Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange inversion theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Formula for the Taylor series expansion of the inverse function of an analytic function}} In [[mathematical analysis]], the '''Lagrange inversion theorem''', also known as the '''Lagrange–Bürmann formula''', gives the [[Taylor series]] expansion of the [[inverse function]] of an [[analytic function]]. Lagrange inversion is a special case of the [[inverse function theorem]]. ==Statement== Suppose {{mvar|z}} is defined as a function of {{mvar|w}} by an equation of the form :<math>z = f(w)</math> where {{mvar|f}} is analytic at a point {{mvar|a}} and <math>f'(a)\neq 0.</math> Then it is possible to ''invert'' or ''solve'' the equation for {{mvar|w}}, expressing it in the form <math>w=g(z)</math> given by a [[power series]]<ref>{{cite book |editor=M. Abramowitz |editor2=I. A. Stegun |title=Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables |chapter=3.6.6. Lagrange's Expansion |place=New York |publisher=Dover |page=14 |year=1972 |url=http://people.math.sfu.ca/~cbm/aands/page_14.htm}}</ref> :<math> g(z) = a + \sum_{n=1}^{\infty} g_n \frac{(z - f(a))^n}{n!}, </math> where :<math> g_n = \lim_{w \to a} \frac{d^{n-1}}{dw^{n-1}} \left[\left( \frac{w-a}{f(w) - f(a)} \right)^n \right]. </math> The theorem further states that this series has a non-zero radius of convergence, i.e., <math>g(z)</math> represents an analytic function of {{mvar|z}} in a [[neighbourhood (mathematics)|neighbourhood]] of <math>z= f(a).</math> This is also called '''reversion of series'''. If the assertions about analyticity are omitted, the formula is also valid for [[formal power series]] and can be generalized in various ways: It can be formulated for functions of several variables; it can be extended to provide a ready formula for {{math|''F''(''g''(''z''))}} for any analytic function {{mvar|F}}; and it can be generalized to the case <math>f'(a)=0,</math> where the inverse {{mvar|g}} is a multivalued function. The theorem was proved by [[Joseph Louis Lagrange|Lagrange]]<ref>{{cite journal |author=Lagrange, Joseph-Louis |year=1770 |title=Nouvelle méthode pour résoudre les équations littérales par le moyen des séries |journal=Histoire de l'Académie Royale des Sciences et Belles-Lettres de Berlin |pages=251–326 |url=http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=02-hist/1768&seite:int=257}} https://archive.org/details/uvresdelagrange18natigoog/page/n13 (Note: Although Lagrange submitted this article in 1768, it was not published until 1770.)</ref> and generalized by [[Hans Heinrich Bürmann]],<ref>Bürmann, Hans Heinrich, "Essai de calcul fonctionnaire aux constantes ad-libitum," submitted in 1796 to the Institut National de France. For a summary of this article, see: {{cite book |editor=Hindenburg, Carl Friedrich |title=Archiv der reinen und angewandten Mathematik |trans-title=Archive of pure and applied mathematics |location=Leipzig, Germany |publisher=Schäferischen Buchhandlung |year=1798 |volume=2 |chapter=Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges von Herrn Bürmann |trans-chapter=Attempt at a simplified analysis; an extract of an abridgement by Mr. Bürmann |pages=495–499 |chapter-url=https://books.google.com/books?id=jj4DAAAAQAAJ&pg=495}}</ref><ref>Bürmann, Hans Heinrich, "Formules du développement, de retour et d'integration," submitted to the Institut National de France. Bürmann's manuscript survives in the archives of the École Nationale des Ponts et Chaussées [National School of Bridges and Roads] in Paris. (See ms. 1715.)