Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
List of integrals of hyperbolic functions
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|none}} The following is a list of [[integral]]s ([[anti-derivative]] functions) of [[hyperbolic function]]s. For a complete list of integral functions, see [[list of integrals]]. In all formulas the constant ''a'' is assumed to be nonzero, and ''C'' denotes the [[constant of integration]]. ==Integrals involving only hyperbolic sine functions== {{startplainlist|indent=1}} * <math>\int\sinh ax\,dx = \frac{1}{a}\cosh ax+C</math> * <math>\int\sinh^2 ax\,dx = \frac{1}{4a}\sinh 2ax - \frac{x}{2}+C</math> * <math>\int\sinh^n ax\,dx = \begin{cases} \frac{1}{an}(\sinh^{n-1} ax)(\cosh ax) - \frac{n-1}{n}\displaystyle\int\sinh^{n-2} ax\,dx, & n>0 \\ \frac{1}{a(n+1)}(\sinh^{n+1} ax)(\cosh ax) - \frac{n+2}{n+1}\displaystyle\int\sinh^{n+2}ax\,dx, & n<0, n\neq -1 \end{cases} </math> * <math>\begin{align} \int\frac{dx}{\sinh ax} &= \frac{1}{a} \ln\left|\tanh\frac{ax}{2}\right|+C \\ &= \frac{1}{a} \ln\left|\frac{\cosh ax - 1}{\sinh ax}\right|+C \\ &= \frac{1}{a} \ln\left|\frac{\sinh ax}{\cosh ax + 1}\right|+C \\ &= \frac{1}{2a} \ln\left|\frac{\cosh ax - 1}{\cosh ax + 1}\right|+C \end{align}</math> * <math>\int\frac{dx}{\sinh^n ax} = -\frac{\cosh ax}{a(n-1)\sinh^{n-1} ax}-\frac{n-2}{n-1}\int\frac{dx}{\sinh^{n-2} ax} \qquad\mbox{(for }n\neq 1\mbox{)}</math> * <math>\int x\sinh ax\,dx = \frac{1}{a} x\cosh ax - \frac{1}{a^2}\sinh ax+C</math> * <math>\int (\sinh ax)(\sinh bx)\,dx = \frac{1}{a^2-b^2} \big(a(\sinh bx)(\cosh ax) - b(\cosh bx)(\sinh ax)\big)+C \qquad\mbox{(for }a^2\neq b^2\mbox{)}</math> {{endplainlist}} ==Integrals involving only hyperbolic cosine functions== {{startplainlist|indent=1}} * <math>\int\cosh ax\,dx = \frac{1}{a}\sinh ax+C</math> * <math>\int\cosh^2 ax\,dx = \frac{1}{4a}\sinh 2ax + \frac{x}{2}+C</math> * <math>\int\cosh^n ax\,dx = \begin{cases} \frac{1}{an}(\sinh ax)(\cosh^{n-1} ax) + \frac{n-1}{n}\displaystyle\int\cosh^{n-2} ax\,dx, & n>0 \\ -\frac{1}{a(n+1)}(\sinh ax)(\cosh^{n+1} ax) + \frac{n+2}{n+1}\displaystyle\int\cosh^{n+2}ax\,dx, & n<0, n\neq -1 \end{cases} </math> * <math>\begin{align} \int\frac{dx}{\cosh ax} &= \frac{2}{a} \arctan e^{ax}+C \\ &= \frac{1}{a} \arctan (\sinh ax)+C \end{align}</math> * <math>\int\frac{dx}{\cosh^n ax} = \frac{\sinh ax}{a(n-1)\cosh^{n-1} ax}+\frac{n-2}{n-1}\int\frac{dx}{\cosh^{n-2} ax} \qquad\mbox{(for }n\neq 1\mbox{)}</math> * <math>\int x\cosh ax\,dx = \frac{1}{a} x\sinh ax - \frac{1}{a^2}\cosh ax+C</math> * <math>\int x^2 \cosh ax\,dx = -\frac{2x \cosh ax}{a^2} + \left(\frac{x^2}{a}+\frac{2}{a^3}\right) \sinh ax+C</math> * <math>\int (\cosh ax)(\cosh bx)\,dx = \frac{1}{a^2-b^2} \big(a(\sinh ax)(\cosh bx) - b(\sinh bx)(\cosh ax)\big)+C \qquad\mbox{(for }a^2\neq b^2\mbox{)}</math> *<math>\int \frac{dx}{1+\cosh(ax)} = \frac{2}{a} \frac{1}{1+e^{-ax}}+C\quad</math> or <math>\frac{2}{a}</math> times [[Logistic function|The Logistic Function]] {{endplainlist}} ==Other integrals== ===Integrals of