Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Knuth's up-arrow notation
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Method of notation of very large integers}} {{pp|small=yes}} In [[mathematics]], '''Knuth's up-arrow notation''' is a method of notation for [[Large number|very large]] [[Integer|integers]], introduced by [[Donald Knuth]] in 1976.<ref>{{cite journal | last =Knuth | first = Donald E.| year=1976|title=Mathematics and Computer Science: Coping with Finiteness |journal=Science | volume=194|issue=4271| pages=1235–1242 | doi=10.1126/science.194.4271.1235 | pmid=17797067 |bibcode=1976Sci...194.1235K| s2cid = 1690489}}</ref> In his 1947 paper,<ref>{{cite journal | author= R. L. Goodstein | title= Transfinite Ordinals in Recursive Number Theory | journal= Journal of Symbolic Logic |date=Dec 1947 | volume= 12 | issue= 4 | pages= 123–129 | doi= 10.2307/2266486 | jstor= 2266486| s2cid= 1318943 }}</ref> [[R. L. Goodstein]] introduced the specific sequence of operations that are now called [[Hyperoperation|''hyperoperations'']]. Goodstein also suggested the Greek names [[tetration]], [[pentation]], etc., for the extended operations beyond [[exponentiation]]. The sequence starts with a [[unary operation]] (the [[successor function]] with ''n'' = 0), and continues with the [[binary operation]]s of [[addition]] (''n'' = 1), [[multiplication]] (''n'' = 2), [[exponentiation]] (''n'' = 3), [[tetration]] (''n'' = 4), [[pentation]] (''n'' = 5), etc. [[Hyperoperation#Notations|Various notations]] have been used to represent hyperoperations. One such notation is <math>H_n(a,b)</math>. Knuth's up-arrow notation <math>\uparrow</math> is another. For example: * the single arrow <math>\uparrow</math> represents [[exponentiation]] (iterated multiplication) <math display="block">2 \uparrow 4 = H_3(2,4) = 2\times(2\times(2\times 2)) = 2^4 = 16</math> * the double arrow <math>\uparrow\uparrow</math> represents [[tetration]] (iterated exponentiation) <math display="block"> 2 \uparrow\uparrow 4 = H_4(2,4) = 2 \uparrow (2 \uparrow (2 \uparrow 2))= 2^{2^{2^{2}}} = 2^{16} = 65,536</math> * the triple arrow <math>\uparrow\uparrow\uparrow</math> represents [[pentation]] (iterated tetration) <math display="block">\begin{align} 2 \uparrow\uparrow\uparrow 4 &= H_5(2,4)\\ &= 2 \uparrow\uparrow (2 \uparrow\uparrow (2 \uparrow\uparrow 2 ))\\ &= 2 \uparrow\uparrow (2 \uparrow\uparrow (2 \uparrow 2 ))\\ &= 2 \uparrow\uparrow (2 \uparrow\uparrow 4 )\\ &= \underbrace{2 \uparrow (2 \uparrow (2 \uparrow\cdots ))} \; = \; \underbrace{ \; 2^{2^{\cdots^2}}}\\ & \;\;\;\;\; 2 \uparrow\uparrow 4 \text{ copies of } 2 \;\;\;\;\; \text{65,536 2s}\\ \end{align}</math> The general definition of the up-arrow notation is as follows (for <math>a \ge 0, n \ge 1, b \ge 0</math>): <math display="block">a\uparrow^nb = H_{n+2}(a,b) = a[n+2]b.</math> Here, <math>\uparrow^n</math> stands for ''n'' arrows, so for example <math display="block">2 \uparrow\uparrow\uparrow\uparrow 3 = 2\uparrow^4 3.