Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Koszul complex
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Construction in homological algebra}} {{context|date=November 2016}} {{technical|date=November 2016}} In [[mathematics]], the '''Koszul complex''' was first introduced to define a [[cohomology theory]] for [[Lie algebra]]s, by [[Jean-Louis Koszul]] (see [[Lie algebra cohomology]]). It turned out to be a useful general construction in [[homological algebra]]. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an [[Regular sequence#Definitions|M-regular sequence]], and hence it can be used to prove basic facts about the [[Depth (ring theory)|depth]] of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of [[Krull dimension]]. Moreover, in certain circumstances, the complex is the complex of [[Hilbert's syzygy theorem#Syzygies (relations)|syzygies]], that is, it tells you the relations between generators of a module, the relations between these relations, and so forth. == Definition == Let ''A'' be a commutative ring and ''s: A<sup>r</sup> → A'' an ''A''-linear map. Its '''Koszul complex''' ''K<sub>s</sub>'' is :<math> \bigwedge^r A^r\ \to\ \bigwedge^{r-1}A^r\ \to\ \cdots\ \to \ \bigwedge^1 A^r\ \to\ \bigwedge^0 A^r\simeq A</math> where the maps send :<math> \alpha_1\wedge\cdots\wedge\alpha_k\ \mapsto\ \sum_{i=1}^{k}(-1)^{i+1}s(\alpha_i)\ \alpha_1\wedge\cdots\wedge\hat{\alpha}_i\wedge\cdots\wedge\alpha_k </math> where <math>\hat{\ }</math> means the term is omitted and <math>\wedge</math> means the [[wedge product]]. One may replace <math>A^r</math> with any ''A''-module. == Motivating example == Let ''M'' be a manifold, variety, scheme, ..., and ''A'' be the ring of functions on it, denoted <math>\mathcal{O}(M)</math>. The map <math>s\colon A^r \to A</math> corresponds to picking ''r'' functions <math>f_1,...,f_r</math>. When ''r = 1'', the Koszul complex is :<math>\mathcal{O}(M)\ \stackrel{\cdot f}{\to}\ \mathcal{O}(M)</math> whose [[cokernel]] is the ring of functions on the zero locus ''f = 0''. In general, the Koszul complex is :<math>\mathcal{O}(M)\ \stackrel{\cdot (f_1,...,f_r)}{\to}\ \mathcal{O}(M)^r\ \to\ \cdots\ \to\ \mathcal{O}(M)^r\ \stackrel{\cdot (f_1,\dots,f_r)}{\to}\ \mathcal{O}(M).</math> The cokernel of the last map is again functions on the zero locus <math>f_1 = \cdots = f_r = 0</math>. It is the tensor product of the ''r'' many Koszul complexes for <math>f_i = 0</math>, so its dimensions are given by binomial coefficients. In pictures: given functions <math>s_i</math>, how do we define the locus where they all vanish? [[File:Koszul1.png|center|thumb|upright=1.5]] In algebraic geometry, the ring of functions of the zero locus is <math>A/(s_1,\dots , s_r)</math>. In [[Derived algebraic geometry|''derived'' algebraic geometry]], the ''dg'' ring of functions is the Koszul complex. If the loci <math>s_i=0</math> [[regular sequence|intersect transversely]], these are equivalent. [[File:Koszul2.png|center|thumb|upright=1.5]] Thus: Koszul complexes are ''derived intersections'' of zero loci. == Properties == === Algebra structure === First, the Koszul complex ''K<sub>s</sub>'' of ''(A,s)'' is a [[chain complex]]: the composition of any two maps is zero. Second, the map :<math> K_s\otimes K_s\ \to\ K_s \ \ \ \, \ \ \ \, \ \ \ \, \ \ \ (\alpha_1\wedge\cdots \wedge\alpha_k)\otimes (\beta_1\wedge\cdots\wedge\beta_\ell)\ \mapsto\ \alpha_1\wedge\cdots\wedge \alpha_k\wedge\beta_1\wedge\cdots\wedge\beta_\ell </math> makes it into a [[Differential graded algebra|dg algebra]].