Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lerch transcendent
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Special mathematical function}} In [[mathematics]], the '''Lerch transcendent''', is a [[special function]] that generalizes the [[Hurwitz zeta function]] and the [[polylogarithm]]. It is named after Czech mathematician [[Mathias Lerch]], who published a paper about a similar function in 1887.<ref>{{citation | first= Mathias | last= Lerch | authorlink= Mathias Lerch | title= Note sur la fonction <math>\scriptstyle{\mathfrak K}(w,x,s) = \sum_{k=0}^\infty {e^{2k\pi ix} \over (w+k)^s}</math> | language= French | year= 1887 | journal= Acta Mathematica | volume= 11 | issue= 1–4 | pages= 19–24 | doi= 10.1007/BF02612318 | mr= 1554747 | jfm= 19.0438.01| s2cid= 121885446 | url= https://zenodo.org/record/1681743 | doi-access= free }}</ref> The Lerch transcendent, is given by: :<math>\Phi(z, s, \alpha) = \sum_{n=0}^\infty \frac { z^n} {(n+\alpha)^s}</math>. It only converges for any real number <math>\alpha > 0</math>, where <math>|z| < 1</math>, or <math>\mathfrak{R}(s) > 1</math>, and <math>|z| = 1</math>.{{sfn|Guillera|Sondow|2008}} ==Special cases== The Lerch transcendent is related to and generalizes various special functions. The '''Lerch zeta function''' is given by: :<math>L(\lambda, s, \alpha) = \sum_{n=0}^\infty \frac { e^{2\pi i\lambda n}} {(n+\alpha)^s}=\Phi(e^{2\pi i\lambda}, s,\alpha)</math> The [[Hurwitz zeta function]] is the special case<ref name="guillera-sondow-248-249">{{harvnb|Guillera|Sondow|2008|p=248–249}}</ref> :<math>\zeta(s,\alpha) = \sum_{n=0}^\infty \frac{1}{(n+\alpha)^s} = \Phi(1,s,\alpha)</math> The [[polylogarithm]] is another special case:<ref name="guillera-sondow-248-249" /> :<math>\textrm{Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s} =z\Phi(z,s,1)</math> The [[Riemann zeta function]] is a special case of both of the above:<ref name="guillera-sondow-248-249" /> :<math>\zeta(s) =\sum_{n=1}^\infty \frac{1}{n^s} = \Phi(1,s,1)</math> The [[Dirichlet eta function]]:<ref name="guillera-sondow-248-249" /> :<math>\eta(s) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s} = \Phi(-1,s,1)</math> The [[Dirichlet beta function]]:<ref name="guillera-sondow-248-249" /> :<math>\beta(s) = \sum_{k=0}^\infty \frac{(-1)^{k}}{(2k+1)^s} = 2^{-s}\Phi(-1,s,\tfrac12)</math> The [[Legendre chi function]]:<ref name="guillera-sondow-248-249" /> :<math>\chi_s(z) = \sum_{k=0}^\infty \frac{z^{2k+1}}{(2k+1)^s}= \frac {z}{2^s} \Phi(z^2,s,\tfrac12)</math> The [[inverse tangent integral]]:<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Inverse Tangent Integral |url=https://mathworld.wolfram.com/InverseTangentIntegral.html |access-date=2024-10-13 |website=mathworld.wolfram.com |language=en}}</ref> :<math>\textrm{Ti}_s(z)= \sum_{k=0}^\infty \frac{(-1)^k z^{2k+1}}{(2k+1)^s}=\frac{z}{2^s}\Phi(-z^2,s,\tfrac12) </math> The [[polygamma function|polygamma functions]] for positive integers ''n'':<ref>The polygamma function has the series representation <math>\psi^{(m)}(z) = (-1)^{m+1}\, m! \sum_{k=0}^\infty \frac{1}{(z+k)^{m+1}}</math> which holds for integer values of {{math|''m'' > 0}} and any complex ''{{mvar|z}}'' not equal to a negative integer.