</math> The square brackets are another notation for hyperoperations. ==Introduction== The [[hyperoperations]] naturally extend the [[arithmetic]] operations of [[addition]] and [[multiplication]] as follows. [[Addition]] by a [[natural number]] is defined as iterated incrementation: :<math> \begin{matrix} H_1(a,b) = a+b = & a+\underbrace{1+1+\dots+1} \\ & b\mbox{ copies of }1 \end{matrix} </math> [[Multiplication]] by a [[natural number]] is defined as iterated [[addition]]: :<math> \begin{matrix} H_2(a,b) = a\times b = & \underbrace{a+a+\dots+a} \\ & b\mbox{ copies of }a \end{matrix} </math> For example, :<math> \begin{matrix} 4\times 3 & = & \underbrace{4+4+4} & = & 12\\ & & 3\mbox{ copies of }4 \end{matrix} </math> [[Exponentiation]] for a natural power <math>b</math> is defined as iterated multiplication, which Knuth denoted by a single up-arrow: :<math> \begin{matrix} a\uparrow b = H_3(a,b) = a^b = & \underbrace{a\times a\times\dots\times a}\\ & b\mbox{ copies of }a \end{matrix} </math> For example, :<math> \begin{matrix} 4\uparrow 3= 4^3 = & \underbrace{4\times 4\times 4} & = & 64\\ & 3\mbox{ copies of }4 \end{matrix} </math> [[Tetration]] is defined as iterated exponentiation, which Knuth denoted by a “double arrow”: :<math> \begin{matrix} a\uparrow\uparrow b = H_4(a,b) = & \underbrace{a^{a^{{}^{.\,^{.\,^{.\,^a}}}}}} & = & \underbrace{a\uparrow (a\uparrow(\cdots\uparrow a))} \\ & b\mbox{ copies of }a & & b\mbox{ copies of }a \end{matrix} </math> For example, :<math> \begin{matrix} 4\uparrow\uparrow 3 = & \underbrace{4^{4^4}} & = & \underbrace{4\uparrow (4\uparrow 4)} & = & 4^{256} & & \\ & 3\mbox{ copies of }4 & &3\mbox{ copies of }4 \end{matrix} </math> Expressions are evaluated from right to left, as the operators are defined to be [[Right associative operator|right-associative]]. According to this definition, :<math>3\uparrow\uparrow 2=3^3=27 </math> :<math>3\uparrow\uparrow 3=3^{3^3}=3^{27}=7,625,597,484,987 </math> :<math>3\uparrow\uparrow 4=3^{3^{3^3}}=3^{3^{27}}=3^{7625597484987} </math> :<math>3\uparrow\uparrow 5=3^{3^{3^{3^3}}}=3^{3^{3^{27}}}=3^{3^{7625597484987}} </math> :etc. This already leads to some fairly large numbers, but the hyperoperator sequence does not stop here. [[Pentation]], defined as iterated tetration, is represented by the “triple arrow”: :<math> \begin{matrix} a\uparrow\uparrow\uparrow b = H_5(a,b) = & \underbrace{a_{}\uparrow\uparrow (a\uparrow\uparrow(\cdots\uparrow\uparrow a))}\\ & b\mbox{ copies of }a \end{matrix} </math> [[Hexation]], defined as iterated pentation, is represented by the “quadruple arrow”: :<math> \begin{matrix} a\uparrow\uparrow\uparrow\uparrow b = H_6(a,b) = & \underbrace{a_{}\uparrow\uparrow\uparrow (a\uparrow\uparrow\uparrow(\cdots\uparrow\uparrow\uparrow a))}\\ & b\mbox{ copies of }a \end{matrix} </math> and so on. The general rule is that an <math>n</math>-arrow operator expands into a right-associative series of (<math>n - 1</math>)-arrow operators. Symbolically, :<math> \begin{matrix} a\ \underbrace{\uparrow_{}\uparrow\!\!\cdots\!\!\uparrow}_{n}\ b= \underbrace{a\ \underbrace{\uparrow\!\!\cdots\!\!\uparrow}_{n-1} \ (a\ \underbrace{\uparrow_{}\!\!\cdots\!\!\uparrow}_{n-1} \ (\cdots \ \underbrace{\uparrow_{}\!\!\cdots\!\!