Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linnik's theorem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical theorem}} '''Linnik's theorem''' in [[analytic number theory]] answers a natural question after [[Dirichlet's theorem on arithmetic progressions]]. It asserts that there exist positive ''c'' and ''L'' such that, if we denote p(''a'',''d'') the least [[primes in arithmetic progression|prime in the arithmetic progression]] :<math>a + nd,\ </math> where ''n'' runs through the positive [[integer]]s and ''a'' and ''d'' are any given positive [[coprime integers]] with 1 ≤ ''a'' ≤ ''d'' − 1, then: : <math>\operatorname{p}(a,d) < c d^{L}. \; </math> The theorem is named after [[Yuri Vladimirovich Linnik]], who [[mathematical proof|proved]] it in 1944.<ref>{{cite journal | last=Linnik | first=Yu. V. | title=On the least prime in an arithmetic progression I. The basic theorem | journal=Rec. Math. (Mat. Sbornik) |series=Nouvelle Série | volume=15 | issue=57 | year=1944 | pages=139–178 | mr=0012111}}</ref><ref>{{ cite journal | last=Linnik | first=Yu. V. | title=On the least prime in an arithmetic progression II. The Deuring-Heilbronn phenomenon | journal=Rec. Math. (Mat. Sbornik) |series=Nouvelle Série | volume=15 | issue=57 | year=1944 | pages=347–368 | mr=0012112}}</ref> Although Linnik's proof showed ''c'' and ''L'' to be [[effective results in number theory|effectively computable]], he provided no numerical values for them. It follows from [[Zsigmondy's theorem]] that p(1,''d'') ≤ 2<sup>''d''</sup> − 1, for all ''d'' ≥ 3. It is known that p(1,''p'') ≤ L<sub>''p''</sub>, for all [[prime number|primes]] ''p'' ≥ 5, as L<sub>''p''</sub> is [[modular arithmetic|congruent]] to 1 modulo ''p'' for all prime numbers ''p'', where L<sub>''p''</sub> denotes the ''p''-th [[Lucas number]]. Just like [[Mersenne numbers]], Lucas numbers with prime indices have [[divisor]]s of the form 2''kp''+1. == Properties == It is known that ''L'' ≤ 2 for [[almost all]] integers ''d''.<ref>{{cite journal | author1-link=Enrico Bombieri | last1=Bombieri | first1=Enrico | author2-link=John Friedlander | first2=John B. | last2=Friedlander | author3-link=Henryk Iwaniec | first3=Henryk | last3=Iwaniec | title=Primes in Arithmetic Progressions to Large Moduli. III | journal=[[Journal of the American Mathematical Society]] | volume=2 | issue=2 | year=1989 | pages=215–224 | mr=0976723 | doi=10.2307/1990976| jstor=1990976 | doi-access=free }}</ref> On the [[generalized Riemann hypothesis]] it can be shown that : <math>\operatorname{p}(a,d) \leq (1+o(1))\varphi(d)^2 (\log d)^2 \; ,</math> where <math>\varphi</math> is the [[totient function]],<ref name="heath-brown"/> and the stronger bound : <math>\operatorname{p}(a,d) \leq \varphi(d)^2 (\log d)^2 \; ,</math> has been also proved.<ref name="LamzouriLiSoundararajan">{{cite journal|last1=Lamzouri|first1=Y.|last2=Li|first2=X.|last3=Soundararajan|first3=K.|title=Conditional bounds for the least quadratic non-residue and related problems|journal=Math. Comp.|date=2015|volume=84|issue=295|pages=2391–2412|doi=10.1090/S0025-5718-2015-02925-1|arxiv=1309.3595|s2cid=15306240}}</ref> It is also [[conjecture]]d that: : <math>\operatorname{p}(a,d) < d^2. \; </math> <ref name="heath-brown"/> == Bounds for ''L'' == The constant ''L'' is called '''Linnik's constant'''<ref>{{cite book |last=Guy | first=Richard K. |title=Unsolved problems in number theory | volume=1 |publisher=Springer-Verlag |edition=Third |year=2004 |isbn=978-0-387-20860-2|page=22 | mr=2076335 | series=Problem Books in Mathematics | doi=10.1007/978-0-387-26677-0 | location=New York}}</ref> and the following table shows the progress that has been made on determining its size. {| cellpadding="3" | ''L'' ≤ || Year of publication || Author |- | align="right" | 10000 || align="center" | 1957 || [[Pan Chengdong|Pan]]<ref>{{cite journal | last=Pan | first=Cheng Dong | title=On the least prime in an arithmetical progression | journal=Sci. Record |series=New Series | volume=1 | year=1957 | pages=311–313 | mr=0105398}}</ref> |- | align="right" | 5448 || align="center" | 1958 || Pan |- | align="right" | 777 || align="center" | 1965 || [[Chen Jingrun|Chen]]<ref>{{cite journal | last=Chen | first=Jingrun | title=On the least prime in an arithmetical progression | journal=Sci. Sinica | volume=14 | year=1965 | pages=1868–1871}}</ref> |- | align="right" | 630 || align="center" | 1971 || [[Matti