</ref><ref>{{Cite web |last=Weisstein |first=Eric W. |title=Polygamma Function |url=https://mathworld.wolfram.com/PolygammaFunction.html |access-date=2024-10-14 |website=mathworld.wolfram.com |language=en}}</ref> :<math>\psi^{(n)}(\alpha)= (-1)^{n+1} n!\Phi (1,n+1,\alpha)</math> The [[Clausen function]]:<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Clausen Function |url=https://mathworld.wolfram.com/ClausenFunction.html |access-date=2024-10-14 |website=mathworld.wolfram.com |language=en}}</ref> :<math>\text{Cl}_2(z)= \frac{ie^{-iz}}2 \Phi(e^{-iz},2,1)-\frac{ie^{iz}}2 \Phi(e^{iz},2,1)</math> ==Integral representations== The Lerch transcendent has an integral representation: :<math> \Phi(z,s,a)=\frac{1}{\Gamma(s)}\int_0^\infty \frac{t^{s-1}e^{-at}}{1-ze^{-t}}\,dt</math> The proof is based on using the integral definition of the [[gamma function]] to write :<math>\Phi(z,s,a)\Gamma(s) = \sum_{n=0}^\infty \frac{z^n}{(n+a)^s} \int_0^\infty x^s e^{-x} \frac{dx}{x} = \sum_{n=0}^\infty \int_0^\infty t^s z^n e^{-(n+a)t} \frac{dt}{t}</math> and then interchanging the sum and integral. The resulting integral representation converges for <math>z \in \Complex \setminus [1,\infty),</math> Re(''s'') > 0, and Re(''a'') > 0. This [[analytic continuation|analytically continues]] <math>\Phi(z,s,a)</math> to ''z'' outside the [[unit disk]]. The integral formula also holds if ''z'' = 1, Re(''s'') > 1, and Re(''a'') > 0; see [[Hurwitz zeta function]].<ref>{{harvnb|Bateman|Erdélyi|1953|p=27}}</ref><ref>{{harvnb|Guillera|Sondow|2008|loc=Lemma 2.1 and 2.2}}</ref> A [[contour integral]] representation is given by :<math> \Phi(z,s,a)=-\frac{\Gamma(1-s)}{2\pi i} \int_C \frac{(-t)^{s-1}e^{-at}}{1-ze^{-t}}\,dt</math> where ''C'' is a [[Hankel contour]] counterclockwise around the positive real axis, not enclosing any of the points <math>t = \log(z) + 2k\pi i</math> (for integer ''k'') which are [[Pole (complex analysis)|poles]] of the integrand. The integral assumes Re(''a'') > 0.<ref>{{harvnb|Bateman|Erdélyi|1953|p=28}}</ref> ===Other integral representations=== A Hermite-like integral representation is given by :<math> \Phi(z,s,a)= \frac{1}{2a^s}+ \int_0^\infty \frac{z^t}{(a+t)^s}\,dt+ \frac{2}{a^{s-1}} \int_0^\infty \frac{\sin(s\arctan(t)-ta\log(z))}{(1+t^2)^{s/2}(e^{2\pi at}-1)}\,dt </math> for :<math>\Re(a)>0\wedge |z|<1 </math> and :<math> \Phi(z,s,a)=\frac{1}{2a^s}+ \frac{\log^{s-1}(1/z)}{z^a}\Gamma(1-s,a\log(1/z))+ \frac{2}{a^{s-1}} \int_0^\infty \frac{\sin(s\arctan(t)-ta\log(z))}{(1+t^2)^{s/2}(e^{2\pi at}-1)}\,dt </math> for :<math>\Re(a)>0. </math> Similar representations include :<math> \Phi(z,s,a)= \frac{1}{2a^s} + \int_{0}^{\infty}\frac{\cos(t\log z)\sin\Big(s\arctan\tfrac{t}{a}\Big) - \sin(t\log z)\cos\Big(s\arctan\tfrac{t}{a}\Big)}{\big(a^2 + t^2\big)^{\frac{s}{2}} \tanh\pi t }\,dt, </math> and :<math>\Phi(-z,s,a)= \frac{1}{2a^s} + \int_{0}^{\infty}\frac{\cos(t\log z)\sin\Big(s\arctan\tfrac{t}{a}\Big) - \sin(t\log z)\cos\Big(s\arctan\tfrac{t}{a}\Big)}{\big(a^2 + t^2\big)^{\frac{s}{2}} \sinh\pi t }\,dt,</math> holding for positive ''z'' (and more generally wherever the integrals converge). Furthermore, :<math>\Phi(e^{i\varphi},s,a)=L\big(\tfrac{\varphi}{2\pi}, s, a\big)= \frac{1}{a^s} + \frac{1}{2\Gamma(s)}\int_{0}^{\infty}\frac{t^{s-1}e^{-at}\big(e^{i\varphi}-e^{-t}\big)}{\cosh{t}-\cos{\varphi}}\,dt,</math> The last formula is also known as ''Lipschitz formula''. ==Identities== For λ rational, the summand is a [[root