Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Liouville function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Arithmetic function}} The '''Liouville lambda function''', denoted by {{math|1=λ(''n'')}} and named after [[Joseph Liouville]], is an important [[arithmetic function]]. Its value is {{math|1=+1}} if {{mvar|n}} is the product of an even number of [[prime number]]s, and {{math|1=−1}} if it is the product of an odd number of primes. Explicitly, the [[fundamental theorem of arithmetic]] states that any positive [[integer]] {{mvar|n}} can be represented uniquely as a product of powers of primes: {{math|1=''n'' = ''p''<sub>1</sub><sup>''a''<sub>1</sub></sup> ⋯ ''p''<sub>''k''</sub><sup>''a''<sub>''k''</sub></sup>}}, where {{math|1=''p''<sub>1</sub> < ''p''<sub>2</sub> < ... < ''p''<sub>''k''</sub>}} are primes and the {{math|1=''a<sub>j</sub>''}} are positive integers. ({{math|1=1}} is given by the empty product.) The [[prime omega function]]s count the number of primes, with ({{mvar|Ω}}) or without ({{mvar|ω}}) multiplicity: : <math> \omega(n) = k, </math> : <math> \Omega(n) = a_1 + a_2 + \cdots + a_k. </math> {{math|1=λ(''n'')}} is defined by the formula : <math> \lambda(n) = (-1)^{\Omega(n)} </math> {{OEIS|A008836}}. {{mvar|λ}} is [[multiplicative function|completely multiplicative]] since {{math|1=Ω(''n'')}} is completely [[additive function|additive]], i.e.: {{math|1=Ω(''ab'') = Ω(''a'') + Ω(''b'')}}. Since {{math|1}} has no prime factors, {{math|1=Ω(1) = 0}}, so {{math|1=λ(1) = 1}}. It is related to the [[Möbius function]] {{math|1=μ(''n'')}}. Write {{mvar|n}} as {{math|1=''n'' = ''a''<sup>2</sup>''b''}}, where {{mvar|b}} is [[squarefree]], i.e., {{math|1=ω(''b'') = Ω(''b'')}}. Then : <math> \lambda(n) = \mu(b). </math> The sum of the Liouville function over the [[divisor]]s of {{mvar|n}} is the [[indicator function|characteristic function]] of the [[square (algebra)|squares]]: :<math> \sum_{d|n}\lambda(d) = \begin{cases} 1 & \text{if }n\text{ is a perfect square,} \\ 0 & \text{otherwise.} \end{cases} </math> [[Möbius inversion formula|Möbius inversion]] of this formula yields :<math>\lambda(n) = \sum_{d^2|n} \mu\left(\frac{n}{d^2}\right).</math> The [[Dirichlet inverse]] of Liouville function is the absolute value of the Möbius function, {{math|1=λ<sup>–1</sup>(''n'') = |μ(''n'')| = μ<sup>2</sup>(''n'')}}, the characteristic function of the squarefree integers. ==Series== The [[Dirichlet series]] for the Liouville function is related to the [[Riemann zeta function]] by :<math>\frac{\zeta(2s)}{\zeta(s)} = \sum_{n=1}^\infty \frac{\lambda(n)}{n^s}.</math> Also: :<math>\sum\limits_{n=1}^{\infty} \frac{\lambda(n)\ln n}{n}=-\zeta(2)=-\frac{\pi^2}{6}.</math> The [[Lambert series]] for the Liouville function is :<math>\sum_{n=1}^\infty \frac{\lambda(n)q^n}{1-q^n} = \sum_{n=1}^\infty q^{n^2} = \frac{1}{2}\left(\vartheta_3(q)-1\right),</math> where <math>\vartheta_3(q)</math> is the [[Jacobi theta function]]. ==Conjectures on weighted summatory functions== <div style="float: right; clear: right"> [[Image:Liouville.svg|thumb|none|Summatory Liouville function ''L''(''n'') up to ''n'' = 10<sup>4</sup>. The readily visible oscillations are due to the first non-trivial zero of the Riemann zeta function.]] [[Image:Liouville-big.svg|thumb|none|Summatory Liouville function ''L''(''n'') up to ''n'' = 10<sup>7</sup>. Note the apparent [[scale invariance]] of the oscillations.]] [[Image:Liouville-log.svg|thumb|none|Logarithmic graph of the negative of the summatory Liouville function ''L''(''n'') up to ''n'' = 2 × 10<sup>9</sup>. The green spike shows the function itself (not its negative) in the narrow region where the [[Pólya conjecture]] fails; the blue curve shows the oscillatory