Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse function rule
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Formula for the derivative of an inverse function}} {{about|the computation of the derivative of an invertible function|a condition on which a function is invertible|Inverse function theorem}} {{refimprove|date=January 2022}} [[File:Umkehrregel 2.png|thumb|right|250px|The thick blue curve and the thick red curve are inverse to each other. A thin curve is the derivative of the same colored thick curve. Inverse function rule:<br><math>{\color{CornflowerBlue}{f'}}(x) = \frac{1}{{\color{Salmon}{(f^{-1})'}}({\color{Blue}{f}}(x))}</math><br><br>Example for arbitrary <math>x_0 \approx 5.8</math>:<br><math>{\color{CornflowerBlue}{f'}}(x_0) = \frac{1}{4}</math><br><math>{\color{Salmon}{(f^{-1})'}}({\color{Blue}{f}}(x_0)) = 4~</math>]] {{calculus|expanded=differential}} In [[calculus]], the '''inverse function rule''' is a [[formula]] that expresses the [[derivative]] of the [[inverse function|inverse]] of a [[bijective]] and [[differentiable function]] {{Mvar|f}} in terms of the derivative of {{Mvar|f}}. More precisely, if the inverse of <math>f</math> is denoted as <math>f^{-1}</math>, where <math>f^{-1}(y) = x</math> if and only if <math>f(x) = y</math>, then the inverse function rule is, in [[Lagrange's notation]], :<math>\left[f^{-1}\right]'(y)=\frac{1}{f'\left( f^{-1}(y) \right)}</math>. This formula holds in general whenever <math>f</math> is [[continuous function|continuous]] and [[Injective function|injective]] on an interval {{Mvar|I}}, with <math>f</math> being differentiable at <math>f^{-1}(y)</math>(<math>\in I</math>) and where<math>f'(f^{-1}(y)) \ne 0</math>. The same formula is also equivalent to the expression :<math>\mathcal{D}\left[f^{-1}\right]=\frac{1}{(\mathcal{D} f)\circ \left(f^{-1}\right)},</math> where <math>\mathcal{D}</math> denotes the unary derivative operator (on the space of functions) and <math>\circ</math> denotes [[function composition]]. Geometrically, a function and inverse function have [[graph of a function|graphs]] that are [[Reflection (mathematics)|reflection]]s, in the line <math>y=x</math>. This reflection operation turns the [[slope|gradient]] of any line into its [[Multiplicative inverse|reciprocal]].<ref>{{Cite web|url=https://oregonstate.edu/instruct/mth251/cq/Stage6/Lesson/inverseDeriv.html|title=Derivatives of Inverse Functions|website=oregonstate.edu|access-date=2019-07-26 |archive-url=https://web.archive.org/web/20210410154136/https://oregonstate.edu/instruct/mth251/cq/Stage6/Lesson/inverseDeriv.html |archive-date=2021-04-10 |url-status=dead}}</ref> Assuming that <math>f</math> has an inverse in a [[neighborhood (mathematics)|neighbourhood]] of <math>x</math> and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at <math>x</math> and have a derivative given by the above formula. The inverse function rule may also be expressed in [[Leibniz's notation]]. As that notation suggests, :<math>\frac{dx}{dy}\,\cdot\, \frac{dy}{dx} = 1.