of unity]], and thus <math>L(\lambda, s, \alpha)</math> may be expressed as a finite sum over the Hurwitz zeta function. Suppose <math display="inline">\lambda = \frac{p}{q}</math> with <math>p, q \in \Z</math> and <math>q > 0</math>. Then <math>z = \omega = e^{2 \pi i \frac{p}{q}}</math> and <math>\omega^q = 1</math>. :<math>\Phi(\omega, s, \alpha) = \sum_{n=0}^\infty \frac {\omega^n} {(n+\alpha)^s} = \sum_{m=0}^{q-1} \sum_{n=0}^\infty \frac {\omega^{qn + m}}{(qn + m + \alpha)^s} = \sum_{m=0}^{q-1} \omega^m q^{-s} \zeta \left( s,\frac{m + \alpha}{q} \right) </math> Various identities include: :<math>\Phi(z,s,a)=z^n \Phi(z,s,a+n) + \sum_{k=0}^{n-1} \frac {z^k}{(k+a)^s}</math> and :<math>\Phi(z,s-1,a)=\left(a+z\frac{\partial}{\partial z}\right) \Phi(z,s,a)</math> and :<math>\Phi(z,s+1,a)=-\frac{1}{s}\frac{\partial}{\partial a} \Phi(z,s,a).</math> ==Series representations== A series representation for the Lerch transcendent is given by :<math>\Phi(z,s,q)=\frac{1}{1-z} \sum_{n=0}^\infty \left(\frac{-z}{1-z} \right)^n \sum_{k=0}^n (-1)^k \binom{n}{k} (q+k)^{-s}.</math> (Note that <math>\tbinom{n}{k}</math> is a [[binomial coefficient]].) The series is valid for all ''s'', and for complex ''z'' with Re(''z'')<1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.<ref name="benorin">{{cite web| url=https://www.physicsforums.com/insights/the-analytic-continuation-of-the-lerch-and-the-zeta-functions/ | title=The Analytic Continuation of the Lerch Transcendent and the Riemann Zeta Function | date=27 April 2020 | access-date=28 April 2020}}</ref> A [[Taylor series]] in the first parameter was given by [[Arthur Erdélyi]]. It may be written as the following series, which is valid for<ref>{{cite journal | author=B. R. Johnson | title=Generalized Lerch zeta function | journal=Pacific J. Math. | volume=53 | number=1 | date=1974 | pages=189–193 | doi=10.2140/pjm.1974.53.189 | doi-access=free}}</ref> :<math>\left|\log(z)\right| < 2 \pi;s\neq 1,2,3,\dots; a\neq 0,-1,-2,\dots</math> :<math> \Phi(z,s,a)=z^{-a}\left[\Gamma(1-s)\left(-\log (z)\right)^{s-1} +\sum_{k=0}^\infty \zeta(s-k,a)\frac{\log^k (z)}{k!}\right] </math> If ''n'' is a positive integer, then :<math> \Phi(z,n,a)=z^{-a}\left\{ \sum_{{k=0}\atop k\neq n-1}^ \infty \zeta(n-k,a)\frac{\log^k (z)}{k!} +\left[\psi(n)-\psi(a)-\log(-\log(z))\right]\frac{\log^{n-1}(z)}{(n-1)!} \right\}, </math> where <math>\psi(n)</math> is the [[digamma function]]. A [[Taylor series]] in the third variable is given by :<math>\Phi(z,s,a+x)=\sum_{k=0}^\infty \Phi(z,s+k,a)(s)_{k}\frac{(-x)^k}{k!};|x|<\Re(a),</math> where <math>(s)_{k}</math> is the [[Pochhammer symbol]]. Series at ''a'' = −''n'' is given by :<math> \Phi(z,s,a)=\sum_{k=0}^n \frac{z^k}{(a+k)^s} +z^n\sum_{m=0}^\infty (1-m-s)_{m}\operatorname{Li}_{s+m}(z)\frac{(a+n)^m}{m!};\ a\rightarrow-n </math> A special case for ''n'' = 0 has the following series :<math> \Phi(z,s,a)=\frac{1}{a^s} +\sum_{m=0}^\infty (1-m-s)_m \operatorname{Li}_{s+m}(z)\frac{a^m}{m!