Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Kronecker–Weber theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Every finite abelian extension of Q is contained within some cyclotomic field}} In [[algebraic number theory]], it can be shown that every [[cyclotomic field]] is an [[abelian extension]] of the [[rational number field]] '''Q''', having [[Galois group]] of the form [[modular arithmetic|<math>(\mathbb Z/n\mathbb Z)^\times</math>]]. The '''Kronecker–Weber theorem''' provides a partial converse: every finite abelian extension of '''Q''' is contained within some cyclotomic field. In other words, every [[algebraic integer]] whose [[Galois group]] is [[abelian group|abelian]] can be expressed as a sum of [[root of unity|roots of unity]] with rational coefficients. For example, :<math>\sqrt{5} = e^{2 \pi i / 5} - e^{4 \pi i / 5} - e^{6 \pi i / 5} + e^{8 \pi i / 5},</math> <math>\sqrt{-3} = e^{2 \pi i / 3} - e^{4 \pi i / 3},</math> and <math>\sqrt{3} = e^{\pi i / 6} - e^{5 \pi i / 6}.</math> The theorem is named after [[Leopold Kronecker]] and [[Heinrich Martin Weber]]. ==Field-theoretic formulation== The Kronecker–Weber theorem can be stated in terms of [[field (mathematics)|fields]] and [[field extension]]s. Precisely, the Kronecker–Weber theorem states: every finite abelian extension of the rational numbers '''Q''' is a subfield of a cyclotomic field. That is, whenever an [[algebraic number field]] has a Galois group over '''Q''' that is an [[abelian group]], the field is a subfield of a field obtained by adjoining a [[root of unity]] to the rational numbers. For a given abelian extension ''K'' of '''Q''' there is a ''minimal'' cyclotomic field that contains it. The theorem allows one to define the [[conductor (algebraic number theory)|conductor]] of ''K'' as the smallest integer ''n'' such that ''K'' lies inside the field generated by the ''n''-th roots of unity. For example the [[quadratic field]]s have as conductor the [[absolute value]] of their [[Discriminant of an algebraic number field|discriminant]], a fact generalised in [[class field theory]]. ==History== The theorem was first stated by {{harvs|txt|authorlink=Leopold Kronecker|last=Kronecker|year=1853}} though his argument was not complete for extensions of degree a power of 2. {{harvs|txt|authorlink=Heinrich Martin Weber|last=Weber|year=1886}} published a proof, but this had some gaps and errors that were pointed out and corrected by {{harvtxt|Neumann|1981}}. The first complete proof was given by {{harvs|txt|last=Hilbert|authorlink=David Hilbert|year=1896}}. ==Generalizations== {{harvs|txt|last1=Lubin|last2=Tate|year1=1965|year2=1966}} proved the local Kronecker–Weber theorem which states that any abelian extension of a [[local field]] can be constructed using cyclotomic extensions and [[Lubin–Tate extension]]s. {{harvs|txt|last=Hazewinkel|year=1975}}, {{harvs|txt|last=Rosen|year=1981}} and {{harvs|txt|last=Lubin|year=1981}} gave other proofs. [[Hilbert's twelfth problem]] asks for generalizations of the Kronecker–Weber theorem to base fields other than the rational numbers, and asks for the analogues of the roots of unity for those fields. A different approach to abelian extensions is given by [[class field theory]]. ==References== *{{Citation | last1=Ghate | first1=Eknath | editor1-last=Adhikari | editor1-first=S. D. | editor2-last=Katre | editor2-first=S. A. | editor3-last=Thakur | editor3-first=Dinesh | title=Cyclotomic fields and related topics (Pune, 1999) | chapter-url=http://www.math.tifr.res.in/~eghate/kw.pdf | publisher=Bhaskaracharya Pratishthana, Pune |mr=1802379 | year=2000 | chapter=The Kronecker-Weber theorem | pages=135–146}} *{{cite journal |last=Greenberg |first=M. J. |year=1974 |title=An Elementary Proof of the Kronecker-Weber Theorem |journal=American Mathematical Monthly |volume=81 |issue=6 |pages=601–607 |doi=10.2307/2319208|jstor= 2319208 }} *{{Citation | last1=Hazewinkel | first1=Michiel | author-link = Michiel Hazewinkel | title=Local class field theory is easy | doi=10.1016/0001-8708(75)90156-5 | doi-access=free |mr=0389858 | year=1975 | journal=[[Advances in Mathematics]] | issn=0001-8708 | volume=18 | issue=2 | pages=148–181| url=https://ir.cwi.nl/pub/9964/9964A.pdf }} *{{Citation | last1=Hilbert | first1=David | author1-link=David Hilbert | title=Ein neuer