<ref>[http://stacks.math.columbia.edu The Stacks Project], section [https://stacks.math.columbia.edu/tag/0621 0601]</ref> === As a tensor product === The Koszul complex is a tensor product: if <math>s=(s_1,\dots , s_r)</math>, then :<math>K_{s}\ \simeq\ K_{s_1}\otimes\cdots\otimes K_{s_r}</math> where <math>\otimes</math> denotes the [[derived tensor product]] of chain complexes of ''A''-modules.<ref>[http://stacks.math.columbia.edu The Stacks Project], section [https://stacks.math.columbia.edu/tag/0621 0601], Lemma 15.28.12</ref> === Vanishing in regular case === When <math>s_1, \dots, s_r</math> form a [[regular sequence]], the map <math>K_s \to A/(s_1, \dots, s_r)</math> is a quasi-isomorphism, i.e. :<math> \operatorname{H}^i(K_s)\ =\ 0,\qquad i\ne 0,</math> and as for any ''s'', <math>H^0(K_s) = A/(s_1,\dots, s_r)</math>. == History == The Koszul complex was first introduced to define a [[cohomology theory]] for [[Lie algebra]]s, by [[Jean-Louis Koszul]] (see [[Lie algebra cohomology]]). It turned out to be a useful general construction in [[homological algebra]]. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an [[Regular sequence#Definitions|M-regular sequence]], and hence it can be used to prove basic facts about the [[Depth (ring theory)|depth]] of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of [[Krull dimension]]. Moreover, in certain circumstances, the complex is the complex of [[Hilbert's syzygy theorem#Syzygies (relations)|syzygies]], that is, it tells you the relations between generators of a module, the relations between these relations, and so forth. == Detailed Definition == Let ''R'' be a commutative ring and ''E'' a free module of finite rank ''r'' over ''R''. We write <math>\bigwedge^i E</math> for the ''i''-th [[exterior power]] of ''E''. Then, given an [[module homomorphism|''R''-linear map]] <math>s\colon E \to R</math>, the '''Koszul complex associated to ''s''''' is the [[chain complex]] of ''R''-modules: :<math>K_{\bullet}(s)\colon 0 \to \bigwedge^r E \overset{d_r} \to \bigwedge^{r-1} E \to \cdots \to \bigwedge^1 E \overset{d_1}\to R \to 0</math>, where the differential <math>d_k</math> is given by: for any <math>e_i</math> in ''E'', :<math>d_k (e_1 \wedge \dots \wedge e_k) = \sum_{i=1}^k (-1)^{i+1} s(e_i) e_1 \wedge \cdots \wedge \widehat{e_i} \wedge \cdots \wedge e_k</math>. The superscript <math>\widehat{\cdot}</math> means the term is omitted. To show that <math>d_k \circ d_{k+1} = 0</math>, use the [[#Self-duality|self-duality]] of a Koszul complex. Note that <math>\bigwedge^1 E = E</math> and <math>d_1 = s</math>. Note also that <math>\bigwedge^r E \simeq R</math>; this isomorphism is not canonical (for example, a choice of a [[volume form]] in differential geometry provides an example of such an isomorphism). If <math>E = R^r</math> (i.e., an ordered basis is chosen), then, giving an ''R''-linear map <math>s\colon R^r\to R</math> amounts to giving a finite sequence <math>s_1, \dots, s_r</math> of elements in ''R'' (namely, a row vector) and then one sets <math>K_{\bullet}(s_1, \dots, s_r) = K_{\bullet}(s).</math> If ''M'' is a finitely generated ''R''-module, then one sets: :<math>K_{\bullet}(s, M) = K_{\bullet}(s) \otimes_R M</math>, which is again a chain complex with the induced differential <math>(d \otimes 1_M)(v \otimes m) = d(v) \otimes m</math>. The ''i''-th homology of the Koszul complex :<math>\operatorname{H}_i(K_{\bullet}(s, M)) = \operatorname{ker}(d_i \otimes 1_M)/\operatorname{im}(d_{i+1} \otimes 1_M)</math> is called the '''''i''-th Koszul homology'''. For example, if <math>E = R^r</math> and <math>s = [s_1 \cdots s_r]</math> is a row vector with entries in ''R'', then <math>d_1 \otimes 1_M</math> is :<math>s \colon M^r \to M, \, (m_1, \dots, m_r) \mapsto s_1 m_1 + \dots + s_r m_r</math> and so :<math>\operatorname{H}_0(K_{\bullet}(s, M)) = M/(s_1, \dots, s_r)M = R/(s_1, \dots, s_r) \otimes_R M.