</math> This relation is obtained by differentiating the equation <math>f^{-1}(y)=x</math> in terms of {{Mvar|x}} and applying the [[chain rule]], yielding that: :<math>\frac{dx}{dy}\,\cdot\, \frac{dy}{dx} = \frac{dx}{dx}</math> considering that the derivative of {{Mvar|x}} with respect to ''{{Mvar|x}}'' is 1. == Derivation == Let <math>f</math> be an invertible (bijective) function, let <math>x</math> be in the domain of <math>f</math>, and let <math>y=f(x).</math> Let <math>g=f^{-1}.</math> So, <math>f(g(y))=y.</math> Derivating this equation with respect to {{tmath|y}}, and using the [[chain rule]], one gets :<math>f'(g(y))\cdot g'(y)=1.</math> That is, :<math>g'(y)=\frac 1 {f'(g(y))}</math> or :<math> (f^{-1})^{\prime}(y) = \frac{1}{f^{\prime}(f^{-1}(y))}. </math> ==Examples== * <math>y = x^2</math> (for positive {{Mvar|x}}) has inverse <math>x = \sqrt{y}</math>. :<math> \frac{dy}{dx} = 2x \mbox{ }\mbox{ }\mbox{ }\mbox{ }; \mbox{ }\mbox{ }\mbox{ }\mbox{ } \frac{dx}{dy} = \frac{1}{2\sqrt{y}}=\frac{1}{2x} </math> :<math> \frac{dy}{dx}\,\cdot\,\frac{dx}{dy} = 2x \cdot\frac{1}{2x} = 1. </math> At <math>x=0</math>, however, there is a problem: the graph of the square root function becomes vertical, corresponding to a horizontal tangent for the square function. * <math>y = e^x</math> (for real {{Mvar|x}}) has inverse <math>x = \ln{y}</math> (for positive <math>y</math>) :<math> \frac{dy}{dx} = e^x \mbox{ }\mbox{ }\mbox{ }\mbox{ }; \mbox{ }\mbox{ }\mbox{ }\mbox{ } \frac{dx}{dy} = \frac{1}{y} = e^{-x} </math> :<math> \frac{dy}{dx}\,\cdot\,\frac{dx}{dy} = e^x \cdot e^{-x} = 1. </math> ==Additional properties== * [[Integral|Integrating]] this relationship gives ::<math>{f^{-1}}(x)=\int\frac{1}{f'({f^{-1}}(x))}\,{dx} + C.</math> :This is only useful if the integral exists. In particular we need <math>f'(x)</math> to be non-zero across the range of integration. :It follows that a function that has a [[continuous function|continuous]] derivative has an inverse in a [[neighbourhood (mathematics)|neighbourhood]] of every point where the derivative is non-zero. This need not be true if the derivative is not continuous. * Another very interesting and useful property is the following: ::<math> \int f^{-1}(x)\, {dx} = x f^{-1}(x) - F(f^{-1}(x)) + C </math> :Where <math> F </math> denotes the antiderivative of <math> f </math>. * The inverse of the derivative of f(x) is also of interest, as it is used in showing the convexity of the [[Legendre transformation|Legendre transform]]. Let <math> z = f'(x)</math> then we have, assuming <math> f''(x) \neq 0</math>:<math display="block"> \frac{d(f')^{-1}(z)}{dz} = \frac{1}{f''(x)}</math>This can be shown using the previous notation <math> y = f(x)</math>. Then we have: :<math display="block"> f'(x) = \frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx} = \frac{dy}{dz} f''(x) \Rightarrow \frac{dy}{dz} = \frac{f'(x) }{f''(x)}</math>Therefore: :<math> \frac{d(f')^{-1}(z)}{dz} = \frac{dx}{dz} = \frac{dy}{dz}\frac{dx}{dy} = \frac{f'(x)}{f''(x)}\frac{1}{f'(x)} = \frac{1}{f''(x)}</math> By induction, we can generalize this result for any integer <math> n \ge 1</math>, with <math> z = f^{(n)}(x)</math>, the nth derivative of f(x), and <math> y = f^{(n-1)}(x)</math>, assuming <math> f^{(i)}(x) \neq 0 \text{ for } 0 < i \le n+1 </math>: :<math> \frac{d(f^{(n)})^{-1}(z)}{dz} = \frac{1}{f^{(n+1)}(x)}</math> ==Higher derivatives== The [[chain rule]] given above is obtained by differentiating the identity <math>f^{-1}(f(x))=x</math> with respect to {{Mvar|x}}. One can continue the same process for higher derivatives. Differentiating the identity twice with respect to ''{{Mvar|x}}'', one obtains :<math> \frac{d^2y}{dx^2}\,\cdot\,\frac{dx}{dy} + \frac{d}{dx} \left(\frac{dx}{dy}\right)\,\cdot\,\left(\frac{dy}{dx}\right) = 0, </math> that is simplified further by the chain rule as :<math> \frac{d^2y}{dx^2}\,\cdot\,\frac{dx}{dy} + \frac{d^2x}{dy^2}\,\cdot\,\left(\frac{dy}{dx}\right)^2 = 0.