Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kappa curve
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
[[Image:Kappa curve with asymptotes - by Pt.png|frame|The kappa curve has two vertical [[asymptote]]s]] In [[geometry]], the '''kappa curve''' or '''Gutschoven's curve''' is a two-dimensional [[algebraic curve]] resembling the [[Greek alphabet|Greek letter]] {{not a typo|[[Kappa (letter)|{{math|ϰ}} (kappa)]]}}. The kappa curve was first studied by [[Gérard van Gutschoven]] around 1662. In the [[history of mathematics]], it is remembered as one of the first examples of [[Isaac Barrow]]'s application of rudimentary calculus methods to determine the [[tangent]] of a curve. [[Isaac Newton]] and [[Johann Bernoulli]] continued the studies of this curve subsequently. Using the [[Cartesian coordinate system]] it can be expressed as :<math>x^2\left(x^2 + y^2\right) = a^2y^2</math> or, using [[parametric equation]]s, :<math>\begin{align} x &= a\sin t,\\ y &= a\sin t\tan t. \end{align}</math> In [[polar coordinates]] its equation is even simpler: :<math>r = a\tan\theta.</math> It has two vertical [[asymptote]]s at {{math|''x'' {{=}} ±''a''}}, shown as dashed blue lines in the figure at right. The kappa curve's [[curvature]]: :<math>\kappa(\theta) = \frac{8\left(3 - \sin^2\theta\right)\sin^4\theta}{a \left(\sin^2(2\theta) + 4\right)^\frac32}.</math> [[Tangent]]ial angle: :<math>\phi(\theta) = -\arctan\left(\tfrac12 \sin(2\theta)\right).</math> ==Tangents via infinitesimals== The tangent lines of the kappa curve can also be determined geometrically using [[Differential (infinitesimal)|differentials]] and the elementary rules of [[infinitesimal]] arithmetic. Suppose {{mvar|x}} and {{mvar|y}} are variables, while a is taken to be a constant. From the definition of the kappa curve, :<math> x^2\left(x^2 + y^2\right)-a^2y^2 = 0 </math> Now, an infinitesimal change in our location must also change the value of the left hand side, so :<math>d \left(x^2\left(x^2 + y^2\right)-a^2y^2\right) = 0 </math> Distributing the differential and applying [[Differential (calculus)|appropriate rules]], :<math>\begin{align} d \left(x^2\left(x^2 + y^2\right)\right)-d \left(a^2y^2\right) &= 0 \\[6px] (2 x\,dx ) \left(x^2+y^2\right) + x^2 (2x\,dx + 2y\,dy) - a^2 2y\,dy &= 0 \\[6px] \left( 4 x^3 + 2 x y^2\right) dx + \left( 2 y x^2 - 2 a^2 y \right) dy &= 0 \\[6px] x \left( 2 x^2 + y^2 \right) dx + y \left(x^2 - a^2\right) dy &= 0 \\[6px] \frac{ x \left( 2 x^2 + y^2 \right) }{ y \left(a^2 - x^2\right)} &= \frac{dy}{dx} \end{align}</math> ==Derivative== If we use the modern concept of a functional relationship {{math|''y''(''x'')}} and apply [[implicit differentiation]], the slope of a tangent line to the kappa curve at a point {{math|(''x'',''y'')}} is: :<math>\begin{align} 2 x \left( x^2 + y^2 \right) + x^2 \left( 2x + 2 y \frac{dy}{dx} \right) &= 2 a^2 y \frac{dy}{dx} \\[6px] 2 x^3 + 2 x y^2 + 2 x^3 &= 2 a^2 y \frac{dy}{dx} - 2 x^2 y \frac{dy}{dx} \\[6px] 4 x^3 + 2 x y^2 &= \left(2 a^2 y - 2 x^2 y \right) \frac{dy}{dx} \\[6px] \frac{2 x^3 + x y^2}{a^2 y - x^2 y} &= \frac{dy}{dx} \end{align}</math> ==References== *{{Cite book|last=Lawrence|first=J. Dennis|title=A Catalog of Special Plane Curves|year=1972|publisher=Dover|location=New York|url=https://archive.org/details/catalogofspecial00lawr/page/n5/mode/2up|url-access=registration|pages=[https://archive.org/details/catalogofspecial00lawr/page/138/mode/2up 139–141]|isbn=0-486-60288-5}} ==External links== *{{MathWorld|title=Kappa curve|urlname=KappaCurve}} *[http://www-groups.dcs.st-and.ac.uk/~history/Java/Kappa.html A Java applet for playing with the curve] *{{MacTutor|class=Curves|id=Kappa|title=Kappa Curve}} [[Category:Quartic curves]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:MacTutor
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:Not a typo
(
edit
)
Template:SfnRef
(
edit
)