</math> Similarly, :<math>\operatorname{H}_r(K_{\bullet}(s, M)) = \{ m \in M : s_1 m = s_2 m = \dots = s_r m = 0 \} = \operatorname{Hom}_R(R/(s_1, \dots, s_r), M).</math> ===Koszul complexes in low dimensions=== Given a commutative ring ''R'', an element ''x'' in ''R'', and an ''R''-[[module (mathematics)|module]] ''M'', the multiplication by ''x'' yields a [[homomorphism]] of ''R''-modules, :<math>M \to M.</math> Considering this as a [[chain complex]] (by putting them in degree 1 and 0, and adding zeros elsewhere), it is denoted by <math>K(x, M)</math>. By construction, the homologies are :<math>H_0(K(x, M)) = M/xM, H_1(K(x,M)) = \operatorname{Ann}_M(x) = \{m \in M , xm = 0 \},</math> the [[Annihilator (ring theory)|annihilator]] of ''x'' in ''M''. Thus, the Koszul complex and its homology encode fundamental properties of the multiplication by ''x''. This chain complex <math>K_{\bullet}(x)</math> is called the '''Koszul complex''' of ''R'' with respect to ''x'', as in [[#Definition]]. <!--Now, if ''x''<sub>1</sub>, ''x''<sub>2</sub>, ..., ''x''<sub>''n''</sub> are elements of ''R'', the '''Koszul complex''' of ''R'' with respect to <math>x_1, x_2, \ldots, x_n</math>, usually denoted <math>K_{\bullet}(x_1, x_2, \ldots, x_n)</math>, is the [[tensor product]] (in the [[Category (mathematics)|category]] of ''R''-complexes) <math> K_\bullet(x_1) \otimes K_\bullet(x_2) \otimes \cdots \otimes K_\bullet(x_n) </math> of the Koszul complexes defined above individually for each ''i''. The Koszul complex is a [[free module|free]] chain complex. For every ''p'', its ''p''th degree entry <math>K_p</math> is a free ''R''-module of rank <math>\dbinom{n}{p}</math> (thus, it is zero unless <math>0 \le p \le n)</math>; this module has a basis <math>\left(e_{i_1,\ldots ,i_p}\right)_{1 \leq i_1 < i_2 < \cdots < i_p \leq n}</math>. The element <math>e_{i_1,\ldots ,i_p}</math> is defined as the pure tensor <math>f_1 \otimes f_2 \otimes \cdots \otimes f_n \in K_\bullet(x_1) \otimes K_\bullet(x_2) \otimes \cdots \otimes K_\bullet(x_n)</math>, where for every <math>1 \le j\le n</math>, we let <math>f_j</math> be the generator 1 of <math>K_1(x_j)</math> if <math>j \in \{i_1, \ldots , i_p\}</math> and the generator 1 of <math>K_0(x_j)</math> otherwise. The boundary map of the Koszul complex can be written explicitly with respect to this basis. Namely, the ''R''-linear map <math>d \colon K_p \to K_{p-1} </math> is defined by: :<math> d(e_{i_1,\dots,i_p}) := \sum _{j=1}^{p}(-1)^{j-1}x_{i_j}e_{i_1,\dots,\widehat{i_j},...,i_p}, </math> where <math>i_1,\dots,\widehat{i_j},\dots,i_p</math> means <math>i_1,\dots,i_{j-1},i_{j+1},\dots,i_p</math> (that is, the ''j''-th term is being omitted). --> The Koszul complex for a pair <math>(x, y) \in R^2</math> is :<math> 0 \to R \xrightarrow{\ d_2\ } R^2 \xrightarrow{\ d_1\ } R\to 0, </math> with the matrices <math>d_1</math> and <math>d_2</math> given by :<math> d_1 = \begin{bmatrix} x\\ y \end{bmatrix} </math> and :<math> d_2 = \begin{bmatrix} -y & x \end{bmatrix}. </math> Note that <math>d_i</math> is applied on the right. The [[cycle (homology theory)|cycle]]s in degree 1 are then exactly the linear relations on the elements ''x'' and ''y'', while the boundaries are the trivial relations. The first Koszul homology <math>H_1(K_{\bullet}(x, y)) </math> therefore measures exactly the relations mod the trivial relations. With more elements the higher-dimensional Koszul homologies measure the higher-level versions of this. In the case that the elements <math>x_1, x_2, \dots, x_n</math> form a [[Regular sequence (algebra)|regular sequence]], the higher homology modules of the Koszul complex are all zero. ==Example== If ''k'' is a field and <math>X_1, X_2,\dots, X_d</math> are indeterminates and ''R'' is the polynomial ring <math>k[X_1, X_2,\dots, X_d]</math>, the Koszul complex <math>K_{\bullet}(X_i)</math> on the <math>X_i</math>'s forms a concrete free ''R''-resolution of ''k''. == Properties of a Koszul homology == Let ''E'' be a finite-rank free module over ''R'', let <math>s\colon E\to R</math> be an ''R''-linear map, and let ''t'' be an element of ''R''. Let <math>K(s, t)</math> be the Koszul complex of <math>(s, t)\colon E \oplus R \to R</math>. Using <math>\bigwedge^k(E \oplus R) = \oplus_{i=0}^k \bigwedge^{k-i} E \otimes \bigwedge^i R = \bigwedge^k E \oplus \bigwedge^{k-1} E</math>, there is the exact sequence of complexes: :<math>0 \to K(s) \to K(s, t) \to K(s)[-1] \to 0</math>, where <math>[-1]</math> signifies the degree shift by <math>-1</math> and <math>d_{K(s)[-1]} = -d_{K(s)}</math>. One notes:<ref>Indeed, by linearity, we can assume <math>(x, y) = (e_1 + \epsilon) \wedge e_2 \wedge \cdots \wedge e_k \in \wedge^k (E \oplus R)</math> where <math>R \simeq R \epsilon \subset E \oplus R</math>. Then :<math>d_{K(s, t)}((x, y)) = (s(e_1) + t) e_2 \wedge \cdots \wedge e_{k} + \sum_{i = 2}^k (-1)^{i + 1} s(e_i) (e_1 + \epsilon) \wedge e_2 \wedge \cdots \widehat{e_i} \cdots \wedge e_k</math>, which is <math>(d_{K(s)}x + ty, -d_{K(s)} y)</math>.</ref> for <math>(x, y)</math> in <math>\bigwedge^k E \oplus \bigwedge^{k-1} E</math>, :<math>d_{K(s, t)}((x, y)) = (d_{K(s)} x + ty, d_{K(s)[-1]} y).</math> In the language of [[homological algebra]], the above means that <math>K(s, t)</math> is the [[mapping cone (homological algebra)|mapping cone]] of <math>t\colon K(s) \to K(s)</math>. Taking the long exact sequence of homologies, we obtain: :<math>\cdots \to \operatorname{H}_i(K(s)) \overset{t} \to \operatorname{H}_i(K(s)) \to \operatorname{H}_i(K(s, t)) \to \operatorname{H}_{i-1}(K(s)) \overset{t}\to \cdots.</math> Here, the connecting homomorphism :<math>\delta: \operatorname{H}_{i+1}(K(s)[-1]) = \operatorname{H}_{i}(K(s)) \to \operatorname{H}_{i}(K(s))</math> is computed as follows. By definition, <math>\delta([x]) = [d_{K(s,t)}(y)]</math> where ''y'' is an element of <math>K(s, t)</math> that maps to ''x''. Since <math>K(s, t)</math> is a direct sum, we can simply take ''y'' to be (0, ''x''). Then the early formula for <math>d_{K(s, t)}</math> gives <math>\delta([x]) = t[x]</math>. The above exact sequence can be used to prove the following. {{math_theorem | math_statement =<ref>{{harvnb|Matsumura|1989|loc=Theorem 16.5. (i)}}</ref> Let ''R'' be a ring and ''M'' a module over it. If a sequence <math> x_1, x_2, \cdots, x_r </math> of elements of ''R'' is a [[Regular sequence (algebra)|regular sequence]] on ''M'', then :<math>\operatorname{H}_i(K(x_1, \dots, x_r) \otimes M) = 0</math> for all <math>i \geq 1</math>. In particular, when ''M'' = ''R'', this is to say :<math>0 \to \bigwedge^r R^r \overset{d_r} \to \bigwedge^{r-1} R^r \to \cdots \to \bigwedge^2 R^r \overset{d_2} \to R^r \overset{[x_1 \cdots x_r]}\to R \to R/(x_1, \cdots, x_r) \to 