</ref><ref>A report on Bürmann's theorem by Joseph-Louis Lagrange and Adrien-Marie Legendre appears in: [http://gallica.bnf.fr/ark:/12148/bpt6k3217h.image.f22.langFR.pagination "Rapport sur deux mémoires d'analyse du professeur Burmann,"] ''Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques'', vol. 2, pages 13–17 (1799).</ref> both in the late 18th century. There is a straightforward derivation using [[complex analysis]] and [[contour integration]];<ref>[[E. T. Whittaker]] and [[G. N. Watson]]. ''[[A Course of Modern Analysis]]''. Cambridge University Press; 4th edition (January 2, 1927), pp. 129–130</ref> the complex formal power series version is a consequence of knowing the formula for [[polynomial]]s, so the theory of [[analytic function]]s may be applied. Actually, the machinery from analytic function theory enters only in a formal way in this proof, in that what is really needed is some property of the [[Formal power series#Formal residue|formal residue]], and a more direct formal [[Formal power series#The Lagrange inversion formula|proof]] is available. In fact, the Lagrange inversion theorem has a number of additional rather different proofs, including ones using tree-counting arguments or induction.<ref>{{cite book | last1=Richard | first1=Stanley | title=Enumerative combinatorics. Volume 1. | series =Cambridge Stud. Adv. Math. | volume=49 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2012 | isbn=978-1-107-60262-5 | mr=2868112 }}</ref><ref>{{Citation |last1=Ira|first1=Gessel |date=2016 |title=Lagrange inversion |journal=Journal of Combinatorial Theory, Series A |volume=144 |language=en |pages=212–249 |doi=10.1016/j.jcta.2016.06.018 |arxiv=1609.05988|mr=3534068}}</ref><ref>{{Citation |last1=Surya|first1=Erlang |last2=Warnke |first2=Lutz |date=2023 |title=Lagrange Inversion Formula by Induction |journal=The American Mathematical Monthly |volume=130 |issue=10 |language=en |pages=944–948 |doi=10.1080/00029890.2023.2251344 |arxiv=2305.17576|mr=4669236}}</ref> If {{mvar|f}} is a formal power series, then the above formula does not give the coefficients of the compositional inverse series {{mvar|g}} directly in terms for the coefficients of the series {{mvar|f}}. If one can express the functions {{mvar|f}} and {{mvar|g}} in formal power series as :<math>f(w) = \sum_{k=0}^\infty f_k \frac{w^k}{k!} \qquad \text{and} \qquad g(z) = \sum_{k=0}^\infty g_k \frac{z^k}{k!}</math> with {{math|1=''f''<sub>0</sub> = 0}} and {{math|''f''<sub>1</sub> ≠ 0}}, then an explicit form of inverse coefficients can be given in term of [[Bell polynomial]]s:<ref>Eqn (11.43), p. 437, C.A. Charalambides, ''Enumerative Combinatorics,'' Chapman & Hall / CRC, 2002</ref> :<math> g_n = \frac{1}{f_1^n} \sum_{k=1}^{n-1} (-1)^k n^\overline{k} B_{n-1,k}(\hat{f}_1,\hat{f}_2,\ldots,\hat{f}_{n-k}), \quad n \geq 2, </math> where :<math>\begin{align} \hat{f}_k &= \frac{f_{k+1}}{(k+1)f_{1}}, \\ g_1 &= \frac{1}{f_{1}}, \text{ and} \\ n^{\overline{k}} &= n(n+1)\cdots (n+k-1) \end{align}</math> is the [[rising factorial]]. When {{math|1=''f''<sub>1</sub> = 1}}, the last formula can be interpreted in terms of the faces of [[Associahedron|associahedra]] <ref>{{cite arXiv|eprint=1709.07504|class=math.CO|title=Hopf monoids and generalized permutahedra|last1=Aguiar|first1=Marcelo|last2=Ardila|first2=Federico|year=2017}}</ref> :<math> g_n = \sum_{F \text{ face of } K_n} (-1)^{n-\dim F} f_F , \quad n \geq 2, </math> where <math> f_{F} = f_{i_{1}} \cdots f_{i_{m}} </math> for each face <math> F = K_{i_1} \times \cdots \times K_{i_m} </math> of the associahedron <math> K_n .