Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
List of integrals of irrational functions
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|none}} The following is a list of [[integral]]s ([[antiderivative]] functions) of [[irrational function]]s. For a complete list of integral functions, see [[lists of integrals]]. Throughout this article the [[constant of integration]] is omitted for brevity. <!--CAUTION: before 'correcting' one of these integrals, please check that the amended integral doesn't simply differ from the existing version by a constant term. NOTE: a constant *factor* in the argument of ln() may amount to a constant term in the integral. --> == Integrals involving ''r'' = {{sqrt|''a''<sup>2</sup> + ''x''<sup>2</sup>}} == {{startplainlist|indent=1}} * <math>\int r\,dx = \frac{1}{2}\left(x r +a^2\,\ln\left(x+r\right)\right)</math><!-- (1.1) [Abramowitz & Stegun p13 3.3.41] + verified by differentiation --> * <math>\int r^3\,dx = \frac{1}{4}xr^3+\frac{3}{8}a^2xr+\frac{3}{8}a^4\ln\left(x+r\right)</math> * <math>\int r^5\,dx = \frac{1}{6}xr^5+\frac{5}{24}a^2xr^3+\frac{5}{16}a^4xr+\frac{5}{16}a^6\ln\left(x+r\right)</math> * <math>\int x r\,dx = \frac{r^3}{3}</math> * <math>\int x r^3\,dx = \frac{r^5}{5}</math> * <math>\int x r^{2n+1}\,dx = \frac{r^{2n+3}}{2n+3} </math> * <math>\int x^2 r\,dx = \frac{xr^3}{4}-\frac{a^2xr}{8}-\frac{a^4}{8}\ln\left(x+r\right)</math> * <math>\int x^2 r^3\,dx = \frac{xr^5}{6}-\frac{a^2xr^3}{24}-\frac{a^4xr}{16}-\frac{a^6}{16}\ln\left(x+r\right)</math> * <math>\int x^3 r\,dx = \frac{r^5}{5} - \frac{a^2 r^3}{3}</math> * <math>\int x^3 r^3\,dx = \frac{r^7}{7}-\frac{a^2r^5}{5} </math> * <math>\int x^3 r^{2n+1}\,dx = \frac{r^{2n+5}}{2n+5} - \frac{a^2 r^{2n+3}}{2n+3}</math> * <math>\int x^4 r\,dx = \frac{x^3r^3}{6}-\frac{a^2xr^3}{8}+\frac{a^4xr}{16}+\frac{a^6}{16}\ln\left(x+r\right)</math> * <math>\int x^4 r^3\,dx = \frac{x^3r^5}{8}-\frac{a^2xr^5}{16}+\frac{a^4xr^3}{64}+\frac{3a^6xr}{128}+\frac{3a^8}{128}\ln\left(x+r\right)</math> * <math>\int x^5 r\,dx = \frac{r^7}{7} - \frac{2 a^2 r^5}{5} + \frac{a^4 r^3}{3}</math> * <math>\int x^5 r^3\,dx = \frac{r^9}{9} - \frac{2 a^2 r^7}{7} + \frac{a^4 r^5}{5}</math> * <math>\int x^5 r^{2n+1}\,dx = \frac{r^{2n+7}}{2n+7} - \frac{2a^2r^{2n+5}}{2n+5}+\frac{a^4 r^{2n+3}}{2n+3} </math> * <math>\int\frac{r\,dx}{x} = r-a\ln\left|\frac{a+r}{x}\right| = r - a\, \operatorname{arsinh}\frac{a}{x}</math> * <math>\int\frac{r^3\,dx}{x} = \frac{r^3}{3}+a^2r-a^3\ln\left|\frac{a+r}{x}\right|</math> * <math>\int\frac{r^5\,dx}{x} = \frac{r^5}{5}+\frac{a^2r^3}{3}+a^4r-a^5\ln\left|\frac{a+r}{x}\right|</math> * <math>\int\frac{r^7\,dx}{x} = \frac{r^7}{7}+\frac{a^2r^5}{5}+\frac{a^4r^3}{3}+a^6r-a^7\ln\left|\frac{a+r}{x}\right|</math> * <math>\int\frac{dx}{r} = \operatorname{arsinh}\frac{x}{a} = \ln\left( \frac{x+r}{a} \right)</math> * <math>\int\frac{dx}{r^3} = \frac{x}{a^2r}</math> * <math>\int\frac{x\,dx}{r} = r</math> * <math>\int\frac{x\,dx}{r^3} = -\frac{1}{r}</math> * <math>\int\frac{x^2\,dx}{r} = \frac{x}{2}r-\frac{a^2}{2}\,\operatorname{arsinh}\frac{x}{a} = \frac{x}{2}r-\frac{a^2}{2}\ln\left( \frac {x+r}{a} \right)</math> * <math>\int\frac{dx}{xr} = -\frac{1}{a}\,\operatorname{arsinh}\frac{a}{x} = -\frac{1}{a}\ln\left|\frac{a+r}{x}\right|</math> {{endplainlist}} == Integrals involving ''s'' = {{sqrt|''x''<sup>2</sup> β ''a''<sup>2</sup>}} == Assume ''x''<sup>2</sup> > ''a''<sup>2</sup> (for ''x''<sup>2</sup> < ''a''<sup>2</sup>, see next section): {{startplainlist|indent=1}} * <math>\int s\,dx = \frac{1}{2}\left(xs-a^{2}\ln\left|x+s\right|\right)</math> * <math>\int xs\,dx = \frac{1}{3}s^3</math> * <math>\int\frac{s\,dx}{x} = s - |a|\arccos\left|\frac{a}{x}\right|</math> * <math>\int\frac{dx}{s} = \ln\left|\frac{x+s}{a}\right| =\operatorname{sgn}(x)\,\operatorname{arcosh}\left|\frac{x}{a}\right| =\frac{1}{2}\ln\left(\frac{x+s}{x-s}\right)\,,</math> where the positive value of <math>\operatorname{arcosh}\left|\frac{x}{a}\right|</math> is to be taken. * <math>\int\frac{dx}{xs} = \frac{1}{a}\operatorname{arcsec}\left|\frac{x}{a}\right|</math> * <math>\int\frac{x\,dx}{s} = s</math> * <math>\int\frac{x\,dx}{s^3} = -\frac{1}{s}</math> * <math>\int\frac{x\,dx}{s^5} = -\frac{1}{3s^3}</math> * <math>\int\frac{x\,dx}{s^7} = -\frac{1}{5s^5}</math> * <math>\int\frac{x\,dx}{s^{2n+1}} = -\frac{1}{(2n-1)s^{2n-1}} </math> * <math>\int\frac{x^{2m}\,dx}{s^{2n+1}} = -\frac{1}{2n-1}\frac{x^{2m-1}}{s^{2n-1}}+\frac{2m-1}{2n-1}\int\frac{x^{2m-2}\,dx}{s^{2n-1}} </math> * <math>\int\frac{x^2\,dx}{s} = \frac{xs}{2}+\frac{a^2}{2}\ln\left|\frac{x+s}{a}\right|</math> * <math>\int\frac{x^2\,dx}{s^3} = -\frac{x}{s}+\ln\left|\frac{x+s}{a}\right|</math> * <math>\int\frac{x^4\,dx}{s} = \frac{x^3s}{4}+\frac{3}{8}a^2xs+\frac{3}{8}a^4\ln\left|\frac{x+s}{a}\right| </math> * <math>\int\frac{x^4\,dx}{s^3} = \frac{xs}{2}-\frac{a^2x}{s}+\frac{3}{2}a^2\ln\left|\frac{x+s}{a}\right| </math> * <math>\int\frac{x^4\,dx}{s^5} = -\frac{x}{s}-\frac{1}{3}\frac{x^3}{s^3}+\ln\left|\frac{x+s}{a}\right| </math> * <math>\int\frac{x^{2m}\,dx}{s^{2n+1}} = (-1)^{n-m}\frac{1}{a^{2(n-m)}}\sum_{i=0}^{n-m-1}\frac{1}{2(m+i)+1}{n-m-1 \choose