Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lah number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical sequence}} {{Use American English|date = March 2019}} [[File:Lah numbers.svg|thumb|upright=1.35|Illustration of the unsigned Lah numbers for ''n'' and ''k'' between 1 and 4]] In [[mathematics]], the '''(signed and unsigned) Lah numbers''' are [[coefficient]]s expressing [[rising factorial]]s in terms of [[falling factorial]]s and vice versa. They were discovered by [[Ivo Lah]] in 1954.<ref>{{cite journal | first=Ivo | last=Lah | title=A new kind of numbers and its application in the actuarial mathematics | journal=Boletim do Instituto dos Actuários Portugueses | volume=9 | year=1954 | pages=7–15}}</ref><ref>[https://books.google.com/books?id=zWgIPlds29UC John Riordan, ''Introduction to Combinatorial Analysis''], Princeton University Press (1958, reissue 1980) {{isbn|978-0-691-02365-6}} (reprinted again in 2002 by Dover Publications).</ref> Explicitly, the unsigned Lah numbers <math>L(n, k)</math> are given by the formula involving the [[binomial coefficient]] <math display="block"> L(n,k) = {n-1 \choose k-1} \frac{n!}{k!}</math> for <math>n \geq k \geq 1</math>. Unsigned Lah numbers have an interesting meaning in [[combinatorics]]: they count the number of ways a [[Set (mathematics)|set]] of ''<math display="inline">n</math>'' elements can be [[Partition of a set|partition]]ed into ''<math display="inline">k</math>'' nonempty linearly ordered [[subset]]s.<ref>{{cite journal | title=Combinatorial Interpretation of Unsigned Stirling and Lah Numbers | first1=Marko | last1=Petkovsek | first2=Tomaz | last2=Pisanski | journal=Pi Mu Epsilon Journal | volume=12 | number=7 | date = Fall 2007 | pages=417–424 | jstor=24340704}}</ref> Lah numbers are related to [[Stirling number]]s.<ref>{{cite book | first=Louis | last=Comtet | title=Advanced Combinatorics | publisher=Reidel | location=Dordrecht, Holland | year=1974 | url=https://archive.org/details/Comtet_Louis_-_Advanced_Coatorics | page=[https://archive.org/details/Comtet_Louis_-_Advanced_Coatorics/page/n83 156]| isbn=9789027703804 }}</ref> For <math display="inline">n \geq 1</math>, the Lah number <math display="inline">L(n, 1)</math> is equal to the [[factorial]] <math display="inline">n!</math> in the interpretation above, the only partition of <math display="inline">\{1, 2, 3 \}</math> into 1 set can have its set ordered in 6 ways:<math display="block">\{(1, 2, 3)\}, \{(1, 3, 2)\}, \{(2, 1, 3)\}, \{(2, 3, 1)\}, \{(3, 1, 2)\}, \{(3, 2, 1)\}</math><math display="inline">L(3, 2)</math> is equal to 6, because there are six partitions of <math display="inline">\{1, 2, 3 \}</math> into two ordered parts:<math display="block">\{1, (2, 3) \}, \{1, (3, 2) \}, \{2, (1, 3) \}, \{2, (3, 1) \}, \{3, (1, 2) \}, \{3, (2, 1) \}</math><math display="inline">L(n, n)</math> is always 1 because the only way to partition <math display="inline">\{1, 2, \ldots, n\}</math> into <math>n</math> non-empty subsets results in subsets of size 1, that can only be permuted in one way. In the more recent literature,<ref>{{cite arXiv |eprint=1412.8721 |first=Mark |last=Shattuck |title=Generalized r-Lah numbers |date=2014|class=math.CO }}</ref><ref>{{Cite journal |last1=Nyul |first1=Gábor |last2=Rácz |first2=Gabriella |date=2015-10-06 |title=The r-Lah numbers |url=https://www.sciencedirect.com/science/article/pii/S0012365X14001241 |journal=Discrete Mathematics |series=Seventh Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications, Košice 2013 |language=en |volume=338 |issue=10 |pages=1660–1666 |doi=10.1016/j.disc.2014.03.029 |issn=0012-365X|hdl=2437/213886 |hdl-access=free }}</ref> [[Jovan Karamata|Karamata]]–[[Donald Knuth|Knuth]] style notation has taken over. Lah numbers are now often written as<math display="block">L(n,k) = \left\lfloor {n \atop k} \right\rfloor</math> ==Table of values== Below is a table of values for the Lah numbers: {| class="wikitable" style="text-align:right;" |- ! {{diagonal split header|{{mvar|n}} | {{mvar|k}}}} !0!! 