</math> ==Example== For instance, the algebraic equation of degree {{mvar|p}} :<math> x^p - x + z= 0</math> can be solved for {{mvar|x}} by means of the Lagrange inversion formula for the function {{math|1=''f''(''x'') = ''x'' − ''x''<sup>''p''</sup>}}, resulting in a formal series solution :<math> x = \sum_{k=0}^\infty \binom{pk}{k} \frac{z^{(p-1)k+1} }{(p-1)k+1} . </math> By convergence tests, this series is in fact convergent for <math>|z| \leq (p-1)p^{-p/(p-1)},</math> which is also the largest disk in which a local inverse to {{mvar|f}} can be defined. ==Applications== ===Lagrange–Bürmann formula=== There is a special case of Lagrange inversion theorem that is used in [[combinatorics]] and applies when <math>f(w)=w/\phi(w)</math> for some analytic <math>\phi(w)</math> with <math>\phi(0)\ne 0.</math> Take <math>a=0</math> to obtain <math>f(a)=f(0)=0.</math> Then for the inverse <math>g(z)</math> (satisfying <math>f(g(z))\equiv z</math>), we have :<math>\begin{align} g(z) &= \sum_{n=1}^{\infty} \left[ \lim_{w \to 0} \frac {d^{n-1}}{dw^{n-1}} \left(\left( \frac{w}{w/\phi(w)} \right)^n \right)\right] \frac{z^n}{n!} \\ {} &= \sum_{n=1}^{\infty} \frac{1}{n} \left[\frac{1}{(n-1)!} \lim_{w \to 0} \frac{d^{n-1}}{dw^{n-1}} (\phi(w)^n) \right] z^n, \end{align}</math> which can be written alternatively as :<math>[z^n] g(z) = \frac{1}{n} [w^{n-1}] \phi(w)^n,</math> where <math>[w^r]</math> is an operator which extracts the coefficient of <math>w^r</math> in the Taylor series of a function of {{mvar|w}}. A generalization of the formula is known as the '''Lagrange–Bürmann formula''': :<math>[z^n] H (g(z)) = \frac{1}{n} [w^{n-1}] (H' (w) \phi(w)^n)</math> where {{math|''H''}} is an arbitrary analytic function. Sometimes, the derivative {{math|''{{prime|H}}''(''w'')}} can be quite complicated. A simpler version of the formula replaces {{math|''{{prime|H}}''(''w'')}} with {{math|''H''(''w'')(1 − ''{{prime|φ}}''(''w'')/''φ''(''w''))}} to get :<math> [z^n] H (g(z)) = [w^n] H(w) \phi(w)^{n-1} (\phi(w) - w \phi'(w)), </math> which involves {{math|''{{prime|φ}}''(''w'')}} instead of {{math|''{{prime|H}}''(''w'')}}. ===Lambert ''W'' function=== {{main|Lambert W function}} The Lambert {{mvar|W}} function is the function <math>W(z)</math> that is implicitly defined by the equation :<math> W(z) e^{W(z)} = z.</math> We may use the theorem to compute the [[Taylor series]] of <math>W(z)</math> at <math>z=0.</math> We take <math>f(w) = we^w</math> and <math>a = 0.</math> Recognizing that :<math>\frac{d^n}{dx^n} e^{\alpha x} = \alpha^n e^{\alpha x},</math> this gives :<math>\begin{align} W(z) &= \sum_{n=1}^{\infty} \left[\lim_{w \to 0} \frac{d^{n-1}}{dw^{n-1}} e^{-nw} \right] \frac{z^n}{n!} \\ {} &= \sum_{n=1}^{\infty} (-n)^{n-1} \frac{z^n}{n!} \\ {} &= z-z^2+\frac{3}{2}z^3-\frac{8}{3}z^4+O(z^5). \end{align}</math> The [[radius of convergence]] of this series is <math>e^{-1}</math> (giving the [[principal branch]] of the Lambert function). A series that converges for <math>|\ln(z)-1|<\sqrt{{4+\pi^2}}</math> (approximately <math>0.0655 < z < 112.63</math>) can also be derived by series inversion. The function <math>f(z) = W(e^z) - 1</math> satisfies the equation :<math>1 + f(z) + \ln (1 + f(z)) = z.