Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Killing spinor
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of Dirac operator eigenspinor}} '''Killing [[spinor]]''' is a term used in [[mathematics]] and [[physics]]. == Definition == By the more narrow definition, commonly used in mathematics, the term Killing spinor indicates those [[Twistor theory|twistor]] spinors which are also [[eigenspinor]]s of the [[Dirac operator]].<ref>{{cite journal|title=Der erste Eigenwert des Dirac Operators einer kompakten, Riemannschen Mannigfaltigkei nichtnegativer Skalarkrümmung|author=Th. Friedrich|journal=[[Mathematische Nachrichten]]|volume=97|year=1980|pages=117–146|doi=10.1002/mana.19800970111}}</ref><ref>{{cite journal|title=On the conformal relation between twistors and Killing spinors|author=Th. Friedrich|journal=Supplemento dei Rendiconti del Circolo Matematico di Palermo, Serie II|volume=22|year=1989|pages=59–75}}</ref><ref>{{cite journal|title=Spin manifolds, Killing spinors and the universality of Hijazi inequality|author=A. Lichnerowicz|author-link=André Lichnerowicz|journal=Lett. Math. Phys.|volume=13|year=1987|issue=4 |pages=331–334|doi=10.1007/bf00401162|bibcode = 1987LMaPh..13..331L |s2cid=121971999}}</ref> The term is named after [[Wilhelm Killing]]. Another equivalent definition is that Killing spinors are the solutions to the [[Killing equation]] for a so-called Killing number. More formally:<ref>{{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=[[American Mathematical Society]] |pages= 116–117| year=2000|isbn=978-0-8218-2055-1}} </ref> :A '''Killing spinor''' on a [[Riemannian manifold|Riemannian]] [[Spin structure|spin]] [[manifold]] ''M'' is a [[spinor field]] <math>\psi</math> which satisfies ::<math>\nabla_X\psi=\lambda X\cdot\psi</math> :for all [[tangent space|tangent vectors]] ''X'', where <math>\nabla</math> is the spinor [[covariant derivative]], <math>\cdot</math> is [[Clifford multiplication]] and <math>\lambda \in \mathbb{C}</math> is a constant, called the '''Killing number''' of <math>\psi</math>. If <math>\lambda=0</math> then the spinor is called a parallel spinor. == Applications == In physics, Killing spinors are used in [[supergravity]] and [[superstring theory]], in particular for finding solutions which preserve some [[supersymmetry]]. They are a special kind of spinor field related to [[Killing vector field]]s and [[Killing tensor]]s. == Properties == If <math>\mathcal{M}</math> is a manifold with a Killing spinor, then <math>\mathcal{M}</math> is an [[Einstein manifold]] with [[Ricci curvature]] <math>Ric=4(n-1)\alpha^2 </math>, where <math>\alpha</math> is the Killing constant.<ref>{{Cite journal |last=Bär |first=Christian |date=1993-06-01 |title=Real Killing spinors and holonomy |url=https://doi.org/10.1007/BF02102106 |journal=Communications in Mathematical Physics |language=en |volume=154 |issue=3 |pages=509–521 |doi=10.1007/BF02102106 |bibcode=1993CMaPh.154..509B |issn=1432-0916}}</ref> ===Types of Killing spinor fields=== If <math>\alpha</math> is purely imaginary, then <math>\mathcal{M}</math> is a [[noncompact|noncompact manifold]]; if <math>\alpha</math> is 0, then the spinor field is parallel; finally, if <math>\alpha</math> is real, then <math>\mathcal{M}</math> is compact, and the spinor field is called a ``real spinor field." ==References== {{Reflist}} ==Books== * {{Cite book | last1=Lawson | first1=H. Blaine | last2=Michelsohn | first2=Marie-Louise |author2-link=Marie-Louise Michelsohn| title=Spin Geometry | publisher=[[Princeton University Press]] | isbn=978-0-691-08542-5 | year=1989 }} * {{citation | last1=Friedrich|first1=Thomas| title = Dirac Operators in Riemannian Geometry| publisher=[[American Mathematical Society]] | year=2000|isbn=978-0-8218-2055-1}} ==External links== *[http://www.emis.de/journals/SC/2000/4/pdf/smf_sem-cong_4_35-52.pdf "Twistor and Killing spinors in Lorentzian geometry,"] by [[Helga Baum]] (PDF format) *[http://mathworld.wolfram.com/DiracOperator.html ''Dirac Operator'' From MathWorld] *[http://mathworld.wolfram.com/KillingsEquation.html ''Killing's Equation'' From MathWorld] *[https://web.archive.org/web/20041107222740/http://www.math.tu-berlin.de/~bohle/pub/dipl.ps ''Killing and Twistor Spinors on Lorentzian Manifolds,'' (paper by Christoph Bohle) (postscript format) ] [[Category:Riemannian geometry]] [[Category:Structures on manifolds]] [[Category:Supersymmetry]] [[Category:Spinors]] {{Riemannian-geometry-stub}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Reflist
(
edit
)
Template:Riemannian-geometry-stub
(
edit
)
Template:Short description
(
edit
)