contribution of the first Riemann zero.]] [[Image:Liouville-harmonic.svg|thumb|none|Harmonic Summatory Liouville function ''T''(''n'') up to ''n'' = 10<sup>3</sup>]] </div> The [[Pólya conjecture|Pólya problem]] is a question raised made by [[George Pólya]] in 1919. Defining : <math>L(n) = \sum_{k=1}^n \lambda(k)</math> {{OEIS|id=A002819}}, the problem asks whether <math>L(n)\leq 0</math> for ''n'' > 1. The answer turns out to be no. The smallest counter-example is ''n'' = 906150257, found by Minoru Tanaka in 1980. It has since been shown that ''L''(''n'') > 0.0618672{{radic|''n''}} for infinitely many positive integers ''n'',<ref>{{cite journal |first=P. |last=Borwein |first2=R. |last2=Ferguson |first3=M. J. |last3=Mossinghoff |title=Sign Changes in Sums of the Liouville Function |journal=Mathematics of Computation |volume=77 |year=2008 |issue=263 |pages=1681–1694 |doi=10.1090/S0025-5718-08-02036-X |doi-access=free }}</ref> while it can also be shown via the same methods that ''L''(''n'') < −1.3892783{{radic|''n''}} for infinitely many positive integers ''n''.<ref name="HUMPHRIES-WEIGHTED-SUMFUNCS" /> For any <math>\varepsilon > 0</math>, assuming the Riemann hypothesis, we have that the summatory function <math>L(x) \equiv L_0(x)</math> is bounded by :<math>L(x) = O\left(\sqrt{x} \exp\left(C \cdot \log^{1/2}(x) \left(\log\log x\right)^{5/2+\varepsilon}\right)\right),</math> where the <math>C > 0</math> is some absolute limiting constant.<ref name="HUMPHRIES-WEIGHTED-SUMFUNCS">{{cite journal |arxiv = 1108.1524|doi = 10.1016/j.jnt.2012.08.011|doi-access=free|title = The distribution of weighted sums of the Liouville function and Pólyaʼs conjecture|journal = Journal of Number Theory|volume = 133|issue = 2|pages = 545–582|year = 2013|last1 = Humphries|first1 = Peter}}</ref> Define the related sum : <math>T(n) = \sum_{k=1}^n \frac{\lambda(k)}{k}.</math> It was open for some time whether ''T''(''n'') ≥ 0 for sufficiently big ''n'' ≥ ''n''<sub>0</sub> (this conjecture is occasionally–though incorrectly–attributed to [[Pál Turán]]). This was then disproved by {{harvtxt|Haselgrove|1958}}, who showed that ''T''(''n'') takes negative values infinitely often. A confirmation of this positivity conjecture would have led to a proof of the [[Riemann hypothesis]], as was shown by [[Pál Turán]]. ===Generalizations=== More generally, we can consider the weighted summatory functions over the Liouville function defined for any <math>\alpha \in \mathbb{R}</math> as follows for positive integers ''x'' where (as above) we have the special cases <math>L(x) := L_0(x)</math> and <math>T(x) = L_1(x)</math> <ref name="HUMPHRIES-WEIGHTED-SUMFUNCS"/> :<math>L_{\alpha}(x) := \sum_{n \leq x} \frac{\lambda(n)}{n^{\alpha}}.</math> These <math>\alpha^{-1}</math>-weighted summatory functions are related to the [[Mertens function]], or weighted summatory functions of the [[Moebius function]]. In fact, we have that the so-termed non-weighted, or ordinary function <math>L(x)</math> precisely corresponds to the sum :<math>L(x) = \sum_{d^2 \leq x} M\left(\frac{x}{d^2}\right) = \sum_{d^2 \leq x} \sum_{n \leq \frac{x}{d^2}} \mu(n).</math> Moreover, these functions satisfy similar bounding asymptotic relations.<ref name="HUMPHRIES-WEIGHTED-SUMFUNCS"/> For example, whenever <math>0 \leq \alpha \leq \frac{1}{2}</math>, we see that there exists an absolute constant <math>C_{\alpha} > 0</math> such that :<math>L_{\alpha}(x) = O\left(x^{1-\alpha}\exp\left(-C_{\alpha} \frac{(\log x)^{3/5}}{(\log\log x)^{1/5}}\right)\right).