Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kaiser window
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Used in finite impulse response filter design and spectral analysis}} [[Image:KaiserWindow.svg|right|thumb|401px|The Kaiser window for several values of its parameter]] The '''Kaiser window''', also known as the '''Kaiser–Bessel window''', was developed by [[James Kaiser]] at [[Bell Laboratories]]. It is a one-parameter family of [[window function]]s used in [[finite impulse response]] [[filter design]] and [[spectral estimation|spectral analysis]]. The Kaiser window approximates the [[DPSS window]] which [[Spectral concentration problem|maximizes the energy concentration in the main lobe]]<ref>{{Cite web |url=https://ccrma.stanford.edu/~jos/sasp/Slepian_DPSS_Window.html |title=Slepian or DPSS Window |website=ccrma.stanford.edu |access-date=2016-04-13}}</ref> but which is difficult to compute.<ref>{{cite book |author1=Oppenheim, A. V. |author2=Schafer, R. W. |title=Discrete-time signal processing |location=Upper Saddle River, N.J. |publisher=Prentice Hall |year=2009 |page=541 |isbn=9780131988422}}</ref> ==Definition== The Kaiser window and its Fourier transform are given by''':''' :<math> w_0(x) \triangleq \left\{ \begin{array}{ccl} \tfrac{1}{L}\frac{I_0\left[\pi\alpha \sqrt{1 - \left(2x/L\right)^2}\right]}{I_0[\pi\alpha]},\quad &\left|x\right| \leq L/2\\ 0,\quad &\left|x\right| > L/2 \end{array}\right\} \quad \stackrel{\mathcal{F}}{\Longleftrightarrow}\quad \frac{\sin\bigg(\sqrt{(\pi L f)^2-(\pi \alpha)^2}\bigg)} {I_0(\pi \alpha)\cdot \sqrt{(\pi L f)^2-(\pi \alpha)^2}}, </math> <ref>{{cite journal | doi =10.1109/TASSP.1981.1163506 | last =Nuttall | first =Albert H. | title =Some Windows with Very Good Sidelobe Behavior | journal =IEEE Transactions on Acoustics, Speech, and Signal Processing | volume =29 | issue =1 | page =89 (eq.38) | date =Feb 1981 | url =https://zenodo.org/record/1280930 }}</ref>{{efn-ua |An equivalent formula is''':'''<ref> {{cite web| url=https://ccrma.stanford.edu/~jos/sasp/Kaiser_Window.html | website=ccrma.stanford.edu | title=Kaiser Window in Spectral Audio Signal Processing, eq.(4.40 & 4.42) | last=Smith | first=J.O. | date=2011 | access-date=2022-01-01}} where <math>\beta \triangleq \pi \alpha,\ \omega \triangleq 2 \pi f,\ M=L.</math></ref> :<math>\frac{\sinh\bigg(\sqrt{(\pi \alpha)^2 - (\pi L f)^2}\bigg)} {I_0(\pi \alpha)\cdot \sqrt{(\pi \alpha)^2 - (\pi L f)^2}}.</math> }} [[Image:Kaiser-Window-Spectra.svg|right|thumb|401px|Fourier transforms of two Kaiser windows]] where''':''' * {{math|''I<sub>0</sub>''}} is the zeroth-order [[Modified_Bessel_function#Modified_Bessel_functions:_Iα,_Kα|modified Bessel function]] of the first kind, * {{mvar|L}} is the window duration, and * {{math|α}} is a non-negative real number that determines the shape of the window. In the frequency domain, it determines the trade-off between main-lobe width and side lobe level, which is a central decision in window design. * Sometimes the Kaiser window is parametrized by {{math|β}}, where {{math|β {{=}} πα}}. For [[digital signal processing]], the function can be sampled symmetrically as''':''' :<math>w[n] = L\cdot w_0\left(\tfrac{L}{N} (n-N/2)\right) = \frac{I_0\left[\pi\alpha \sqrt{1 - \left(\frac{2n}{N}-1\right)^2}\right]}{I_0[\pi\alpha]},\quad 0 \leq n \leq N,</math> where the length of the window is <math>N+1,</math> and N can be even or odd. (see [[Window_function#Examples of window functions|A list of window functions]]) In the Fourier transform, the first null after the main lobe occurs at <math>f = \tfrac{\sqrt{1+\alpha^2}}{L},</math> which is just <math>\sqrt{1+\alpha^2}</math> in units of N ([[Normalized_frequency_(signal_processing)|DFT "bins"]]). As ''α'' increases, the main lobe increases in width, and the side lobes decrease in amplitude. {{math|α}} = 0 corresponds to a rectangular window. For large {{math|α,}} the shape of the Kaiser window (in both time and frequency domain) tends to a [[Gaussian function|Gaussian]] curve. The Kaiser window is nearly optimal in the sense of its peak's concentration around frequency <math>0.