Beweis des Kronecker'schen Fundamentalsatzes über Abel'sche Zahlkörper. | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002497263 | language=de | year=1896 | journal=Nachrichten der Gesellschaft der Wissenschaften zu Göttingen | pages=29–39}} *{{Citation | last1=Kronecker | first1=Leopold | author1-link=Leopold Kronecker | title=Über die algebraisch auflösbaren Gleichungen | url=https://books.google.com/books?id=Gwi0Wum8LY0C&pg=PA3 | language=de | id=Collected works volume 4 | orig-date=1853 | year=1968| journal=Berlin K. Akad. Wiss. | pages=365–374| isbn=9780821849828 }} *{{Citation | last1=Kronecker | first1=Leopold | author1-link=Leopold Kronecker | title=Über Abelsche Gleichungen | language=de | id=Collected works volume 4 | orig-date=1877 | year=1968 | journal=Berlin K. Akad. Wiss. | pages=845–851|url=https://books.google.com/books?id=Gwi0Wum8LY0C&pg=PA65| isbn=9780821849828 }} *{{Citation | last1=Lemmermeyer | first1=Franz | title=Kronecker-Weber via Stickelberger |mr=2211307 | year=2005 | journal=[[Journal de théorie des nombres de Bordeaux]] | issn=1246-7405 | volume=17 | issue=2 | pages=555–558 | doi=10.5802/jtnb.507| arxiv=1108.5671 }} *{{Citation | last1=Lubin | first1=Jonathan | title=The local Kronecker-Weber theorem | doi=10.2307/1998574 |mr=621978 | year=1981 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=267 | issue=1 | pages=133–138| jstor=1998574 | doi-access=free }} *{{Citation | last1=Lubin | first1=Jonathan | last2=Tate | first2=John | author2-link=John Tate (mathematician) | title=Formal complex multiplication in local fields | jstor=1970622 | mr=0172878 | doi=10.2307/1970622 | year=1965 | journal=[[Annals of Mathematics]] |series=Second Series | issn=0003-486X | volume=81 | issue=2 | pages=380–387}} *{{Citation | last1=Lubin | first1=Jonathan | last2=Tate | first2=John | author2-link=John Tate (mathematician) | title=Formal moduli for one-parameter formal Lie groups | url=http://www.numdam.org/item?id=BSMF_1966__94__49_0 | mr=0238854 | year=1966 | journal=Bulletin de la Société Mathématique de France | issn=0037-9484 | volume=94 | pages=49–59| doi=10.24033/bsmf.1633 | doi-access=free }} *{{Citation | last1=Neumann | first1=Olaf | title=Two proofs of the Kronecker-Weber theorem "according to Kronecker, and Weber" | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002198282 | doi=10.1515/crll.1981.323.105 |mr=611446 | year=1981 | journal=[[Journal für die reine und angewandte Mathematik]] | issn=0075-4102 | volume=323 | issue=323 | pages=105–126}} *{{Citation | last1=Rosen | first1=Michael | title=An elementary proof of the local Kronecker-Weber theorem | doi=10.2307/1999753 |mr=610968 | year=1981 | journal=[[Transactions of the American Mathematical Society]] | issn=0002-9947 | volume=265 | issue=2 | pages=599–605| jstor=1999753 | doi-access=free }} *{{Citation | last1=Šafarevič | first1=I. R. | title=A new proof of the Kronecker-Weber theorem | url=http://mi.mathnet.ru/eng/tm/v38/p382 | publisher=Izdat. Akad. Nauk SSSR | location=Moscow | language=ru | series=Trudy Mat. Inst. Steklov. |mr=0049233 | year=1951 | volume=38 | pages=382–387}} *{{Citation | last1=Schappacher | first1=Norbert | title=Matériaux pour l'histoire des mathématiques au XX<sup>e</sup> siècle (Nice, 1996) | chapter-url=http://www.emis.de/journals/SC/1998/3/html/smf_sem-cong_3_243-273.html | publisher=[[Société Mathématique de France]] | location=Paris | series=Sémin. Congr. | isbn=978-2-85629-065-1 |mr=1640262 | year=1998 | volume=3 | chapter=On the history of Hilbert's twelfth problem: a comedy of errors | pages=243–273}} *{{Citation | last1=Weber | first1=H. | title=Theorie der Abel'schen Zahlkörper | language=de | doi=10.1007/BF02417089 | year=1886 | journal=[[Acta Mathematica]] | issn=0001-5962 | volume=8 | pages=193–263| doi-access=free }} ==External links== {{wikisource|de:David Hilbert Gesammelte Abhandlungen Erster Band – Zahlentheorie/Kapitel 6|Ein neuer Beweis des Kroneckerschen Fundamentalsatzes über Abelsche Zahlkörper.}} {{DEFAULTSORT:Kronecker-Weber theorem}} [[Category:Class field theory]] [[Category:Cyclotomic fields]] [[Category:Theorems in algebraic number theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite journal
(
edit
)
Template:Harvs
(
edit
)
Template:Harvtxt
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Wikisource
(
edit
)