i}\frac{x^{2(m+i)+1}}{s^{2(m+i)+1}}\qquad\mbox{(}n>m\ge0\mbox{)}</math> * <math>\int\frac{dx}{s^3} = -\frac{1}{a^2}\frac{x}{s}</math> * <math>\int\frac{dx}{s^5} = \frac{1}{a^4}\left[\frac{x}{s}-\frac{1}{3}\frac{x^3}{s^3}\right]</math> * <math>\int\frac{dx}{s^7} =-\frac{1}{a^6}\left[\frac{x}{s}-\frac{2}{3}\frac{x^3}{s^3}+\frac{1}{5}\frac{x^5}{s^5}\right]</math> * <math>\int\frac{dx}{s^9} =\frac{1}{a^8}\left[\frac{x}{s}-\frac{3}{3}\frac{x^3}{s^3}+\frac{3}{5}\frac{x^5}{s^5}-\frac{1}{7}\frac{x^7}{s^7}\right]</math> * <math>\int\frac{x^2\,dx}{s^5} = -\frac{1}{a^2}\frac{x^3}{3s^3}</math> * <math>\int\frac{x^2\,dx}{s^7} = \frac{1}{a^4}\left[\frac{1}{3}\frac{x^3}{s^3}-\frac{1}{5}\frac{x^5}{s^5}\right]</math> * <math>\int\frac{x^2\,dx}{s^9} = -\frac{1}{a^6}\left[\frac{1}{3}\frac{x^3}{s^3}-\frac{2}{5}\frac{x^5}{s^5}+\frac{1}{7}\frac{x^7}{s^7}\right]</math> {{endplainlist}} == Integrals involving ''u'' = {{sqrt|''a''<sup>2</sup> β ''x''<sup>2</sup>}} == {{startplainlist|indent=1}} * <math>\int u\,dx = \frac{1}{2}\left(xu+a^2\arcsin\frac{x}{a}\right) \qquad\mbox{(}|x|\leq|a|\mbox{)}</math><!-- (3.1) [Abramowitz & Stegun p13 3.3.45] --> * <math>\int xu\,dx = -\frac{1}{3} u^3 \qquad\mbox{(}|x|\leq|a|\mbox{)}</math> * <math>\int x^2u\,dx = -\frac{x}{4} u^3+\frac{a^2}{8}(xu+a^2\arcsin\frac{x}{a}) \qquad\mbox{(}|x|\leq|a|\mbox{)}</math> * <math>\int\frac{u\,dx}{x} = u-a\ln\left|\frac{a+u}{x}\right| \qquad\mbox{(}|x|\leq|a|\mbox{)}</math> * <math>\int\frac{dx}{u} = \arcsin\frac{x}{a} \qquad\mbox{(}|x|\leq|a|\mbox{)}</math><!-- (3.4) [Abramowitz & Stegun p13 3.3.44] --> * <math>\int\frac{x^2\,dx}{u} = \frac{1}{2}\left(-xu+a^2\arcsin\frac{x}{a}\right) \qquad\mbox{(}|x|\leq|a|\mbox{)}</math><!-- (3.5) [need reference] - verified by differentiation only --> * <math>\int u\,dx = \frac{1}{2}\left(xu-\sgn x\,\operatorname{arcosh}\left|\frac{x}{a}\right|\right) \qquad\mbox{(for }|x|\ge|a|\mbox{)}</math> * <math>\int \frac{x}{u}\,dx = -u \qquad\mbox{(}|x|\leq|a|\mbox{)}</math> {{endplainlist}} == Integrals involving ''R'' = {{sqrt|''ax''<sup>2</sup> + ''bx'' + ''c''}} == Assume (''ax''<sup>2</sup> + ''bx'' + ''c'') cannot be reduced to the following expression (''px'' + ''q'')<sup>2</sup> for some ''p'' and ''q''. {{startplainlist|indent=1}} * <math>\int\frac{dx}{R} = \frac{1}{\sqrt{a}}\ln\left|2\sqrt{a}R+2ax+b\right| \qquad \mbox{(for }a>0\mbox{)}</math><!-- (4.1) [Abramowitz & Stegun p13 3.3.33] + verified by differentiation --> * <math>\int\frac{dx}{R} = \frac{1}{\sqrt{a}}\,\operatorname{arsinh}\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad \mbox{(for }a>0\mbox{, }4ac-b^2>0\mbox{)}</math><!