Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Landau's function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function}} In [[mathematics]], '''Landau's function''' ''g''(''n''), named after [[Edmund Landau]], is defined for every [[natural number]] ''n'' to be the largest [[order (group theory)|order]] of an element of the [[symmetric group]] ''S''<sub>''n''</sub>. Equivalently, ''g''(''n'') is the largest [[least common multiple]] (lcm) of any [[integer partition|partition]] of ''n'', or the maximum number of times a [[permutation]] of ''n'' elements can be recursively applied to itself before it returns to its starting sequence. For instance, 5 = 2 + 3 and lcm(2,3) = 6. No other partition of 5 yields a bigger lcm, so ''g''(5) = 6. An element of order 6 in the group ''S''<sub>5</sub> can be written in cycle notation as (1 2) (3 4 5). Note that the same argument applies to the number 6, that is, ''g''(6) = 6. There are arbitrarily long sequences of consecutive numbers ''n'', ''n'' + 1, ..., ''n'' + ''m'' on which the function ''g'' is constant.<ref>{{citation|last=Nicolas|first=Jean-Louis|author-link=Jean-Louis Nicolas|title=Sur l’ordre maximum d’un élément dans le groupe ''S<sub>n</sub>'' des permutations|journal=[[Acta Arithmetica]]|volume=14|year=1968|pages=315–332|language=French}}</ref> The [[integer sequence]] ''g''(0) = 1, ''g''(1) = 1, ''g''(2) = 2, ''g''(3) = 3, ''g''(4) = 4, ''g''(5) = 6, ''g''(6) = 6, ''g''(7) = 12, ''g''(8) = 15, ... {{OEIS|A000793}} is named after [[Edmund Landau]], who proved in 1902<ref>Landau, pp. 92–103</ref> that :<math>\lim_{n\to\infty}\frac{\ln(g(n))}{\sqrt{n \ln(n)}} = 1</math> (where ln denotes the [[natural logarithm]]). Equivalently (using [[Big O notation|little-o notation]]), <math>g(n) = e^{(1+o(1))\sqrt{n\ln n}}</math>. More precisely,<ref name="mnr88">{{citation|last1=Massias|first1=J. P.|last2=Nicholas|first2=J. L.|last3=Robin|first3=G.|title=Évaluation asymptotique de l’ordre maximum d’un élément du groupe symétrique|journal=[[Acta Arithmetica]]|volume=50|year=1988|pages=221–242|language=French}}</ref> :<math>\ln g(n)=\sqrt{n\ln n}\left(1+\frac{\ln\ln n-1}{2\ln n}-\frac{(\ln\ln n)^2-6\ln\ln n+9}{8(\ln n)^2}+O\left(\left(\frac{\ln\ln n}{\ln n}\right)^3\right)\right).</math> If <math>\pi(x)-\operatorname{Li}(x)=O(R(x))</math>, where <math>\pi</math> denotes the [[prime counting function]], <math>\operatorname{Li}</math> the [[logarithmic integral function]] with [[inverse function|inverse]] <math>\operatorname{Li}^{-1}</math>, and we may take <math>R(x)=x\exp\bigl(-c(\ln x)^{3/5}(\ln\ln x)^{-1/5}\bigr)</math> for some constant ''c'' > 0 by Ford,<ref>{{cite journal |author = Kevin Ford |title=Vinogradov's Integral and Bounds for the Riemann Zeta Function |journal=Proc. London Math. Soc. |date=November 2002 |volume=85 |issue=3 |pages=565–633 |url=https://faculty.math.illinois.edu/~ford/wwwpapers/zetabd.pdf |doi=10.1112/S0024611502013655 |arxiv=1910.08209 |s2cid=121144007 }}</ref> then<ref name="mnr88" /> :<math>\ln g(n)=\sqrt{\operatorname{Li}^{-1}(n)}+O\bigl(R(\sqrt{n\ln n})\ln n\bigr).</math> The statement that :<math>\ln g(n)<\sqrt{\mathrm{Li}^{-1}(n)}</math> for all sufficiently large ''n'' is equivalent to the [[Riemann hypothesis]]. It can be shown that :<math>g(n)\le e^{n/e}</math> with the only equality between the functions at ''n'' = 0, and indeed :<math>g(n) \le \exp\left(1.05314\sqrt{n\ln n}\right).</math><ref>Jean-Pierre Massias, Majoration explicite de l'ordre maximum d'un élément du groupe symétrique, ''Ann. Fac. Sci. Toulouse Math.'' (5) 6 (1984), no. 3-4, pp. 269–281 (1985).</ref> ==Notes== <references/> == References == *[[E. Landau]], "Über die Maximalordnung der Permutationen gegebenen Grades [On the maximal order of permutations of given degree]", ''Arch. Math. Phys.'' Ser. 3, vol. 5, 1903. *W. Miller, "The maximum order of an element of a finite symmetric group", ''[[American Mathematical Monthly]]'', vol. 94, 1987, pp. 497–506. *J.-L. Nicolas, "On Landau's function ''g''(''n'')", in ''The Mathematics of Paul Erdős'', vol. 1, Springer-Verlag, 1997, pp. 228–240. ==External links== *{{OEIS el|sequencenumber=A000793|name=Landau's function on the natural numbers|formalname=Landau's function g(n): largest order of permutation of n elements. Equivalently, largest LCM of partitions of n}} [[Category:Group theory]] [[Category:Permutations]] [[Category:Arithmetic functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite journal
(
edit
)
Template:OEIS
(
edit
)
Template:OEIS el
(
edit
)
Template:Short description
(
edit
)