0</math> is exact; i.e., <math>K(x_1, \dots, x_r)</math> is an ''R''-[[free resolution]] of <math>R/(x_1, \dots, x_r)</math>. }} Proof by induction on ''r''. If ''<math>r=1</math>'', then <math>\operatorname{H}_1(K(x_1;M)) = \operatorname{Ann}_M(x_1) = 0</math>. Next, assume the assertion is true for ''r'' - 1. Then, using the above exact sequence, one sees <math>\operatorname{H}_i(K(x_1, \dots, x_r; M)) = 0</math> for any <math>i \geq 2</math>. The vanishing is also valid for <math>i=1</math>, since <math>x_r</math> is a nonzerodivisor on <math>\operatorname{H}_0(K(x_1, \dots, x_{r-1}; M)) = M/(x_1, \dots, x_{r-1})M.</math> <math>\square</math> {{math_theorem | name = Corollary | math_statement =<ref>{{harvnb|Eisenbud|1995|loc=Exercise 17.10.}}</ref> Let ''R'', ''M'' be as above and <math> x_1, x_2, \cdots, x_n </math> a sequence of elements of ''R''. Suppose there are a ring ''S'', an ''S''-regular sequence <math> y_1, y_2, \cdots, y_n </math> in ''S'' and a ring homomorphism ''S'' → ''R'' that maps <math> y_i </math> to <math> x_i </math>. (For example, one can take <math> S=\Z[y_1,\cdots,y_n] </math>.) Then :<math>\operatorname{H}_i(K(x_1, \dots, x_n) \otimes_R M) = \operatorname{Tor}^S_i(S/(y_1, \dots, y_n), M).</math> where Tor denotes the [[Tor functor]] and ''M'' is an ''S''-module through <math>S\to R</math>. }} Proof: By the theorem applied to ''S'' and ''S'' as an ''S''-module, we see that <math>K(y_1, \dots, y_n)</math> is an ''S''-free resolution of <math>S/(y_1, \dots, y_n)</math>. So, by definition, the ''i''-th homology of <math>K(y_1, \dots, y_n) \otimes_S M</math> is the right-hand side of the above. On the other hand, <math>K(y_1, \dots, y_n) \otimes_S M = K(x_1, \dots, x_n) \otimes_R M</math> by the definition of the ''S''-module structure on ''M''. <math>\square</math> {{math_theorem | name = Corollary | math_statement =<ref>{{harvnb|Serre|1975|loc=Ch IV, A § 2, Proposition 4.}}</ref> Let ''R'', ''M'' be as above and <math> x_1, x_2, \cdots, x_n </math> a sequence of elements of ''R''. Then both the ideal <math> I=(x_1, x_2, \cdots, x_n) </math> and the annihilator of ''M'' annihilate :<math>\operatorname{H}_i(K(x_1, \dots, x_n) \otimes M)</math> for all ''i''. }} Proof: Let ''S'' = ''R''[''y''<sub>1</sub>, ..., ''y''<sub>''n''</sub>]. Turn ''M'' into an ''S''-module through the ring homomorphism ''S'' → ''R'', ''y''<sub>''i''</sub> → ''x''<sub>''i''</sub> and ''R'' an ''S''-module through {{nowrap|''y''<sub>''i''</sub> → 0}}. By the preceding corollary, <math>\operatorname{H}_i(K(x_1, \dots, x_n) \otimes M) = \operatorname{Tor}_i^S(R, M)</math> and then :<math>\operatorname{Ann}_S\left(\operatorname{Tor}_i^S(R, M)\right) \supset \operatorname{Ann}_S(R) + \operatorname{Ann}_S(M) \supset (y_1, \dots, y_n) + \operatorname{Ann}_R(M) + (y_1 - x_1, ..., y_n - x_n).</math> <math>\square</math> For a [[local ring]], the converse of the theorem holds. More generally, {{math_theorem|math_statement=<ref>{{harvnb|Matsumura|1989|loc=Theorem 16.5. (ii)}}</ref> Let ''R'' be a ring and ''M'' a nonzero finitely generated module over ''R'' . If <math>x_1, x_2, \dots, x_r</math> are elements of the [[Jacobson radical]] of ''R'', then the following are equivalent: # The sequence <math>x_1, \dots, x_r</math> is a [[Regular sequence (algebra)|regular sequence]] on ''M'', # <math>\operatorname{H}_1(K(x_1, \dots, x_r) \otimes M) = 0</math>, # <math>\operatorname{H}_i(K(x_1, \dots, x_r) \otimes M) = 0</math> for all ''i'' ≥ 1.}} Proof: We only need to show 2. implies 1., the rest of the [[Ringschluss|cycle of implications]] <math>1.