</math> By an application of [[Perron's formula]], or equivalently by a key (inverse) [[Mellin transform]], we have that :<math>\frac{\zeta(2\alpha+2s)}{\zeta(\alpha+s)} = s \cdot \int_1^{\infty} \frac{L_{\alpha}(x)}{x^{s+1}} dx,</math> which then can be inverted via the [[Mellin transform|inverse transform]] to show that for <math>x > 1</math>, <math>T \geq 1</math> and <math>0 \leq \alpha < \frac{1}{2}</math> :<math>L_{\alpha}(x) = \frac{1}{2\pi\imath} \int_{\sigma_0-\imath T}^{\sigma_0+\imath T} \frac{\zeta(2\alpha+2s)}{\zeta(\alpha+s)} \cdot \frac{x^s}{s} ds + E_{\alpha}(x) + R_{\alpha}(x, T), </math> where we can take <math>\sigma_0 := 1-\alpha+1 / \log(x)</math>, and with the remainder terms defined such that <math>E_{\alpha}(x) = O(x^{-\alpha})</math> and <math>R_{\alpha}(x, T) \rightarrow 0</math> as <math>T \rightarrow \infty</math>. In particular, if we assume that the [[Riemann hypothesis]] (RH) is true and that all of the non-trivial zeros, denoted by <math>\rho = \frac{1}{2} + \imath\gamma</math>, of the [[Riemann zeta function]] are [[simple zero|simple]], then for any <math>0 \leq \alpha < \frac{1}{2}</math> and <math> x \geq 1</math> there exists an infinite sequence of <math>\{T_v\}_{v \geq 1}</math> which satisfies that <math>v \leq T_v \leq v+1</math> for all ''v'' such that :<math>L_{\alpha}(x) = \frac{x^{1/2-\alpha}}{(1-2\alpha) \zeta(1/2)} + \sum_{|\gamma| < T_v} \frac{\zeta(2\rho)}{\zeta^{\prime}(\rho)} \cdot \frac{x^{\rho-\alpha}}{(\rho-\alpha)} + E_{\alpha}(x) + R_{\alpha}(x, T_v) + I_{\alpha}(x), </math> where for any increasingly small <math>0 < \varepsilon < \frac{1}{2}-\alpha</math> we define :<math>I_{\alpha}(x) := \frac{1}{2\pi\imath \cdot x^{\alpha}} \int_{\varepsilon+\alpha-\imath\infty}^{\varepsilon+\alpha+\imath\infty} \frac{\zeta(2s)}{\zeta(s)} \cdot \frac{x^s}{(s-\alpha)} ds,</math> and where the remainder term :<math>R_{\alpha}(x, T) \ll x^{-\alpha} + \frac{x^{1-\alpha} \log(x)}{T} + \frac{x^{1-\alpha}}{T^{1-\varepsilon} \log(x)}, </math> which of course tends to ''0'' as <math>T \rightarrow \infty</math>. These exact analytic formula expansions again share similar properties to those corresponding to the weighted [[Mertens function]] cases. Additionally, since <math>\zeta(1/2) < 0</math> we have another similarity in the form of <math>L_{\alpha}(x)</math> to <math>M(x)</math> in so much as the dominant leading term in the previous formulas predicts a negative bias in the values of these functions over the positive natural numbers ''x''. ==References== {{Reflist}} * {{cite journal | last=Pólya | first=G. | title=Verschiedene Bemerkungen zur Zahlentheorie | journal=Jahresbericht der Deutschen Mathematiker-Vereinigung | volume=28 | year=1919 | pages=31–40 }} * {{cite journal|last1=Haselgrove|first1=C. Brian | author-link=C. Brian Haselgrove | title=A disproof of a conjecture of Pólya |journal=[[Mathematika]] |volume=5|number=2 |year=1958 |pages=141–145 | doi=10.1112/S0025579300001480 | issn=0025-5793 | mr=0104638 | zbl=0085.27102 }} * {{cite journal|last1=Lehman| first1=R. | title=On Liouville's function |journal=Mathematics of Computation |volume=14 | issue=72 |year=1960 | pages=311–320|doi=10.1090/S0025-5718-1960-0120198-5 |mr=0120198|doi-access=free}} * {{cite journal|first1=Minoru|last1= Tanaka |title=A Numerical Investigation on Cumulative Sum of the Liouville Function | journal=[[Tokyo Journal of Mathematics]] |volume=3 | issue=1 |pages=187–189 |year=1980 | mr=0584557 | doi=10.3836/tjm/1270216093|doi-access=free }} * {{mathworld|urlname=LiouvilleFunction|title=Liouville Function}} * {{springer|author=A.F. Lavrik|title=Liouville function|id=L/l059620}} {{DEFAULTSORT:Liouville Function}} [[Category:Multiplicative functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:Harvtxt
(
edit
)
Template:Math
(
edit
)
Template:Mathworld
(
edit
)
Template:Mvar
(
edit
)
Template:OEIS
(
edit
)
Template:Radic
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)