\uparrow}_{n-1} \ a))}_{b\text{ copies of }a} \end{matrix} </math> Examples: :<math>3\uparrow\uparrow\uparrow2 = 3\uparrow\uparrow3 = 3^{3^3} = 3^{27}=7,625,597,484,987</math> :<math> \begin{align} 3\uparrow\uparrow\uparrow3 &= 3\uparrow\uparrow(3\uparrow\uparrow3) \\ &= 3\uparrow\uparrow(3\uparrow 3\uparrow3) \\ &= \begin{matrix} \underbrace{3\uparrow 3\uparrow\cdots\uparrow 3} \\ 3\uparrow3\uparrow3\mbox{ copies of } 3 \end{matrix}\\ &= \begin{matrix} \underbrace{3\uparrow 3\uparrow\cdots\uparrow 3} \\ \mbox{7,625,597,484,987 copies of 3} \end{matrix}\\ &= \begin{matrix} \underbrace{3^{3^{3^{3^{\cdot^{\cdot^{\cdot^{\cdot^{3}}}}}}}}} \\ \mbox{7,625,597,484,987 copies of 3} \end{matrix} \end{align} </math> ==Notation== In expressions such as <math>a^b</math>, the notation for exponentiation is usually to write the exponent <math>b</math> as a superscript to the base number <math>a</math>. But many environments — such as [[programming language]]s and plain-text [[e-mail]] — do not support [[superscript]] typesetting. People have adopted the linear notation <math>a \uparrow b</math> for such environments; the up-arrow suggests 'raising to the power of'. If the [[character set]] does not contain an up arrow, the [[caret]] (^) is used instead. The superscript notation <math>a^b</math> doesn't lend itself well to generalization, which explains why Knuth chose to work from the inline notation <math>a \uparrow b</math> instead. <math>a \uparrow^n b</math> is a shorter alternative notation for n uparrows. Thus <math>a \uparrow^4 b = a \uparrow \uparrow \uparrow \uparrow b</math>. ===Writing out up-arrow notation in terms of powers=== Attempting to write <math>a \uparrow \uparrow b</math> using the familiar superscript notation gives a [[tetration|power tower]]. :For example: <math>a \uparrow \uparrow 4 = a \uparrow (a \uparrow (a \uparrow a)) = a^{a^{a^a}}</math> If <math>b</math> is a variable (or is too large), the power tower might be written using dots and a note indicating the height of the tower. :<math>a \uparrow \uparrow b = {} \underbrace{a^{a^{.^{.^{.{a}}}}}}_{b}</math> Continuing with this notation, <math>a \uparrow \uparrow \uparrow b</math> could be written with a stack of such power towers, each describing the size of the one above it. :<math>a \uparrow \uparrow \uparrow 4 = a \uparrow \uparrow (a \uparrow \uparrow (a \uparrow \uparrow a)) = \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{a} }}</math> Again, if <math>b</math> is a variable or is too large, the stack might be written using dots and a note indicating its height. :<math>a \uparrow \uparrow \uparrow b = \left. \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} b</math> Furthermore, <math>a \uparrow \uparrow \uparrow \uparrow b</math> might be written using several columns of such stacks of power towers, each column describing the number of power towers in the stack to its left: :<math>a \uparrow \uparrow \uparrow \uparrow 4 = a \uparrow \uparrow \uparrow (a \uparrow \uparrow \uparrow (a \uparrow \uparrow \uparrow a)) = \left.\left.\left. \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} a</math> And more generally: :<math>a \uparrow \uparrow \uparrow \uparrow b = \underbrace{ \left.\left.\left. \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{a^{a^{.^{.^{.