Jutila|Jutila]] |- | align="right" | 550 || align="center" | 1970 || Jutila<ref>{{cite journal | last=Jutila | first=Matti | title=A new estimate for Linnik's constant | journal=Ann. Acad. Sci. Fenn. Ser. A | volume=471 | year=1970 | mr=0271056}}</ref> |- | align="right" | 168 || align="center" | 1977 || Chen<ref>{{cite journal | last=Chen | first=Jingrun | title=On the least prime in an arithmetical progression and two theorems concerning the zeros of Dirichlet's $L$-functions | journal=Sci. Sinica | volume=20 | year=1977 | issue=5 | pages=529–562 | mr=0476668}}</ref> |- | align="right" | 80 || align="center" | 1977 || Jutila<ref>{{cite journal | last=Jutila | first=Matti | title=On Linnik's constant | journal=Math. Scand. | volume=41 | year=1977 | issue=1 | pages=45–62 | mr=0476671| doi=10.7146/math.scand.a-11701 | doi-access=free }}</ref> |- | align="right" | 36 || align="center" | 1977 || [[Sidney Graham|Graham]]<ref>{{cite thesis | title=Applications of sieve methods | last=Graham | first=Sidney West | type=Ph.D. | publisher=Univ. Michigan | location=Ann Arbor, Mich | year=1977 | mr=2627480 }}</ref> |- | align="right" | 20 || align="center" | 1981 || Graham<ref>{{cite journal | last=Graham | first=S. W. | title=On Linnik's constant | journal=[[Acta Arith.]] | volume=39 | year=1981 | issue=2 | pages=163–179 | mr=0639625| doi=10.4064/aa-39-2-163-179 | doi-access=free }}</ref> (submitted before Chen's 1979 paper) |- | align="right" | 17 || align="center" | 1979 || Chen<ref>{{cite journal | last=Chen | first=Jingrun | title=On the least prime in an arithmetical progression and theorems concerning the zeros of Dirichlet's $L$-functions. II | journal=Sci. Sinica | volume=22 | year=1979 | issue=8 | pages=859–889 | mr=0549597}}</ref> |- | align="right" | 16 || align="center" | 1986 || Wang |- | align="right" | 13.5 || align="center" | 1989 || Chen and [[Liu Jian Min|Liu]]<ref>{{cite journal | last1=Chen | first1=Jingrun | last2=Liu | first2=Jian Min | title=On the least prime in an arithmetical progression. III | journal=Science in China Series A: Mathematics | volume=32 | year=1989 | issue=6 | pages=654–673 | mr=1056044}}</ref><ref>{{cite journal | last1=Chen |first1=Jingrun | last2=Liu | first2=Jian Min | title=On the least prime in an arithmetical progression. IV | journal=Science in China Series A: Mathematics | volume=32 | year=1989 | issue=7 | pages=792–807 | mr=1058000}}</ref> |- | align="right" | 8 || align="center" | 1990 || Wang<ref>{{cite journal | last=Wang | first=Wei | title=On the least prime in an arithmetical progression | journal=Acta Mathematica Sinica |series=New Series | year=1991 | volume=7 | issue=3 | pages=279–288 | mr=1141242| doi=10.1007/BF02583005 | s2cid=121701036 }}</ref> |- | align="right" | 5.5 || align="center" | 1992 || [[Roger Heath-Brown|Heath-Brown]]<ref name="heath-brown">{{cite journal | last=Heath-Brown | first=Roger | title=Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression | journal=[[Proc. London Math. Soc.]] | volume=64 | issue=3 | year=1992 | pages=265–338 | mr=1143227 | doi=10.1112/plms/s3-64.2.265| url=https://ora.ox.ac.uk/objects/uuid:b63b8b4f-ad21-4de4-a86b-c82fdfc87997 }}</ref> |- | align="right" | 5.18 || align="center" | 2009 || Xylouris<ref>{{cite journal | first=Triantafyllos | last=Xylouris | title=On Linnik's constant | year=2011 | journal=[[Acta Arith.]] | volume=150 | issue=1 | pages=65–91 | mr=2825574 | doi=10.4064/aa150-1-4| doi-access=free }}</ref> |- | align="right" | 5 || align="center" | 2011 || Xylouris<ref>{{cite thesis | first=Triantafyllos | last=Xylouris | title=Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression | trans-title=The zeros of Dirichlet L-functions and the least prime in an arithmetic progression | year=2011 | mr=3086819 | language=de | location=Bonn | publisher=Universität Bonn, Mathematisches Institut | type=Dissertation for the degree of Doctor of Mathematics and Natural Sciences}}</ref> |- | align="right" | 5 − ε || align="center" | 2018 || Xylouris<ref>[https://www.chebsbornik.ru/jour/article/view/507 Linniks Konstante ist kleiner als 5]</ref> |} Moreover, in Heath-Brown's result the constant ''c'' is effectively computable. ==Notes== {{reflist}} [[Category:Theorems in analytic number theory]] [[Category:Theorems about prime numbers]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite thesis
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)