\Rightarrow 3.\Rightarrow 2.\Rightarrow 1.</math> being clear. We argue by induction on ''r''. The case ''r'' = 1 is already known. Let ''x{{'}}'' denote ''x''<sub>1</sub>, ..., ''x''<sub>''r''-1</sub>. Consider :<math>\cdots \to \operatorname{H}_1(K(x'; M)) \overset{x_r} \to \operatorname{H}_1(K(x'; M)) \to \operatorname{H}_1(K(x_1, \dots, x_r; M)) = 0 \to M/x'M \overset{x_r}\to \cdots.</math> Since the first <math>x_r</math> is surjective, <math>N = x_r N</math> with <math>N = \operatorname{H}_1(K(x'; M))</math>. By [[Nakayama's lemma]], <math>N = 0</math> and so ''x{{'}}'' is a regular sequence by the inductive hypothesis. Since the second <math>x_r</math> is injective (i.e., is a nonzerodivisor), <math>x_1, \dots, x_r</math> is a regular sequence. (Note: by Nakayama's lemma, the requirement <math>M/(x_1, \dots, x_r)M \ne 0</math> is automatic.) <math>\square</math> == Tensor products of Koszul complexes == In general, if ''C'', ''D'' are chain complexes, then their tensor product <math>C \otimes D</math> is the chain complex given by :<math>(C \otimes D)_n = \sum_{i + j = n} C_i \otimes D_j</math> with the differential: for any homogeneous elements ''x'', ''y'', :<math>d_{C \otimes D} (x \otimes y) = d_C(x) \otimes y + (-1)^{|x|} x \otimes d_D(y)</math> where |''x''| is the degree of ''x''. This construction applies in particular to Koszul complexes. Let ''E'', ''F'' be finite-rank free modules, and let <math>s\colon E\to R</math> and <math>t\colon F\to R</math> be two ''R''-linear maps. Let <math>K(s, t)</math> be the Koszul complex of the linear map <math>(s, t)\colon E \oplus F \to R</math>. Then, as complexes, :<math>K(s, t) \simeq K(s) \otimes K(t).</math> To see this, it is more convenient to work with an [[exterior algebra]] (as opposed to exterior powers). Define the graded derivation of degree <math>-1</math> :<math>d_s: \wedge E \to \wedge E</math> by requiring: for any homogeneous elements ''x'', ''y'' in Λ''E'', *<math>d_s(x) = s(x)</math> when <math>|x| = 1</math> *<math>d_s(x \wedge y) = d_s(x) \wedge y + (-1)^{|x|}x \wedge d_s(y)</math> One easily sees that <math>d_s \circ d_s = 0</math> (induction on degree) and that the action of <math>d_s</math> on homogeneous elements agrees with the differentials in [[#Definition]]. Now, we have <math>\wedge(E \oplus F) = \wedge E \otimes \wedge F</math> as graded ''R''-modules. Also, by the definition of a tensor product mentioned in the beginning, :<math>d_{K(s) \otimes K(t)}(e \otimes 1 + 1 \otimes f) = d_{K(s)}(e) \otimes 1 + 1 \otimes d_{K(t)}(f) = s(e) + t(f) = d_{K(s, t)}(e + f).</math> Since <math>d_{K(s) \otimes K(t)}</math> and <math>d_{K(s, t)}</math> are derivations of the same type, this implies <math>d_{K(s) \otimes K(t)} = d_{K(s, t)}.</math> Note, in particular, :<math>K(x_1, x_2, \dots, x_r) \simeq K(x_1) \otimes K(x_2) \otimes \cdots \otimes K(x_r)</math>. The next proposition shows how the Koszul complex of elements encodes some information about sequences in the ideal generated by them. {{math_theorem|name=Proposition|math_statement=Let ''R'' be a ring and ''I'' = (''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>) an ideal generated by some ''n''-elements. Then, for any ''R''-module ''M'' and any elements ''y''<sub>1</sub>, ..., ''y''<sub>''r''</sub> in ''I'', :<math>\operatorname{H}_i(K(x_1, \dots, x_n, y_1, \dots, y_r; M)) \simeq \bigoplus_{i = j + k} \operatorname{H}_j(K(x_1, \dots, x_n; M)) \otimes \wedge^k R^r.</math> where <math>\wedge^k R^r</math> is viewed as a complex with zero differential. (In fact, the decomposition holds on the chain-level).