{a}}}}}}_{ \underbrace{\vdots}_{a} }} \right\} \cdots \right\} a }_{b}</math> This might be carried out indefinitely to represent <math>a \uparrow^n b</math> as iterated exponentiation of iterated exponentiation for any <math>a</math>, <math>n</math>, and <math>b</math> (although it clearly becomes rather cumbersome). ====Using tetration==== The Rudy Rucker notation <math>^{b}a</math> for [[tetration]] allows us to make these diagrams slightly simpler while still employing a geometric representation (we could call these ''tetration towers''). : <math> a \uparrow \uparrow b = { }^{b}a</math> : <math> a \uparrow \uparrow \uparrow b = \underbrace{^{^{^{^{^{a}.}.}.}a}a}_{b}</math> : <math> a \uparrow \uparrow \uparrow \uparrow b = \left. \underbrace{^{^{^{^{^{a}.}.}.}a}a}_{ \underbrace{^{^{^{^{^{a}.}.}.}a}a}_{ \underbrace{\vdots}_{a} }} \right\} b</math> Finally, as an example, the fourth Ackermann number <math>4 \uparrow^4 4</math> could be represented as: : <math>\underbrace{^{^{^{^{^{4}.}.}.}4}4}_{ \underbrace{^{^{^{^{^{4}.}.}.}4}4}_{ \underbrace{^{^{^{^{^{4}.}.}.}4}4}_{4} }} = \underbrace{^{^{^{^{^{4}.}.}.}4}4}_{ \underbrace{^{^{^{^{^{4}.}.}.}4}4}_{ ^{^{^{4}4}4}4 }}</math> ==Generalizations== Some numbers are so large that multiple arrows of Knuth's up-arrow notation become too cumbersome; then an ''n''-arrow operator <math>\uparrow^n</math> is useful (and also for descriptions with a variable number of arrows), or equivalently, [[hyper operator]]s. Some numbers are so large that even that notation is not sufficient. The [[Conway chained arrow notation]] can then be used: a chain of three elements is equivalent with the other notations, but a chain of four or more is even more powerful. :<math> \begin{matrix} a\uparrow^n b & = & a [n+2] b & = & a\to b\to n \\ \text{(Knuth)} & & \text{(hyperoperation)} & & \text{(Conway)} \end{matrix} </math> : <math>6\uparrow\uparrow4 = \underbrace{6^{6^{.^{.^{.^{6}}}}}}_4</math>, Since <math>6\uparrow\uparrow4 = 6^{6^{6^{6}}} = 6^{6^{46,656}}</math>, Thus the result comes out with <math>\underbrace{6^{6^{.^{.^{.^{6}}}}}}_4</math> : <math>10\uparrow(3\times10\uparrow(3\times10\uparrow15)+3) = \underbrace{100000\ldots000}_{ \underbrace{300000\ldots003}_{\underbrace{300000\ldots000}_{15} }}</math> or <math>10^{3\times10^{3\times10^{15}}+3}</math> Even faster-growing functions can be categorized using an [[ordinal number|ordinal]] analysis called the [[fast-growing hierarchy]]. The fast-growing hierarchy uses successive function iteration and diagonalization to systematically create faster-growing functions from some base function <math>f(x)</math>. For the standard fast-growing hierarchy using <math>f_0(x) = x+1</math>, <math>f_2(x)</math> already exhibits exponential growth, <math>f_3(x)</math> is comparable to tetrational growth and is upper-bounded by a function involving the first four hyperoperators;. Then, <math>f_\omega(x)</math> is comparable to the [[Ackermann function]], <math>f_{\omega + 1}(x)</math> is already beyond the reach of indexed arrows but can be used to approximate [[Graham's number]], and <math>f_{\omega^2}(x)</math> is comparable to arbitrarily-long Conway chained arrow notation. These functions are all computable. Even faster computable functions, such as the [[Goodstein sequence]] and the [[TREE(3)|TREE sequence]] require the usage of large ordinals, may occur in certain combinatorical and proof-theoretic contexts. There exist functions which grow uncomputably fast, such as the [[Busy Beaver]], whose very nature will be completely out of reach from any up-arrow, or even any ordinal-based analysis. ==Definition== Without reference to [[hyperoperation]] the up-arrow operators can be formally defined by :<math> a\uparrow^n b= \begin{cases} a^b, & \text{if }n=1; \\ 1, & \text{if }n>1\text{ and }b=0; \\ a\uparrow^{n-1}(a\uparrow^{n}(b-1)), & \text{otherwise } \end{cases} </math> for all integers <math>a, b, n</math> with <math>a \ge 0, n \ge 1, b \ge 0</math>.