</math> Then <math>z + \ln (1 + z)</math> can be expanded into a power series and inverted.<ref>{{cite conference |url=https://dl.acm.org/doi/pdf/10.1145/258726.258783 |title=A sequence of series for the Lambert W function |last1=Corless |first1=Robert M. |last2=Jeffrey |first2= David J.|author-link2=|last3=Knuth|first3=Donald E.|author-link3=Donald E. Knuth|date=July 1997 |book-title=Proceedings of the 1997 international symposium on Symbolic and algebraic computation |pages=197–204|doi=10.1145/258726.258783 |url-access=subscription }}</ref> This gives a series for <math>f(z+1) = W(e^{z+1})-1\text{:}</math> :<math>W(e^{1+z}) = 1 + \frac{z}{2} + \frac{z^2}{16} - \frac{z^3}{192} - \frac{z^4}{3072} + \frac{13 z^5}{61440} - O(z^6).</math> <math>W(x)</math> can be computed by substituting <math>\ln x - 1</math> for {{mvar|z}} in the above series. For example, substituting {{math|−1}} for {{mvar|z}} gives the value of <math>W(1) \approx 0.567143.</math> ===Binary trees=== Consider<ref>{{cite book |last1=Harris|first1= John |last2=Hirst |first2= Jeffry L.| last3= Mossinghoff| first3= Michael |date=2008 |title=Combinatorics and Graph Theory |publisher= Springer |pages=185–189 |isbn=978-0387797113}}</ref> the set <math>\mathcal{B}</math> of unlabelled [[binary tree]]s. An element of <math>\mathcal{B}</math> is either a leaf of size zero, or a root node with two subtrees. Denote by <math>B_n</math> the number of binary trees on <math>n</math> nodes. Removing the root splits a binary tree into two trees of smaller size. This yields the functional equation on the generating function <math>\textstyle B(z) = \sum_{n=0}^\infty B_n z^n\text{:}</math> :<math>B(z) = 1 + z B(z)^2.</math> Letting <math>C(z) = B(z) - 1</math>, one has thus <math>C(z) = z (C(z)+1)^2.</math> Applying the theorem with <math>\phi(w) = (w+1)^2</math> yields :<math> B_n = [z^n] C(z) = \frac{1}{n} [w^{n-1}] (w+1)^{2n} = \frac{1}{n} \binom{2n}{n-1} = \frac{1}{n+1} \binom{2n}{n}.</math> This shows that <math>B_n</math> is the {{mvar|n}}th [[Catalan number]]. === Asymptotic approximation of integrals=== In the Laplace–Erdelyi theorem that gives the asymptotic approximation for Laplace-type integrals, the function inversion is taken as a crucial step. ==See also== *[[Faà di Bruno's formula]] gives coefficients of the composition of two formal power series in terms of the coefficients of those two series. Equivalently, it is a formula for the ''n''th derivative of a composite function. *[[Lagrange reversion theorem]] for another theorem sometimes called the inversion theorem *[[Formal power series#The Lagrange inversion formula]] ==References== {{reflist|colwidth=30em}} ==External links== *{{MathWorld |urlname=BuermannsTheorem |title=Bürmann's Theorem}} *{{MathWorld |urlname=SeriesReversion |title=Series Reversion}} *[http://www.encyclopediaofmath.org/index.php/B%C3%BCrmann%E2%80%93Lagrange_series Bürmann–Lagrange series] at [[Encyclopedia of Mathematics|Springer EOM]] [[Category:Inverse functions]] [[Category:Theorems in real analysis]] [[Category:Theorems in complex analysis]] [[Category:Theorems in combinatorics]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:4+\pi^2
(
edit
)
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite journal
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)