}; |a|<1, </math> where <math>\operatorname{Li}_s(z)</math> is the [[polylogarithm]]. An [[asymptotic series]] for <math>s\rightarrow-\infty</math> :<math>\Phi(z,s,a)=z^{-a}\Gamma(1-s)\sum_{k=-\infty}^\infty [2k\pi i-\log(z)]^{s-1}e^{2k\pi ai} </math> for <math>|a|<1;\Re(s)<0 ;z\notin (-\infty,0) </math> and :<math> \Phi(-z,s,a)=z^{-a}\Gamma(1-s)\sum_{k=-\infty}^\infty [(2k+1)\pi i-\log(z)]^{s-1}e^{(2k+1)\pi ai} </math> for <math>|a|<1;\Re(s)<0 ;z\notin (0,\infty). </math> An asymptotic series in the [[incomplete gamma function]] :<math> \Phi(z,s,a)=\frac{1}{2a^s}+ \frac{1}{z^a}\sum_{k=1}^\infty \frac{e^{-2\pi i(k-1)a}\Gamma(1-s,a(-2\pi i(k-1)-\log(z)))} {(-2\pi i(k-1)-\log(z))^{1-s}}+ \frac{e^{2\pi ika}\Gamma(1-s,a(2\pi ik-\log(z)))}{(2\pi ik-\log(z))^{1-s}} </math> for <math>|a|<1;\Re(s)<0.</math> The representation as a [[generalized hypergeometric function]] is<ref>{{cite journal|first1=J. E.|last1=Gottschalk|first2=E. N. |last2=Maslen| title=Reduction formulae for generalized [[hypergeometric function]]s of one variable|journal=J. Phys. A | year=1988| volume=21|issue=9|pages=1983–1998|doi=10.1088/0305-4470/21/9/015|bibcode=1988JPhA...21.1983G}}</ref> :<math> \Phi(z,s,\alpha)=\frac{1}{\alpha^s}{}_{s+1}F_s\left(\begin{array}{c} 1,\alpha,\alpha,\alpha,\cdots\\ 1+\alpha,1+\alpha,1+\alpha,\cdots\\ \end{array}\mid z\right). </math> == Asymptotic expansion == The polylogarithm function <math>\mathrm{Li}_n(z)</math> is defined as :<math>\mathrm{Li}_0(z)=\frac{z}{1-z}, \qquad \mathrm{Li}_{-n}(z)=z \frac{d}{dz} \mathrm{Li}_{1-n}(z).</math> Let :<math> \Omega_{a} \equiv\begin{cases} \mathbb{C}\setminus[1,\infty) & \text{if } \Re a > 0, \\ {z \in \mathbb{C}, |z|<1} & \text{if } \Re a \le 0. \end{cases} </math> For <math>|\mathrm{Arg}(a)|<\pi, s \in \mathbb{C}</math> and <math>z \in \Omega_{a}</math>, an asymptotic expansion of <math>\Phi(z,s,a)</math> for large <math>a</math> and fixed <math>s</math> and <math>z</math> is given by :<math> \Phi(z,s,a) = \frac{1}{1-z} \frac{1}{a^{s}} + \sum_{n=1}^{N-1} \frac{(-1)^{n} \mathrm{Li}_{-n}(z)}{n!} \frac{(s)_{n}}{a^{n+s}} +O(a^{-N-s}) </math> for <math>N \in \mathbb{N}</math>, where <math>(s)_n = s (s+1)\cdots (s+n-1)</math> is the [[Falling and rising factorials|Pochhammer symbol]].<ref>{{cite journal |last1=Ferreira |first1=Chelo |last2=López |first2=José L. |title=Asymptotic expansions of the Hurwitz–Lerch zeta function |journal=Journal of Mathematical Analysis and Applications |date=October 2004 |volume=298 |issue=1 |pages=210–224 |doi=10.1016/j.jmaa.2004.05.040|doi-access=free }}</ref> Let :<math>f(z,x,a) \equiv \frac{1-(z e^{-x})^{1-a}}{1-z e^{-x}}.</math> Let <math>C_{n}(z,a)</math> be its Taylor coefficients at <math>x=0</math>. Then for fixed <math>N \in \mathbb{N}, \Re a > 1</math> and <math>\Re s > 0</math>, :<math> \Phi(z,s,a) - \frac{\mathrm{Li}_{s}(z)}{z^{a}} = \sum_{n=0}^{N-1} C_{n}(z,a) \frac{(s)_{n}}{a^{n+s}} + O\left( (\Re a)^{1-N-s}+a z^{-\Re a} \right), </math> as <math>\Re a \to \infty</math>.<ref>{{cite journal |last1=Cai |first1=Xing Shi |last2=López |first2=José L. |title=A note on the asymptotic expansion of the Lerch's transcendent |journal=Integral Transforms and Special Functions |date=10 June 2019 |volume=30 |issue=10 |pages=844–855 |doi=10.1080/10652469.2019.1627530|arxiv=1806.01122 |s2cid=119619877 }}</ref> ==Software== The Lerch transcendent is implemented as LerchPhi in [http://www.maplesoft.com/support/help/Maple/view.aspx?path=LerchPhi Maple] and [https://functions.wolfram.com/ZetaFunctionsandPolylogarithms/LerchPhi/ Mathematica], and as lerchphi in [http://mpmath.org/doc/current/functions/zeta.html#lerch-transcendent mpmath] and [https://docs.sympy.org/latest/modules/functions/special.html#sympy.functions.special.zeta_functions.lerchphi SymPy]. ==References== {{Reflist}} * {{dlmf | id= 25.14 | first= T. M. | last= Apostol | title= Lerch's Transcendent}}. * {{citation | first1= H. | last1= Bateman | author1-link= Harry Bateman | first2= A. | last2= Erdélyi | author2-link= Arthur Erdélyi | title= Higher Transcendental Functions, Vol. I | year= 1953 | location= New York | publisher= McGraw-Hill | url=http://apps.nrbook.com/bateman/Vol1.pdf}}. (See § 1.11, "The function Ψ(''z'',''s'',''v'')", p. 27) * {{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=Academic Press |date=2015 |orig-year=October 2014 |edition=8 |language=English |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik |chapter=9.55.}} * {{citation | first1= Jesus | last1= Guillera | first2= Jonathan | last2= Sondow | arxiv= math.NT/0506319 | mr = 2429900 | title= Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent | journal= The Ramanujan Journal | volume= 16 | year= 2008 | pages= 247–270 | issue= 3 | doi= 10.1007/s11139-007-9102-0| s2cid= 119131640 }}. (Includes various basic identities in the introduction.) * {{citation | first= M. | last= Jackson | title= On Lerch's transcendent and the basic bilateral hypergeometric series <sub>2</sub>''ψ''<sub>2</sub> | year= 1950 | journal= J. London Math. Soc. | volume= 25 | issue= 3 | pages= 189–196 | doi= 10.1112/jlms/s1-25.3.189 | mr= 0036882}}. * {{citation | first1= F. | last1= Johansson | first2= Ia. | last2= Blagouchine | arxiv= 1804.01679 | mr = 3925487 | title= Computing Stieltjes constants using complex integration | journal= Mathematics of Computation | volume= 88 | year= 2019 | pages= 1829–1850 | issue= 318 | doi= 10.1090/mcom/3401| s2cid= 4619883 }}. * {{citation | first1= Antanas | last1= Laurinčikas | first2= Ramūnas | last2= Garunkštis | title= The Lerch zeta-function | publisher= Kluwer Academic Publishers | location= Dordrecht | year= 2002 | isbn= 978-1-4020-1014-9 | mr= 1979048}}. ==External links== * {{citation | first1= Sergej V. | last1= Aksenov | first2= Ulrich D. | last2= Jentschura | year=2002 | url= http://aksenov.freeshell.org/lerchphi.html | title= C and Mathematica Programs for Calculation of Lerch's Transcendent}}. * Ramunas Garunkstis, ''[http://www.mif.vu.lt/~garunkstis Home Page]'' (2005) ''(Provides numerous references and preprints.)'' * {{cite journal|first1=Ramunas|last1=Garunkstis|url=http://www.mif.vu.lt/~garunkstis/preprintai/approx.pdf |title=Approximation of the Lerch Zeta Function|year=2004|journal=Lithuanian Mathematical Journal|volume=44|number=2|pages=140–144|doi=10.1023/B:LIMA.0000033779.41365.a5|s2cid=123059665 }} * {{cite web|first1=S.|last1=Kanemitsu|first2=Y.|last2=Tanigawa|first3=H.|last3=Tsukada|url=https://hal.archives-ouvertes.fr/hal-02220916|title=A generalization of Bochner's formula|year=2015}} {{cite journal|first1=S.|last1=Kanemitsu|first2=Y.|last2=Tanigawa|first3=H.|last3=Tsukada|doi=10.46298/hrj.2004.150|journal=Hardy-Ramanujan Journal|title=A generalization of Bochner's formula|year=2004|volume=27|doi-access=free}} * {{MathWorld | urlname= LerchTranscendent | title= Lerch Transcendent}} * {{dlmf|id=25.14 |title=Lerch's Transcendent}} [[Category:Zeta and L-functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Dlmf
(
edit
)
Template:Harvnb
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)