<ref group="nb" name=corona2/> This definition uses [[exponentiation]] <math>(a\uparrow^1 b = a\uparrow b = a^b)</math> as the base case, and [[tetration]] <math>(a\uparrow^2 b = a\uparrow\uparrow b)</math> as repeated exponentiation. This is equivalent to the [[Hyperoperation#Definition|hyperoperation sequence]] except it omits the three more basic operations of [[Successor_function|succession]], [[addition]] and [[multiplication]]. One can alternatively choose [[multiplication]] <math>(a\uparrow^0 b = a \times b)</math> as the base case and iterate from there. Then [[exponentiation]] becomes repeated multiplication. The formal definition would be :<math> a\uparrow^n b= \begin{cases} a\times b, & \text{if }n=0; \\ 1, & \text{if }n>0\text{ and }b=0; \\ a\uparrow^{n-1}(a\uparrow^{n}(b-1)), & \text{otherwise } \end{cases} </math> for all integers <math>a, b, n</math> with <math>a \ge 0, n \ge 0, b \ge 0</math>. Note, however, that Knuth did not define the "nil-arrow" (<math>\uparrow^0</math>). One could extend the notation to negative indices (n ≥ -2) in such a way as to agree with the entire hyperoperation sequence, except for the lag in the indexing: :<math>H_n(a, b) = a [n] b = a \uparrow^{n-2}b\text{ for } n \ge 0.</math> The up-arrow operation is a [[Associative property#Notation for non-associative operations|right-associative operation]], that is, <math>a \uparrow b \uparrow c</math> is understood to be <math>a \uparrow (b \uparrow c)</math>, instead of <math>(a \uparrow b) \uparrow c</math>. If ambiguity is not an issue parentheses are sometimes dropped. ==Tables of values== <!-- This section is linked from [[Hyper operator]] --> ===Computing 0↑<sup>''n''</sup> ''b''=== Computing <math>0\uparrow^n b = H_{n+2}(0,b) = 0[n+2]b</math> results in :0, when ''n'' = 0 <ref group="nb" name="corona1">Keep in mind that Knuth did not define the operator <math>\uparrow^0</math>.</ref> :1, when ''n'' = 1 and ''b'' = 0 <ref group="nb" name=corona2>For more details, see [[Exponentiation#Powers of zero|Powers of zero]].</ref><ref group="nb" name=corona3>For more details, see [[Zero to the power of zero]].</ref> :0, when ''n'' = 1 and ''b'' > 0 <ref group="nb" name=corona2/><ref group="nb" name=corona3/> :1, when ''n'' > 1 and ''b'' is even (including 0) :0, when ''n'' > 1 and ''b'' is odd ===Computing 2↑<sup>''n''</sup> ''b''=== Computing <math>2\uparrow^n b</math> can be restated in terms of an infinite table. We place the numbers <math>2^b</math> in the top row, and fill the left column with values 2. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken. {| class="wikitable" |+ Values of <math>2\uparrow^n b = {} </math> [[Hyperoperation#Notations|<math>H_{n+2}(2,b) = {} </math> <math>2[n+2]b = {} </math>]] [[Conway chained arrow notation|2 → b → n]] |- ! {{diagonal split header|''ⁿ''|''b''}} ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! formula |- ! 