Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Landau distribution
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Probability distribution}} {{Probability distribution | name = Landau distribution | type = density | pdf_image = [[File:Landau Distribution PDF.svg|350px]]<br /><small><math>\mu=0,\; c=\pi/2</math></small> | support = <math>\mathbb{R}</math> | parameters = <math>c \in(0,\infty)</math> — [[scale parameter]] <br> <math>\mu\in(-\infty,\infty)</math> — [[location parameter]] | char = <math>\exp\left(it\mu -\frac{2ict}{\pi}\log|t| - c|t|\right)</math> | mean = Undefined | variance = Undefined | mgf = Undefined | pdf = <math> \frac{1}{\pi c}\int_0^\infty e^{-t}\cos\left(t\left(\frac{x-\mu}{c}\right) + \frac{2t}{\pi}\log\left(\frac{t}{c}\right)\right)\, dt</math> }} In [[probability theory]], the '''Landau distribution'''<ref>{{ cite journal | last = Landau | first = L. | title = On the energy loss of fast particles by ionization | journal = J. Phys. (USSR) |url=http://e-heritage.ru/Book/10093344 | volume = 8 | page = 201 | date = 1944 }}</ref> is a [[probability distribution]] named after [[Lev Landau]]. Because of the distribution's "fat" tail, the [[Moment (mathematics)|moments]] of the distribution, such as mean or variance, are undefined. The distribution is a particular case of [[stable distribution]]. ==Definition== The [[probability density function]], as written originally by Landau, is defined by the [[complex number|complex]] [[integral]]: :<math>p(x) = \frac{1}{2 \pi i} \int_{a-i\infty}^{a+i\infty} e^{s \log(s) + x s}\, ds , </math> where ''a'' is an arbitrary positive [[real number]], meaning that the integration path can be any parallel to the imaginary axis, intersecting the real positive semi-axis, and <math>\log</math> refers to the [[natural logarithm]]. In other words it is the [[Laplace transform]] of the function <math>s^s</math>. The following real integral is equivalent to the above: :<math>p(x) = \frac{1}{\pi} \int_0^\infty e^{-t \log(t) - x t} \sin(\pi t)\, dt.</math> The full family of Landau distributions is obtained by extending the original distribution to a [[location-scale family]] of [[stable distributions]] with parameters <math>\alpha=1</math> and <math>\beta=1</math>,<ref>{{ cite book | last = Gentle | first = James E. | title = Random Number Generation and Monte Carlo Methods | edition = 2nd | publisher = Springer | location = New York, NY | date = 2003 | series=Statistics and Computing | isbn =978-0-387-00178-4 | doi = 10.1007/b97336 |page=196}} </ref> with [[characteristic function (probability theory)|characteristic function]]:<ref>{{cite book|last1=Zolotarev|first1=V.M.|title=One-dimensional stable distributions|date=1986|publisher=American Mathematical Society|location=Providence, R.I.|isbn=0-8218-4519-5|url-access=registration|url=https://archive.org/details/onedimensionalst00zolo_0}}</ref> :<math>\varphi(t;\mu,c)=\exp\left(it\mu -\tfrac{2ict}{\pi}\log|t|-c|t|\right)</math> where <math>c\in(0,\infty)</math> and <math>\mu\in(-\infty,\infty)</math>, which yields a density function: :<math>p(x;\mu,c) = \frac{1}{\pi c}\int_{0}^{\infty} e^{-t}\cos\left(t\left(\frac{x-\mu}{c}\right)+\frac{2t}{\pi}\log\left(\frac{t}{c}\right)\right)\, dt , </math> Taking <math>\mu=0</math> and <math>c=\frac{\pi}{2}</math> we get the original form of <math>p(x)</math> above. ==Properties== [[Image:Landau_pdf.svg|300px|thumb|right|The approximation function for <math>\mu=0,\,c=1</math>]] * Translation: If <math>X \sim \textrm{Landau}(\mu,c)\, </math> then <math> X + m \sim \textrm{Landau}(\mu + m ,c) \,</math>. * Scaling: If <math>X \sim \textrm{Landau}(\mu,c)\, </math> then <math> aX \sim \textrm{Landau}(a\mu-\tfrac{2ac\log(a)}{\pi}, ac) \,</math>. * Sum: If <math>X \sim \textrm{Landau}(\mu_1, c_1)</math> and <math>Y \sim \textrm{Landau}(\mu_2, c_2) \,</math> then <math> X+Y \sim \textrm{Landau}(\mu_1+\mu_2, c_1+c_2)</math>. These properties can all be derived from the characteristic function. Together they imply that the Landau distributions are closed under [[affine transformations]]. === Approximations === In the "standard" case <math>\mu=0</math> and <math>c=\pi/2</math>, the pdf can be approximated<ref>{{Cite web|url=https://reference.wolfram.com/language/ref/LandauDistribution.html|title=LandauDistribution—Wolfram Language Documentation}}</ref> using [[Lindhard theory]] which says: :<math>p(x+\log(x)-1+\gamma) \approx \frac{\exp(-1/x)}{x(1+x)},</math> where <math>\gamma</math> is [[Euler's constant]]. A similar approximation <ref>{{ cite book | last1 = Behrens | first1 = S. E. | last2 = Melissinos | first2 = A.C. | title = Univ. of Rochester Preprint UR-776 (1981) }}</ref> of <math>p(x;\mu,c)</math> for <math>\mu=0</math> and <math>c=1</math> is: :<math>p(x) \approx \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x + e^{-x}}{2}\right).</math> ==Related distributions== * The Landau distribution is a [[stable distribution]] with stability parameter <math>\alpha</math> and skewness parameter <math>\beta</math> both equal to 1. == References == {{Reflist}} {{ProbDistributions|continuous-infinite}} {{DEFAULTSORT:Landau Distribution}} [[Category:Continuous distributions]] [[Category:Probability distributions with non-finite variance]] [[Category:Power laws]] [[Category:Stable distributions]] [[Category:Lev Landau]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:ProbDistributions
(
edit
)
Template:Probability distribution
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)