <math>f.</math> == Proving that functions are injective == A proof that a function <math>f</math> is injective depends on how the function is presented and what properties the function holds. For functions that are given by some formula there is a basic idea. We use the definition of injectivity, namely that if <math>f(x) = f(y),</math> then <math>x = y.</math><ref>{{cite web|last=Williams|first=Peter|title=Proving Functions One-to-One|url=http://www.math.csusb.edu/notes/proofs/bpf/node4.html |date=Aug 21, 1996 |website=Department of Mathematics at CSU San Bernardino Reference Notes Page |archive-date= 4 June 2017|archive-url=https://web.archive.org/web/20170604162511/http://www.math.csusb.edu/notes/proofs/bpf/node4.html}}</ref> Here is an example: <math display="block">f(x) = 2 x + 3</math> Proof: Let <math>f : X \to Y.</math> Suppose <math>f(x) = f(y).</math> So <math>2 x + 3 = 2 y + 3</math> implies <math>2 x = 2 y,</math> which implies <math>x = y.</math> Therefore, it follows from the definition that <math>f</math> is injective. There are multiple other methods of proving that a function is injective. For example, in calculus if <math>f</math> is a differentiable function defined on some interval, then it is sufficient to show that the derivative is always positive or always negative on that interval. In linear algebra, if <math>f</math> is a linear transformation it is sufficient to show that the kernel of <math>f</math> contains only the zero vector. If <math>f</math> is a function with finite domain it is sufficient to look through the list of images of each domain element and check that no image occurs twice on the list. A graphical approach for a real-valued function <math>f</math> of a real variable <math>x</math> is the [[horizontal line test]]. If every horizontal line intersects the curve of <math>f(x)</math> in at most one point, then <math>f</math> is injective or one-to-one. ==Gallery== {{Gallery |perrow=4 |align=center |Image:Injection.svg|An '''injective''' non-surjective function (injection, not a bijection) |Image:Bijection.svg|An '''injective''' surjective function (bijection) |Image:Surjection.svg|A non-injective surjective function (surjection, not a bijection) |Image:Not-Injection-Surjection.svg|A non-injective non-surjective function (also not a bijection) }} {{Gallery |perrow=3 |align=center |Image:Non-injective function1.svg|Not an injective function. Here <math>X_1</math> and <math>X_2</math> are subsets of <math>X, Y_1</math> and <math>Y_2</math> are subsets of <math>Y</math>: for two regions where the function is not injective because more than one domain [[Element (mathematics)|element]] can map to a single range element. That is, it is possible for {{em|more than one}} <math>x</math> in <math>X</math> to map to the {{em|same}} <math>y</math> in <math>Y.</math> |Image:Non-injective function2.svg|Making functions injective. The previous function <math>f : X \to Y</math> can be reduced to one or more injective functions (say) <math>f : X_1 \to Y_1</math> and <math>f : X_2 \to Y_2,</math> shown by solid curves (long-dash parts of initial curve are not mapped to anymore). Notice how the rule <math>f</math> has not changed – only the domain and range. <math>X_1</math> and <math>X_2</math> are subsets of <math>X, Y_1</math> and <math>Y_2</math> are subsets of <math>Y</math>: for two regions where the initial function can be made injective so that one domain element can map to a single range element. That is, only one <math>x</math> in <math>X</math> maps to one <math>y</math> in <math>Y.</math> |Image:Injective function.svg|Injective functions. Diagramatic interpretation in the [[Cartesian plane]], defined by the [[Map (mathematics)|mapping]] <math>f : X \to Y,</math> where <math>y = f(x),</math> {{nowrap|<math>X =</math> domain of function}}, {{nowrap|<math>Y = </math> [[range of a function|range of function]]}}, and <math>\operatorname{im}(f)</math> denotes image of <math>f.</math> Every one <math>x</math> in <math>X</math> maps to exactly one unique <math>y</math> in <math>Y.</math> The circled parts of the axes represent domain and range sets— in accordance with the standard diagrams above }} == See also == * {{Annotated link|Bijection, injection and surjection}} * {{Annotated link|Injective metric space}} * {{Annotated link|Monotonic function}} * {{Annotated link|Univalent function}} == Notes == {{Reflist|group=note}} {{Reflist}} == References == * {{Citation|last1=Bartle|first1=Robert G.|title=The Elements of Real Analysis|publisher=[[John Wiley & Sons]]|location=New York|edition=2nd|isbn=978-0-471-05464-1|year=1976}}, p. 17 ''ff''. * {{Citation|last1=Halmos|first1=Paul R.|author1-link=Paul R. Halmos|title=[[Naive Set Theory (book)|Naive Set Theory]]|isbn=978-0-387-90092-6|year=1974|publisher=Springer|location=New York}}, p. 38 ''ff''. == External links == {{Commons category|Injectivity}} {{Wiktionary|injective}} * [http://jeff560.tripod.com/i.html Earliest Uses of Some of the Words of Mathematics: entry on Injection, Surjection and Bijection has the history of Injection and related terms.] * [http://www.khanacademy.org/math/linear-algebra/v/surjective--onto--and-injective--one-to-one--functions Khan Academy – Surjective (onto) and Injective (one-to-one) functions: Introduction to surjective and injective functions] {{Mathematical logic}} {{Authority control}} [[Category:Functions and mappings]] [[Category:Basic concepts in set theory]] [[Category:Types of functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Cite web
(
edit
)
Template:Commons category
(
edit
)
Template:Em
(
edit
)
Template:Functions
(
edit
)
Template:Further
(
edit
)
Template:Gallery
(
edit
)
Template:Math
(
edit
)
Template:Mathematical logic
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)
Template:Refn
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Slink
(
edit
)
Template:Wiktionary
(
edit
)