}} Proof: (Easy but omitted for now) As an application, we can show the depth-sensitivity of a Koszul homology. Given a finitely generated module ''M'' over a ring ''R'', by (one) definition, the [[depth (ring theory)|depth]] of ''M'' with respect to an ideal ''I'' is the supremum of the lengths of all regular sequences of elements of ''I'' on ''M''. It is denoted by <math>\operatorname{depth}(I, M)</math>. Recall that an ''M''-regular sequence ''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub> in an ideal ''I'' is maximal if ''I'' contains no nonzerodivisor on <math>M/(x_1, \dots, x_n) M</math>. The Koszul homology gives a very useful<!-- this is factually correct, I think --> characterization of a depth. {{math_theorem|note=depth-sensitivity|math_statement=Let ''R'' be a Noetherian ring, ''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub> elements of ''R'' and ''I'' = (''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>) the ideal generated by them. For a finitely generated module ''M'' over ''R'', if, for some integer ''m'', :<math>\operatorname{H}_i(K(x_1, \dots, x_n) \otimes M) = 0</math> for all ''i'' > ''m'', while :<math>\operatorname{H}_m(K(x_1, \dots, x_n) \otimes M) \ne 0,</math> then every maximal ''M''-regular sequence in ''I'' has length ''n'' - ''m'' (in particular, they all have the same length). As a consequence, :<math>\operatorname{depth}(I, M) = n - m</math>.}} Proof: To lighten the notations, we write H(-) for H(''K''(-)). Let ''y''<sub>1</sub>, ..., ''y''<sub>''s''</sub> be a maximal ''M''-regular sequence in the ideal ''I''; we denote this sequence by <math>\underline{y}</math>. First we show, by induction on <math>l</math>, the claim that <math>\operatorname{H}_i(\underline{y}, x_1, \dots, x_l; M)</math> is <math>\operatorname{Ann}_{M/\underline{y} M}(x_1, \dots, x_l)</math> if <math>i = l</math> and is zero if <math>i > l</math>. The basic case <math>l = 0</math> is clear from [[#Properties of a Koszul homology]]. From the long exact sequence of Koszul homologies and the inductive hypothesis, :<math>\operatorname{H}_l\left(\underline{y}, x_1, \dots, x_l; M \right) = \operatorname{ker}\left(x_l: \operatorname{Ann}_{M/\underline{y}M}(x_1, \dots, x_{l-1}) \to \operatorname{Ann}_{M/\underline{y}M}(x_1, \dots, x_{l-1}) \right)</math>, which is <math>\operatorname{Ann}_{M/\underline{y}M}(x_1, \dots, x_l).</math> Also, by the same argument, the vanishing holds for <math>i > l</math>. This completes the proof of the claim. Now, it follows from the claim and the early proposition that <math>\operatorname{H}_i(x_1, \dots, x_n; M) = 0</math> for all ''i'' > ''n'' - ''s''. To conclude ''n'' - ''s'' = ''m'', it remains to show that it is nonzero if ''i'' = ''n'' - ''s''. <!-- this part is not really needed? We first note that <math>M/I M \ne 0</math> as follows. If <math>M = IM</math>, then, by the variant of the Cayley-Hamilton theorem used in the proof of [[Nakayama's lemma]], we can find an element ''z'' in ''I'' such that 1 - ''z'' is in the annihilator of ''M''. But this contradicts the fact that ''I'' and the annihilator of ''M'' annihilate <math>\operatorname{H}_m(x_1, \dots, x_n; M) \ne 0</math> (see a corollary in [[#Properties of a Koszul homology]]). Hence, <math>M/IM \ne 0</math>.