Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lebesgue point
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]], given a locally [[Lebesgue integrable]] function <math>f</math> on <math>\mathbb{R}^k</math>, a point <math>x</math> in the domain of <math>f</math> is a '''Lebesgue point''' if<ref>{{citation|title=Measure Theory, Volume 1|first=Vladimir I.|last=Bogachev|publisher=Springer|year=2007|isbn=9783540345145|page=351|url=https://books.google.com/books?id=CoSIe7h5mTsC&pg=PA351}}.</ref> :<math>\lim_{r\rightarrow 0^+}\frac{1}{\lambda (B(x,r))}\int_{B(x,r)} \!|f(y)-f(x)|\,\mathrm{d}y=0.</math> Here, <math>B(x,r)</math> is a ball centered at <math>x</math> with radius <math>r > 0</math>, and <math>\lambda (B(x,r))</math> is its [[Lebesgue measure]]. The Lebesgue points of <math>f</math> are thus points where <math>f</math> does not oscillate too much, in an average sense.<ref>{{citation|title=Moduli in Modern Mapping Theory|series=Springer Monographs in Mathematics|first1=Olli|last1=Martio|first2=Vladimir|last2=Ryazanov|first3=Uri|last3=Srebro|first4=Eduard|last4=Yakubov|publisher=Springer|year=2008|isbn=9780387855882|page=105|url=https://books.google.com/books?id=y3oGDTHi-6oC&pg=PA105}}.</ref> The [[Lebesgue differentiation theorem]] states that, given any <math>f\in L^1(\mathbb{R}^k)</math>, [[almost everywhere|almost every]] <math>x</math> is a Lebesgue point of <math>f</math>.<ref>{{citation|title=Mathematical Analysis: An Introduction to Functions of Several Variables|first1=Mariano|last1=Giaquinta|first2=Giuseppe|last2=Modica|publisher=Springer|year=2010|isbn=9780817646127|page=80|url=https://books.google.com/books?id=0YE_AAAAQBAJ&pg=PA80}}.</ref> ==References== {{reflist}} {{DEFAULTSORT:Lebesgue Point}} [[Category:Mathematical analysis]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Reflist
(
edit
)