Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Isomerization
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Transformation of the chemical structure of a molecule or ion}} In [[chemistry]], '''isomerization''' or '''isomerisation''' is the process in which a [[molecule]], [[polyatomic ion]] or molecular fragment is transformed into an [[isomer]] with a different [[chemical structure]].<ref>{{GoldBookRef |title= isomerization |file= I03295}}</ref> [[Enolization]] is an example of isomerization, as is [[tautomer]]ization.<ref>{{cite book |author=Antonov L |title=Tautomerism: Concepts and Applications in Science and Technology |edition=1st |publisher=Wiley-VCH |location=Weinheim, Germany |year=2016 |isbn=978-3-527-33995-2}}</ref> When the [[activation energy]] for the isomerization reaction is sufficiently small, both isomers can often be observed and the equilibrium ratio will shift in a temperature-dependent [[Chemical equilibrium|equilibrium]] with each other. Many values of the standard [[Thermodynamic free energy|free energy]] difference, <math>\Delta G^\circ</math>, have been calculated, with good agreement between observed and calculated data.<ref>''How to Compute Isomerization Energies of Organic Molecules with Quantum Chemical Methods'' [[Stefan Grimme]], Marc Steinmetz, and Martin Korth [[J. Org. Chem.]]; '''2007'''; 72(6) pp 2118 - 2126; (Article) {{doi|10.1021/jo062446p}}</ref> ==Examples and applications== ===Alkanes=== Skeletal isomerization occurs in the [[Cracking (chemistry)|cracking]] process, used in the [[petrochemical]] industry to convert straight chain alkanes to [[isoparaffin]]s as exemplified in the conversion of [[Octane|normal octane]] to [[2,5-Dimethylhexane|2,5-dimethylhexane]] (an "isoparaffin"):<ref name=Ullmann>{{cite book |doi=10.1002/14356007.a18_051 |chapter=Oil Refining |title=Ullmann's Encyclopedia of Industrial Chemistry |date=2000 |last1=Irion |first1=Walther W. |last2=Neuwirth |first2=Otto S. |isbn=3-527-30673-0 }}</ref> :[[File:Paraffintoisoparaffin.svg|center]] Fuels containing branched [[hydrocarbon]]s are favored for internal combustion engines for their higher [[octane rating]].<ref>{{cite encyclopedia |author=Karl Griesbaum |author2=Arno Behr |author3=Dieter Biedenkapp |author4=Heinz-Werner Voges |author5=Dorothea Garbe |author6=Christian Paetz |author7=Gerd Collin |author8=Dieter Mayer |author9=Hartmut Höke |title=Hydrocarbons|encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry|year=2002|publisher=Wiley-VCH|place=Weinheim|doi=10.1002/14356007.a13_227|isbn=3-527-30673-0 }}</ref> Diesel engines however operate better with straight-chain hydrocarbons. ===Alkenes=== ====Cis vs trans==== Trans-alkenes are about 1 kcal/mol more stable than cis-alkenes. An example of this effect is cis- vs trans-2-butene. The difference is attributed to unfavorable non-bonded interactions in the cis isomer. This effects helps to explain the formation of trans-fats in food processing. In some cases, the isomerization can be reversed using UV-light. The ''trans'' isomer of [[resveratrol]] converts to the ''cis'' isomer in a [[photochemical reaction]].<ref>{{cite journal|title=Resveratrol Photoisomerization: An Integrative Guided-Inquiry Experiment'|author=Elyse Bernard, Philip Britz-McKibbin, Nicholas Gernigon|volume=84|year=2007|journal=Journal of Chemical Education|issue=7 |page=1159|doi=10.1021/ed084p1159 }}</ref> :[[File:Rasveratrol isomerization-en.svg|400px|Resveratrol photoisomerization]] ====Terminal vs internal==== Terminal alkenes prefer to isomerize to internal alkenes: :{{chem2|H2C\dCHCH2CH3 -> CH3CH\dCHCH3}} The conversion essentially does not occur in the absence of metal catalysts. This process is employed in the [[Shell higher olefin process]] to convert alpha-olefins to internal olefins, which are subjected to [[olefin metathesis]]. ===Other organic examples=== Isomerism is a major topic in sugar chemistry. [[Glucose]], the most common sugar, exists in four forms. {| class="wikitable centered" |- style="background:#FFDEAD;" ! colspan="3"| Isomers of {{sm|d}}-glucose |- class="background color5" |- class="background color2" | align="center" | [[File:Alpha-D-Glucofuranose.svg|120px|class=skin-invert-image]]{{pb}}α-{{sm|d}}-glucofuranose | align="center" | [[File:Beta-D-Glucofuranose.svg|120px|class=skin-invert-image]]{{pb}}β-{{sm|d}}-glucofuranose |- class="background color2" | align="center" | [[File:Alpha-D-Glucopyranose.svg|100px|class=skin-invert-image]]{{pb}}α-{{sm|d}}-glucopyranose | align="center" | [[File:Beta-D-Glucopyranose.svg|100px|class=skin-invert-image]]{{pb}}β-{{sm|d}}-glucopyranose |- class="background color5" |- class="background color2" |} [[Aldose-ketose isomerization|Aldose-ketose isomerism]], also known as Lobry de Bruyn–van Ekenstein transformation, provides an example in [[saccharide chemistry]].