</math><ref name=Oppenheim> {{Cite book |last=Oppenheim |first=Alan V. |authorlink=Alan V. Oppenheim |last2=Schafer |first2=Ronald W. |author2-link=Ronald W. Schafer |last3=Buck |first3=John R. |title=Discrete-time signal processing |year=1999 |publisher=Prentice Hall |location=Upper Saddle River, N.J. |isbn=0-13-754920-2 |edition=2nd |chapter=7.2 |page=[https://archive.org/details/discretetimesign00alan/page/474 474] |quote=a near-optimal window could be formed using the zeroth-order modified Bessel function of the first kind |url-access=registration |url=https://archive.org/details/discretetimesign00alan }} </ref> {{clear}} ==Kaiser–Bessel-derived (KBD) window== [[File:Kbd-window.svg|right|401px]] A related window function is the '''Kaiser–Bessel-derived (KBD)''' window, which is designed to be suitable for use with the [[modified discrete cosine transform]] (MDCT). The KBD window function is defined in terms of the Kaiser window of length ''N''+1, by the formula''':''' :<math> d_n = \begin{cases} \sqrt{\frac{\sum_{i=0}^{n} w[i]} {\sum_{i=0}^N w[i]}} & \mbox{if } 0 \leq n < N \\ \sqrt{\frac{\sum_{i=0}^{2N-1-n} w[i]} {\sum_{i=0}^N w[i]}} & \mbox{if } N \leq n \leq 2N-1 \\ 0 & \mbox{otherwise}. \\ \end{cases} </math> This defines a window of length 2''N'', where by construction ''d''<sub>''n''</sub> satisfies the Princen-Bradley condition for the MDCT (using the fact that {{math|''w''{{sub|''N''−''n''}} {{=}} ''w''{{sub|''n''}}}}): {{math|''d''{{sub|''n''}}<sup>2</sup> + (''d''{{sub|''n''+''N''}})<sup>2</sup> {{=}} 1}} (interpreting ''n'' and ''n'' + ''N'' [[modular arithmetic|modulo]] 2''N''). The KBD window is also symmetric in the proper manner for the MDCT: ''d''<sub>''n''</sub> = ''d''<sub>2''N''−1−''n''</sub>. ===Applications=== The KBD window is used in the [[Advanced Audio Coding]] digital audio format. == Notes == {{notelist-ua}} ==References== <references /> ==Further reading== * {{cite journal |doi=10.1109/PROC.1978.10837 |last=Harris |first=Fredric J. |title=On the use of Windows for Harmonic Analysis with the Discrete Fourier Transform |journal=Proceedings of the IEEE |volume=66 |issue=1 |page=73 (eq 46b) |date=Jan 1978 |url=http://web.mit.edu/xiphmont/Public/windows.pdf|citeseerx=10.1.1.649.9880 }} * {{Cite journal |last1=Kaiser |first1=James F. |last2=Schafer |first2=Ronald W. |doi=10.1109/TASSP.1980.1163349 |title=On the use of the I<sub>0</sub>-sinh window for spectrum analysis |journal=IEEE Transactions on Acoustics, Speech, and Signal Processing |volume=28 |pages=105–107 |year=1980}} * {{Cite web|url=https://ccrma.stanford.edu/~jos/sasp/Kaiser_DPSS_Windows_Compared.html|website=ccrma.stanford.edu| title =Spectral Audio Signal Processing, Kaiser and DPSS Windows Compared | last =Smith | first =J.O. | date =2011 |access-date=2016-04-13}} * {{cite web| url =https://www.mathworks.com/help/signal/ug/kaiser-window.html | website=www.mathworks.com | title =Kaiser Window, R2018b | publisher =Mathworks | access-date =2019-03-20}} <!--This is a dead link {{cite web | url =http://ccrma.stanford.edu/courses/422/projects/kbd/Kaiser-Bessel | title =Music 422 / EE 367C: Perceptual Audio Coding | last =Sapp | first =Craig | date =2001 | publisher =Stanford University}}{{dead link|date=August 2020|bot=medic}}{{cbignore|bot=medic}}--> <!--This very old book doesn't even have an ISBN that I can find {{cite book | last1 = Kuo| first1 = Franklin F. | last2 = Kaiser| first2 = J. F. | title =System Analysis by Digital Computer | publisher =Wiley | date =1966 | location =New York | pages =438}}--> [[Category:Digital_signal processing]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Clear
(
edit
)
Template:Efn-ua
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Notelist-ua
(
edit
)
Template:Short description
(
edit
)