hyperbolic tangent, cotangent, secant, cosecant functions=== {{startplainlist|indent=1}} * <math>\int \tanh x \, dx = \ln \cosh x + C</math> * <math>\int\tanh^2 ax\,dx = x - \frac{\tanh ax}{a}+C</math> * <math>\int \tanh^n ax\,dx = -\frac{1}{a(n-1)}\tanh^{n-1} ax+\int\tanh^{n-2} ax\,dx \qquad\mbox{(for }n\neq 1\mbox{)}</math> * <math>\int \coth x \, dx = \ln| \sinh x | + C , \text{ for } x \neq 0 </math> * <math>\int \coth^n ax\,dx = -\frac{1}{a(n-1)}\coth^{n-1} ax+\int\coth^{n-2} ax\,dx \qquad\mbox{(for }n\neq 1\mbox{)}</math> * <math>\int \operatorname{sech}\,x \, dx = \arctan\,(\sinh x) + C</math> * <math>\int \operatorname{csch}\,x \, dx = \ln\left| \tanh {x \over2}\right| + C = \ln\left|\coth{x}-\operatorname{csch}{x}\right|+C, \text{ for } x \neq 0 </math> {{endplainlist}} ===Integrals involving hyperbolic sine and cosine functions=== {{startplainlist|indent=1}} * <math>\int (\cosh ax)(\sinh bx)\,dx = \frac{1}{a^2-b^2} \big(a(\sinh ax)(\sinh bx) - b(\cosh ax)(\cosh bx)\big)+C \qquad\mbox{(for }a^2\neq b^2\mbox{)}</math> * <math>\begin{align} \int\frac{\cosh^n ax}{\sinh^m ax}\,dx &= \frac{\cosh^{n-1} ax}{a(n-m)\sinh^{m-1} ax} + \frac{n-1}{n-m}\int\frac{\cosh^{n-2} ax}{\sinh^m ax}\,dx \qquad\mbox{(for }m\neq n\mbox{)} \\ &= -\frac{\cosh^{n+1} ax}{a(m-1)\sinh^{m-1} ax} + \frac{n-m+2}{m-1}\int\frac{\cosh^n ax}{\sinh^{m-2} ax}\,dx \qquad\mbox{(for }m\neq 1\mbox{)} \\ &= -\frac{\cosh^{n-1} ax}{a(m-1)\sinh^{m-1} ax} + \frac{n-1}{m-1}\int\frac{\cosh^{n-2} ax}{\sinh^{m-2} ax}\,dx \qquad\mbox{(for }m\neq 1\mbox{)} \end{align}</math> * <math>\begin{align} \int\frac{\sinh^m ax}{\cosh^n ax}\,dx &= \frac{\sinh^{m-1} ax}{a(m-n)\cosh^{n-1} ax} + \frac{m-1}{n-m}\int\frac{\sinh^{m-2} ax}{\cosh^n ax}\,dx \qquad\mbox{(for }m\neq n\mbox{)} \\ &= \frac{\sinh^{m+1} ax}{a(n-1)\cosh^{n-1} ax} + \frac{m-n+2}{n-1}\int\frac{\sinh^m ax}{\cosh^{n-2} ax}\,dx \qquad\mbox{(for }n\neq 1\mbox{)} \\ &= -\frac{\sinh^{m-1} ax}{a(n-1)\cosh^{n-1} ax} + \frac{m-1}{n-1}\int\frac{\sinh^{m -2} ax}{\cosh^{n-2} ax}\,dx \qquad\mbox{(for }n\neq 1\mbox{)} \end{align}</math> {{endplainlist}} ===Integrals involving hyperbolic and trigonometric functions=== {{startplainlist|indent=1}} * <math>\int \sinh (ax+b)\sin (cx+d)\,dx = \frac{a}{a^2+c^2}\cosh(ax+b)\sin(cx+d)-\frac{c}{a^2+c^2}\sinh(ax+b)\cos(cx+d)+C</math> * <math>\int \sinh (ax+b)\cos (cx+d)\,dx = \frac{a}{a^2+c^2}\cosh(ax+b)\cos(cx+d)+\frac{c}{a^2+c^2}\sinh(ax+b)\sin(cx+d)+C</math> * <math>\int \cosh (ax+b)\sin (cx+d)\,dx = \frac{a}{a^2+c^2}\sinh(ax+b)\sin(cx+d)-\frac{c}{a^2+c^2}\cosh(ax+b)\cos(cx+d)+C</math> * <math>\int \cosh (ax+b)\cos (cx+d)\,dx = \frac{a}{a^2+c^2}\sinh(ax+b)\cos(cx+d)+\frac{c}{a^2+c^2}\cosh(ax+b)\sin(cx+d)+C</math> {{endplainlist}} {{Lists of integrals}} {{DEFAULTSORT:Integrals of hyperbolic functions}} [[Category:Exponentials]] [[Category:Lists of integrals|Hyperbolic functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Endplainlist
(
edit
)
Template:Lists of integrals
(
edit
)
Template:Short description
(
edit
)
Template:Startplainlist
(
edit
)