{{Citation needed|date=September 2021}} :[[Image:Lobry-de-Bruyn-Alberda-van-Ekenstein-Umlagerung.svg|500px|center]] ===Inorganic and organometallic chemistry=== :[[File:Fp2-isomerization.png|frameless|440x440px|center]] The compound with the formula [[Cyclopentadienyliron dicarbonyl dimer|{{chem2|(C5H5)2Fe2(CO)4}}]] exists as three isomers in solution. In one isomer the CO ligands are terminal. When a pair of CO are [[bridging ligand|bridging]], cis and trans isomers are possible depending on the location of the [[cyclopentadienyl ligand|C<sub>5</sub>H<sub>5</sub> groups]].<ref name=":2">{{Cite journal|last1=Harris|first1=Daniel C.|last2=Rosenberg|first2=Edward|last3=Roberts|first3=John D.|date=1974|title=Carbon-13 nuclear magnetic resonance spectra and mechanism of bridge–terminal carbonyl exchange in di-''µ''-carbonyl-bis[carbonyl(''η''-cyclopentadienyl)iron](Fe–Fe) [{(''η''-C<sub>5</sub>H<sub>5</sub>)Fe(CO)<sub>2</sub>}<sub>2</sub>]; ''cd''-di-''µ''-carbonyl-''f''-carbonyl-''ae''-di(''η''-cyclopentadienyl)-''b''-(triethyl-phosphite)di-iron(Fe–Fe) [(''η''-C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>Fe<sub>2</sub>(CO)<sub>3</sub>P(OEt)<sub>3</sub>], and some related complexes|journal=Journal of the Chemical Society: Dalton Transactions|language=en|issue=22|pages=2398–2403|doi=10.1039/DT9740002398|issn=0300-9246|url=https://authors.library.caltech.edu/12272/1/HARjcsdt74.pdf}}</ref> Another example in [[organometallic chemistry]] is the [[linkage isomer]]ization of decaphenylferrocene, {{chem2|[(\h{5}C5[[phenyl|Ph]]5)2Fe]}}.<ref>{{cite journal|last1=Brown|first1=K. N.|last2=Field|first2=L. D.|last3=Lay|first3=P. A.|last4=Lindall|first4=C. M.|last5=Masters|first5=A. F.|title=(η<sup>5</sup>-Pentaphenylcyclopentadienyl){1-(η<sup>6</sup>-phenyl)-2,3,4,5-tetraphenylcyclopentadienyl}iron(II), [Fe(η<sup>5</sup>-C<sub>5</sub>Ph<sub>5</sub>){(η<sup>6</sup>-C<sub>6</sub>H<sub>5</sub>)C<sub>5</sub>Ph<sub>4</sub>}], a linkage isomer of decaphenylferrocene|journal=[[Chemical Communications|J. Chem. Soc., Chem. Commun.]]|issue=5|pages=408–410|year=1990|doi=10.1039/C39900000408}}</ref><ref>{{cite journal|last1=Field|first1=L. D.|last2=Hambley|first2=T. W.|last3=Humphrey|first3=P. A.|last4=Lindall|first4=C. M.|last5=Gainsford|first5=G. J.|last6=Masters|first6=A. F.|last7=Stpierre|first7=T. G.|last8=Webb|first8=J.|title=Decaphenylferrocene|journal=Aust. J. Chem.|volume=48|issue=4|pages=851–860|year=1995|doi=10.1071/CH9950851}}</ref> [[File:Formation of decaphenylferrocene from its linkage isomer.svg|380px|center|Formation of decaphenylferrocene from its linkage isomer]] == Kinetic classification == From the [[Chemical kinetics|kinetic viewpoint]], isomerizations can be classified into two categories.<ref>{{Cite book |last=Arnaut |first=Luís G. |url=https://www.worldcat.org/title/on1063653763 |title=Chemical kinetics: from molecular structure to chemical reactivity |date=2021 |publisher=Elsevier |isbn=978-0-444-64039-0 |edition=Second |location=Amsterdam, Netherlands ; Cambridge, MA |oclc=on1063653763}}</ref> Cases in the first category involve transformations between equivalent structures. Most chemical species are in principle susceptible to such processes. Many such cases involve [[Fluxional molecule|fluxional molecules]], such as the [[Cyclohexane conformation|cyclohexane ring flip]] (chair inversion), the [[pyramidal inversion]] of ammonia, the [[Berry mechanism|Berry pseudorotation]] in pentacoordinate compounds (e.g. PF<sub>5</sub>, Fe(CO)<sub>5</sub>), the [[Bullvalene|Cope rearrangements of bullvalene]] or the [[Ray–Dutt twist|Ray-Dutt]]/[[Bailar twist|Bailar twists]] for the racemization of octahedral complexes with three bidentate chelate rings ([[Axial chirality|helical chirality]]). In the second broad category of isomerizations, the isomers are nonequivalent. Examples include [[Tautomer|tautomerizations]] ([[Enol|keto-enol]], [[Lactam|lactam-lactim]], [[Imidic acid|amide-imidic]], [[Enamine|enamine-imine]], [[Nitroso|nitroso-oxime]], [[Ketene|ketene-ynol]], etc) in which one isomer is more stable than the other. [[File:Concentration_profile_for_the_scheme_A_=_B_when_k1_=_k2.png|thumb|Concentration profile for the reaction mechanism A = B when k1 = k2]] This scheme leads to the following system of differential [[Rate equation|rate equations]]: ==See also== *[[Base-promoted epoxide isomerization]] *[[Epimerization]] *[[Racemization]] *[[Tautomerization]] *[[Linkage isomerism]] ==References== {{Reflist}} {{Reaction mechanisms}} [[Category:Chemical reactions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Chem2
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite encyclopedia
(
edit
)
Template:Cite journal
(
edit
)
Template:Doi
(
edit
)
Template:GoldBookRef
(
edit
)
Template:Pb
(
edit
)
Template:Reaction mechanisms
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Sm
(
edit
)