</math> Replacing the first derivative, using the identity obtained earlier, we get :<math> \frac{d^2y}{dx^2} = - \frac{d^2x}{dy^2}\,\cdot\,\left(\frac{dy}{dx}\right)^3. </math> Similarly for the third derivative: :<math> \frac{d^3y}{dx^3} = - \frac{d^3x}{dy^3}\,\cdot\,\left(\frac{dy}{dx}\right)^4 - 3 \frac{d^2x}{dy^2}\,\cdot\,\frac{d^2y}{dx^2}\,\cdot\,\left(\frac{dy}{dx}\right)^2</math> or using the formula for the second derivative, :<math> \frac{d^3y}{dx^3} = - \frac{d^3x}{dy^3}\,\cdot\,\left(\frac{dy}{dx}\right)^4 + 3 \left(\frac{d^2x}{dy^2}\right)^2\,\cdot\,\left(\frac{dy}{dx}\right)^5</math> These formulas are generalized by the [[FaΓ di Bruno's formula]]. These formulas can also be written using Lagrange's notation. If ''{{Mvar|f}}'' and ''{{Mvar|g}}'' are inverses, then :<math> g''(x) = \frac{-f''(g(x))}{[f'(g(x))]^3}</math> ==Example== * <math>y = e^x</math> has the inverse <math>x = \ln y</math>. Using the formula for the second derivative of the inverse function, :<math> \frac{dy}{dx} = \frac{d^2y}{dx^2} = e^x = y \mbox{ }\mbox{ }\mbox{ }\mbox{ }; \mbox{ }\mbox{ }\mbox{ }\mbox{ } \left(\frac{dy}{dx}\right)^3 = y^3;</math> so that :<math> \frac{d^2x}{dy^2}\,\cdot\,y^3 + y = 0 \mbox{ }\mbox{ }\mbox{ }\mbox{ }; \mbox{ }\mbox{ }\mbox{ }\mbox{ } \frac{d^2x}{dy^2} = -\frac{1}{y^2} </math>, which agrees with the direct calculation. ==See also== {{Portal|Mathematics}} * {{annotated link|Calculus}} * {{annotated link|Chain rule}} * {{annotated link|Differentiation of trigonometric functions}} * {{annotated link|Differentiation rules}} * {{annotated link|Implicit function theorem}} * {{annotated link|Integration of inverse functions}} * {{annotated link|Inverse function}} * {{annotated link|Inverse function theorem}} * {{annotated link|Table of derivatives}} * {{annotated link|Vector calculus identities}} ==References== {{Reflist}} * {{Cite book|last=Marsden|first=Jerrold E.|url=https://authors.library.caltech.edu/25054/10/CalcUch8-invfunc-chainrule.pdf|title=Calculus unlimited|date=1981|publisher=Benjamin/Cummings Pub. Co|first2=Alan |last2=Weinstein|isbn=0-8053-6932-5|location=Menlo Park, Calif.|chapter=Chapter 8: Inverse Functions and the Chain Rule}} {{Calculus topics}} [[Category:Articles containing proofs]] [[Category:Differentiation rules]] [[Category:Inverse functions]] [[Category:Theorems in mathematical analysis]] [[Category:Theorems in calculus]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Annotated link
(
edit
)
Template:Bigger
(
edit
)
Template:Calculus
(
edit
)
Template:Calculus topics
(
edit
)
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Endflatlist
(
edit
)
Template:Mvar
(
edit
)
Template:Portal
(
edit
)
Template:Refimprove
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Startflatlist
(
edit
)
Template:Tmath
(
edit
)