1 | 2 || 4 || 8 || 16 || 32 || 64 || <math>2^b</math> |- ! 2 | 2 || 4 || 16 || 65,536 || 2,003,...,156,736 || 212,003,...,428,736 || <math>2\uparrow\uparrow b</math> |- ! 3 | 2 || 4 || 65,536 || 24,636,...,948,736 || 1,300,...,948,736 || 320,146,...,948,736 || <math>2\uparrow\uparrow\uparrow b</math> |- ! 4 | 2 || 4 || 24,636,...,948,736 || 68,225,...,948,736 || 167,167,...,948,736 || 3,449,...,948,736 || <math>2\uparrow\uparrow\uparrow\uparrow b</math> |} The table is the same as [[Ackermann function#Table of values|that of the Ackermann function]], except for a shift in <math>n</math> and <math>b</math>, and an addition of 3 to all values. ===Computing 3 ↑<sup>''n''</sup> ''b''=== We place the numbers <math>3^b</math> in the top row, and fill the left column with values 3. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken. {| class="wikitable" |+ Values of <math>3\uparrow^n b = {} </math> [[Hyperoperation#Notations|<math>H_{n+2}(3,b) = {} </math> <math>3[n+2]b = {} </math>]] [[Conway chained arrow notation|3 → b → n]] |- ! {{diagonal split header|''ⁿ''|''b''}} ! 1 ! 2 ! 3 ! 4 ! 5 ! formula |- ! 1 | 3 || 9 || 27 || 81 || 243 || <math>3^b</math> |- ! 2 | 3 || 27 || 7,625,597,484,987 || 12,580,...,739,387 || 338,605,...,355,387 || <math>3\uparrow\uparrow b</math> |- ! 3 | 3 || 7,625,597,484,987 || 1,945,...,195,387 || 93,652,...,195,387 || 4,854,...,195,387 || <math>3\uparrow\uparrow\uparrow b</math> |- ! 4 | 3 || 1,945,...,195,387 || 834,215,...,195,387 || 25,653,...,195,387 || 17,124,...,195,387 ||<math>3\uparrow\uparrow\uparrow\uparrow b</math> |} ===Computing 4 ↑<sup>''n''</sup> ''b''=== We place the numbers <math>4^b</math> in the top row, and fill the left column with values 4. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken. {| class="wikitable" |+ Values of <math>4\uparrow^n b = {} </math> [[Hyperoperation#Notations|<math>H_{n+2}(4,b) = {} </math> <math>4[n+2]b = {} </math>]] [[Conway chained arrow notation|4 → b → n]] |- ! {{diagonal split header|''ⁿ''|''b''}} ! 1 ! 2 ! 3 ! 4 ! 5 ! formula |- ! 1 | 1 || 1 || 1 || 1 || 1 || <math>4^b</math> |- ! 2 | 1 || 4 || 19,728 || 603,122,606,263,029,537,... << 19,692 >> ...,149,530,140,391,357,847 || 10<sup>10<sup>19727</sup></sup> digits || <math>4\uparrow\uparrow b</math> |- ! 3 | 1 || 12 || 3,638,334,640,024 || 600,225,356,799,454,734,... << 3,638,334,639,988 >> ...,581,273,077,839,447,635 || 10<sup>10<sup>3638334640023</sup></sup> digits || <math>4\uparrow\uparrow\uparrow b</math> |- ! 4 | 2 || 155 || 807,230,472,602,822,537,... << 118 >> ...,481,244,990,261,351,117 || 10<sup>10<sup>153</sup></sup> digits || 10<sup>10<sup>10<sup>153</sup></sup></sup> digits | <math>4\uparrow\uparrow\uparrow\uparrow b</math> |} ===Computing 10 ↑<sup>''n''</sup> ''b''=== We place the numbers <math>10^b</math> in the top row, and fill the left column with values 10. To determine a number in the table, take the number immediately to the left, then look up the required number in the previous row, at the position given by the number just taken. {| class="wikitable" |+ Values of <math>10\uparrow^n b = {}</math> [[Hyperoperation#Notations|<math>H_{n+2}(10,b) = {} </math> <math>10[n+2]b = {} </math>]] [[Conway chained arrow notation|10 → b → n]] |- ! {{diagonal split header|''ⁿ''|''b''}} ! 