1 !! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 !! 10 |- !0 |1 |- ! 1 |0 | 1 |- ! 2 |0 | 2 | 1 |- ! 3 |0 | 6 | 6 | 1 |- ! 4 |0 | 24 | 36 | 12 | 1 |- ! 5 |0 | 120 | 240 | 120 | 20 | 1 |- ! 6 |0 | 720 | 1800 | 1200 | 300 | 30 | 1 |- ! 7 |0 | 5040 | 15120 | 12600 | 4200 | 630 | 42 | 1 |- ! 8 |0 | 40320 | 141120 | 141120 | 58800 | 11760 | 1176 | 56 | 1 |- ! 9 |0 | 362880 | 1451520 | 1693440 | 846720 | 211680 | 28224 | 2016 | 72 | 1 |- ! 10 |0 |3628800 |16329600 |21772800 |12700800 |3810240 |635040 |60480 |3240 |90 |1 |} The row sums are <math display="inline">1, 1, 3, 13, 73, 501, 4051, 37633, \dots</math> {{OEIS|A000262}}. ==Rising and falling factorials== Let <math display="inline">x^{(n)}</math> represent the [[rising factorial]] <math display="inline">x(x+1)(x+2) \cdots (x+n-1)</math> and let <math display="inline">(x)_n</math> represent the [[falling factorial]] <math display="inline">x(x-1)(x-2) \cdots (x-n+1)</math>. The Lah numbers are the coefficients that express each of these families of polynomials in terms of the other. Explicitly,<math display="block">x^{(n)} = \sum_{k=0}^n L(n,k) (x)_k</math>and<math display="block">(x)_n = \sum_{k=0}^n (-1)^{n-k} L(n,k)x^{(k)}.</math>For example,<math display="block">x(x+1)(x+2) = {\color{red}6}x + {\color{red}6}x(x-1) + {\color{red}1}x(x-1)(x-2)</math>and<math display="block">x(x-1)(x-2) = {\color{red}6}x - {\color{red}6}x(x+1) + {\color{red}1}x(x+1)(x+2),</math> where the coefficients 6, 6, and 1 are exactly the Lah numbers <math>L(3, 1)</math>, <math>L(3, 2)</math>, and <math>L(3, 3)</math>. ==Identities and relations== The Lah numbers satisfy a variety of identities and relations. In [[Jovan Karamata|Karamata]]–[[Donald Knuth|Knuth]] notation for [[Stirling numbers]]<math display="block"> L(n,k) = \sum_{j=k}^n \left[{n\atop j}\right] \left\{{j\atop k}\right\}</math>where <math display="inline">\left[{n\atop j}\right]</math> are the [[Stirling numbers of the first kind|unsigned Stirling numbers of the first kind]] and <math display="inline">\left\{{j\atop k}\right\}</math> are the [[Stirling numbers of the second kind]]. :<math> L(n,k) = {n-1 \choose k-1} \frac{n!}{k!} = {n \choose k} \frac{(n-1)!}{(k-1)!} = {n \choose k} {n-1 \choose k-1} (n-k)!</math> :<math> L(n,k) = \frac{n!(n-1)!}{k!(k-1)!}\cdot\frac{1}{(n-k)!} = \left (\frac{n!}{k!} \right )^2\frac{k}{n(n-k)!}</math> :<math> k(k+1) L(n,k+1) = (n-k) L(n,k)</math>, for <math>k>0</math>. === Recurrence relations === The Lah numbers satisfy the recurrence relations<math display="block"> \begin{align} L(n+1,k) &= (n+k) L(n,k) + L(n,k-1) \\ &= k(k+1) L(n, k+1) + 2k L(n, k) + L(n, k-1) \end{align} </math>where <math>L(n,0)=\delta_n</math>, the [[Kronecker delta]], and <math>L(n,k)=0</math> for all <math>k > n</math>. === Exponential generating function === :<math>\sum_{n\geq k} L(n,k)\frac{x^n}{n!} = \frac{1}{k!}\left( \frac{x}{1-x} \right)^k</math> === Derivative of exp(1/''x'') === The ''n''-th [[derivative]] of the function <math>e^\frac1{x}</math> can be expressed with the Lah numbers, as follows<ref>{{cite journal |last1=Daboul |first1=Siad |last2=Mangaldan |first2=Jan |last3=Spivey |first3=Michael Z. |last4=Taylor |first4=Peter J. |year=2013 |title=The Lah Numbers and the nth Derivative of <math>e^{1\over x}</math> |journal=Mathematics Magazine |volume=86 |pages=39–47 |doi=10.4169/math.mag.86.1.039 |jstor=10.4169/math.mag.86.1.039 |s2cid=123113404 |number=1}}</ref><math display="block"> \frac{\textrm d^n}{\textrm dx^n} e^\frac1x = (-1)^n \sum_{k=1}^n \frac{L(n,k)}{x^{n+k}} \cdot e^\frac1x.