--> Since <math>\underline{y}</math> is a maximal ''M''-regular sequence in ''I'', the ideal ''I'' is contained in the set of all zerodivisors on <math>M/\underline{y}M</math>, the finite union of the associated primes of the module. Thus, by prime avoidance, there is some nonzero ''v'' in <math>M/\underline{y}M</math> such that <math>I \subset \mathfrak{p} = \operatorname{Ann}_R(v)</math>, which is to say, :<math>0 \ne v \in \operatorname{Ann}_{M/\underline{y}M}(I) \simeq \operatorname{H}_n\left(x_1, \dots, x_n, \underline{y}; M\right) = \operatorname{H}_{n-s}(x_1, \dots, x_n; M) \otimes \wedge^s R^s.</math> <math>\square</math> == Self-duality == There is an approach to a Koszul complex that uses a [[cochain complex]] instead of a chain complex. As it turns out, this results essentially in the same complex (the fact known as the self-duality of a Koszul complex). Let ''E'' be a free module of finite rank ''r'' over a ring ''R''. Then each element ''e'' of ''E'' gives rise to the exterior left-multiplication by ''e'': :<math>l_e: \wedge^k E \to \wedge^{k+1} E, \, x \mapsto e \wedge x.</math> Since <math>e \wedge e = 0</math>, we have: <math>l_e \circ l_e = 0</math>; that is, :<math>0 \to R \overset{1 \mapsto e}\to \wedge^1 E \overset{l_e}\to \wedge^2 E \to \cdots \to \wedge^r E \to 0</math> is a cochain complex of free modules. This complex, also called a Koszul complex, is a complex used in {{harv|Eisenbud|1995}}. Taking the dual, there is the complex: :<math>0 \to (\wedge^r E)^* \to (\wedge^{r-1} E)^* \to \cdots \to (\wedge^2 E)^* \to (\wedge^1E)^* \to R \to 0</math>. Using an isomorphism <math>\wedge^k E \simeq (\wedge^{r-k} E)^* \simeq \wedge^{r-k} (E^*)</math>, the complex <math>(\wedge E, l_e)</math> coincides with the Koszul complex in the [[#Definition|definition]]. ==Use== The Koszul complex is essential in defining the joint spectrum of a tuple of commuting [[bounded linear operator]]s in a [[Banach space]].{{fact|date=November 2016}} ==See also== *[[Koszul–Tate complex]] *[[Syzygy (mathematics)]] == Notes == {{reflist}} ==References== * {{cite book |last1=Eisenbud |first1=David |author-link1=David Eisenbud |title=Commutative algebra: with a view toward algebraic geometry |series=Graduate Texts in Mathematics |volume=150 |date=1995 |publisher=Springer |location=New York |isbn=0-387-94268-8}} * {{Citation | title=Intersection theory | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=[[Ergebnisse der Mathematik und ihrer Grenzgebiete]]. 3. Folge. | isbn=978-3-540-62046-4 | mr=1644323 | year=1998 | volume=2 | edition=2nd | author=William Fulton |author1-link = William Fulton (mathematician)}} * {{Citation | last1=Matsumura | first1=Hideyuki | title=Commutative Ring Theory | publisher=[[Cambridge University Press]] | edition=2nd | series=Cambridge Studies in Advanced Mathematics | isbn=978-0-521-36764-6 | year=1989}} * {{Citation | last1=Serre | first1=Jean-Pierre | author1-link = Jean-Pierre Serre | title=Algèbre locale, Multiplicités | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Troisième édition, 1975. Lecture Notes in Mathematics | year=1975 | volume=11 |language=French}} * [http://stacks.math.columbia.edu The Stacks Project], section [https://stacks.math.columbia.edu/tag/0621 0601] ==External links== * [[Melvin Hochster]], [http://www.math.lsa.umich.edu/~hochster/711F07/L10.03.pdf Math 711: Lecture of October 3, 2007] (especially the very last part). [[Category:Homological algebra]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:'
(
edit
)
Template:Ambox
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Context
(
edit
)
Template:Fact
(
edit
)
Template:Harv
(
edit
)
Template:Math theorem
(
edit
)
Template:Nowrap
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Technical
(
edit
)