1 ! 2 ! 3 ! 4 ! 5 ! formula |- ! 1 | 10 || 100 || 1,000 || 10,000 || 100,000 || <math>10^b</math> |- ! 2 | 10 || 10,000,000,000 || <math>10^{10,000,000,000}</math> || <math>10^{10^{10,000,000,000}}</math> || <math>10^{10^{10^{10,000,000,000}}}</math> || <math>10\uparrow\uparrow b</math> |- ! 3 | 10 || <math> \begin{matrix} \underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\ 10\mbox{ copies of }10 \end{matrix}</math> || <math> \begin{matrix} \underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\ \underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\ 10\mbox{ copies of }10 \end{matrix}</math> || <math> \begin{matrix} \underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\ \underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\ \underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\ 10\mbox{ copies of }10 \end{matrix}</math> || <math> \begin{matrix} \underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\ \underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\ \underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\ \underbrace{10_{}^{10^{{}^{.\,^{.\,^{.\,^{10}}}}}}}\\ 10\mbox{ copies of }10 \end{matrix}</math> || <math>10\uparrow\uparrow\uparrow b</math> |- ! 4 | 10 || <math> \begin{matrix} \underbrace{^{^{^{^{^{10}.}.}.}10}10}\\ 10\mbox{ copies of }10 \end{matrix}</math> || <math> \begin{matrix} \underbrace{^{^{^{^{^{10}.}.}.}10}10}\\ \underbrace{^{^{^{^{^{10}.}.}.}10}10}\\ 10\mbox{ copies of }10 \end{matrix}</math> || <math> \begin{matrix} \underbrace{^{^{^{^{^{10}.}.}.}10}10}\\ \underbrace{^{^{^{^{^{10}.}.}.}10}10}\\ \underbrace{^{^{^{^{^{10}.}.}.}10}10}\\ 10\mbox{ copies of }10 \end{matrix}</math> || <math> \begin{matrix} \underbrace{^{^{^{^{^{10}.}.}.}10}10}\\ \underbrace{^{^{^{^{^{10}.}.}.}10}10}\\ \underbrace{^{^{^{^{^{10}.}.}.}10}10}\\ \underbrace{^{^{^{^{^{10}.}.}.}10}10}\\ 10\mbox{ copies of }10 \end{matrix}</math> | <math>10\uparrow\uparrow\uparrow\uparrow b</math> |} For 2 ≤ ''b'' ≤ 9 the numerical order of the numbers <math>10\uparrow^n b</math> is the [[lexicographical order]] with ''n'' as the most significant number, so for the numbers of these 8 columns the numerical order is simply line-by-line. The same applies for the numbers in the 97 columns with 3 ≤ ''b'' ≤ 99, and if we start from ''n'' = 1 even for 3 ≤ ''b'' ≤ 9,999,999,999. ==See also== *[[Primitive recursion]] *[[Hyperoperation]] *[[Busy beaver]] *[[Cutler's bar notation]] *[[Tetration]] *[[Pentation]] *[[Ackermann function]] *[[Graham's number]] *[[Steinhaus–Moser notation]] == Notes == <references group="nb" /> == References == {{Reflist}} ==External links== * {{mathworld|urlname=KnuthUp-ArrowNotation|title=Knuth Up-Arrow Notation}} * Robert Munafo, ''[http://www.mrob.com/pub/math/largenum-3.html#hyper5 Large Numbers: Higher hyper operators]'' {{Hyperoperations}} {{Large numbers}} {{Donald E. Knuth}} [[Category:Mathematical notation]] [[Category:Large numbers]] [[Category:Donald Knuth]] [[Category:1976 introductions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:Diagonal split header
(
edit
)
Template:Donald E. Knuth
(
edit
)
Template:Hyperoperations
(
edit
)
Template:Large numbers
(
edit
)
Template:Mathworld
(
edit
)
Template:Pp
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)