</math>For example, <math> \frac{\textrm d}{\textrm dx} e^\frac1x = - \frac{1}{x^2} \cdot e^{\frac1x}</math> <math> \frac{\textrm d^2}{\textrm dx^2}e^\frac1{x} = \frac{\textrm d}{\textrm dx} \left(-\frac1{x^2} e^{\frac1x} \right)= -\frac{-2}{x^3} \cdot e^{\frac1x} - \frac1{x^2} \cdot \frac{-1}{x^2} \cdot e^{\frac1x}= \left(\frac2{x^3} + \frac1{x^4}\right) \cdot e^{\frac1x}</math> <math> \frac{\textrm d^3}{\textrm dx^3} e^\frac1{x} = \frac{\textrm d}{\textrm dx} \left( \left(\frac2{x^3} + \frac1{x^4}\right) \cdot e^{\frac1x} \right) = \left(\frac{-6}{x^4} + \frac{-4}{x^5}\right) \cdot e^{\frac1x} + \left(\frac2{x^3} + \frac1{x^4}\right) \cdot \frac{-1}{x^2} \cdot e^{\frac1x} =-\left(\frac6{x^4} + \frac6{x^5} + \frac1{x^6}\right) \cdot e^{\frac{1}{x}}</math> == Link to Laguerre polynomials == Generalized [[Laguerre polynomials]] <math>L^{(\alpha)}_n(x)</math> are linked to Lah numbers upon setting <math>\alpha = -1</math><math display="block"> n! L_n^{(-1)}(x) =\sum_{k=0}^n L(n,k) (-x)^k</math>This formula is the default [[Laguerre polynomials|Laguerre polynomial]] in [[Umbral calculus]] convention.<ref>{{Cite journal |last1=Rota |first1=Gian-Carlo |last2=Kahaner |first2=D |last3=Odlyzko |first3=A |date=1973-06-01 |title=On the foundations of combinatorial theory. VIII. Finite operator calculus |journal=Journal of Mathematical Analysis and Applications |language=en |volume=42 |issue=3 |pages=684–760 |doi=10.1016/0022-247X(73)90172-8 |issn=0022-247X|doi-access=free }}</ref> == Practical application == In recent years, Lah numbers have been used in [[steganography]] for hiding data in images. Compared to alternatives such as [[Discrete cosine transform|DCT]], [[Discrete Fourier transform|DFT]] and [[Discrete wavelet transform|DWT]], it has lower complexity of calculation—<math>O(n \log n)</math>—of their integer coefficients.<ref>{{Cite journal |last1=Ghosal |first1=Sudipta Kr |last2=Mukhopadhyay |first2=Souradeep |last3=Hossain |first3=Sabbir |last4=Sarkar |first4=Ram |year=2020 |title=Application of Lah Transform for Security and Privacy of Data through Information Hiding in Telecommunication |journal=Transactions on Emerging Telecommunications Technologies |volume=32 |issue=2 |doi=10.1002/ett.3984|s2cid=225866797 }}</ref><ref>{{Cite web |title=Image Steganography-using-Lah-Transform |url=https://in.mathworks.com/matlabcentral/fileexchange/78751-image-steganography-using-lah-transform |website=MathWorks|date=5 June 2020 }}</ref> The Lah and Laguerre transforms naturally arise in the perturbative description of the [[chromatic dispersion]].<ref>{{Cite journal|last1=Popmintchev|first1=Dimitar|last2=Wang|first2=Siyang|last3=Xiaoshi |first3=Zhang |last4=Stoev|first4=Ventzislav|last5=Popmintchev|first5=Tenio|date=2022-10-24 |title=Analytical Lah-Laguerre optical formalism for perturbative chromatic dispersion|journal=[[Optics Express]]|volume=30|issue=22|pages=40779–40808|doi=10.1364/OE.457139|doi-access=free|pmid=36299007 |bibcode=2022OExpr..3040779P}}</ref><ref>{{cite arXiv|last1=Popmintchev|first1=Dimitar|last2=Wang|first2=Siyang|last3=Xiaoshi|first3=Zhang |last4=Stoev|first4=Ventzislav|last5=Popmintchev|first5=Tenio|date=2020-08-30|title= Theory of the Chromatic Dispersion, Revisited |class=physics.optics |eprint=2011.00066}}</ref> In [[Lah-Laguerre optics]], such an approach tremendously speeds up optimization problems. == See also == * [[Stirling number]]s * [[Pascal matrix]] == References == <references /> == External links == * The signed and unsigned Lah numbers are respectively {{OEIS|A008297}} and {{OEIS|A105278}} {{Classes of natural numbers}} {{DEFAULTSORT:Lah Number}} [[Category:Factorial and binomial topics]] [[Category:Integer sequences]] [[Category:Triangles of numbers]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:Diagonal split header
(
edit
)
Template:Isbn
(
edit
)
Template:OEIS
(
edit
)
Template:Short description
(
edit
)
Template:Use American English
(
edit
)