-- (4.2) [Abramowitz & Stegun p13 3.3.34] + verified by differentiation --> * <math>\int\frac{dx}{R} = \frac{1}{\sqrt{a}}\ln|2ax+b| \quad \mbox{(for }a>0\mbox{, }4ac-b^2=0\mbox{)}</math><!-- (4.3) [Abramowitz & Stegun p13 3.3.35] + verified by differentiation --> * <math>\int\frac{dx}{R} = -\frac{1}{\sqrt{-a}}\arcsin\frac{2ax+b}{\sqrt{b^2-4ac}} \qquad \mbox{(for }a<0\mbox{, }4ac-b^2<0\mbox{, }\left|2ax+b\right|<\sqrt{b^2-4ac}\mbox{)}</math><!-- (4.4) [Abramowitz & Stegun p13 3.3.36] + verified by differentiation --> * <math>\int\frac{dx}{R^3} = \frac{4ax+2b}{(4ac-b^2)R}</math><!-- (4.5) [need reference] - verified by differentiation + special case of 4.7 below--> * <math>\int\frac{dx}{R^5} = \frac{4ax+2b}{3(4ac-b^2)R}\left(\frac{1}{R^2}+\frac{8a}{4ac-b^2}\right)</math><!-- (4.6) [need reference] - verified by differentiation + special case of 4.7 below--> * <math>\int\frac{dx}{R^{2n+1}} = \frac{2}{(2n-1)(4ac-b^2)}\left(\frac{2ax+b}{R^{2n-1}}+4a(n-1)\int\frac{dx}{R^{2n-1}}\right)</math><!-- (4.7) [need reference] - verified by differentiation only --> * <math>\int\frac{x}{R}\,dx = \frac{R}{a}-\frac{b}{2a}\int\frac{dx}{R}</math><!-- (4.8) [Abramowitz & Stegun p13 3.3.39] + verified by differentiation --> * <math>\int\frac{x}{R^3}\,dx = -\frac{2bx+4c}{(4ac-b^2)R}</math><!-- (4.9) [need reference] - verified by differentiation only --> * <math>\int\frac{x}{R^{2n+1}}\,dx = -\frac{1}{(2n-1)aR^{2n-1}}-\frac{b}{2a}\int\frac{dx}{R^{2n+1}}</math><!-- (4.10) [need reference] - verified by differentiation only --> * <math>\int\frac{dx}{xR} = -\frac{1}{\sqrt{c}}\ln \left|\frac{2\sqrt{c}R+bx+2c}{x}\right|, ~ c > 0</math><!-- (4.11) [Abramowitz & Stegun p13 implied by 3.3.38 + 3.3.33] + verified by differentiation --> * <math>\int\frac{dx}{xR} = -\frac{1}{\sqrt{c}}\operatorname{arsinh}\left(\frac{bx+2c}{|x|\sqrt{4ac-b^2}}\right), ~ c < 0</math><!-- (4.11) [Abramowitz & Stegun p13 implied by 3.3.38 + 3.3.34] + verified by differentiation --> * <math>\int\frac{dx}{xR} = \frac{1}{\sqrt{-c}}\operatorname{arcsin}\left(\frac{bx+2c}{|x|\sqrt{b^2-4ac}}\right), ~ c < 0, b^2-4ac>0</math><!-- (4.11) [Abramowitz & Stegun p13 implied by 3.3.38 + 3.3.34] + verified by differentiation --> * <math>\int\frac{dx}{xR} = -\frac{2}{bx}\left(\sqrt{ax^2+bx}\right), ~ c = 0</math> * <math>\int\frac{x^2}{R}\,dx = \frac{2ax-3b}{4a^2}R+\frac{3b^2-4ac}{8a^2}\int\frac{dx}{R}</math> * <math> \int \frac{dx}{x^{2} R} = -\frac{ R}{cx}-\frac{b}{2c} \int \frac{dx}{x R}</math> * <math>\int R\,dx = \frac{2ax+b}{4a} R + \frac{4ac-b^{2}}{8a} \int \frac{dx}{ R}</math> * <math>\int x R\,dx = \frac{R^3}{3a}-\frac{b(2ax+b)}{8a^{2}} R - \frac{b(4ac-b^{2})}{16a^{2}} \int \frac{dx}{ R}</math> * <math>\int x^{2} R\,dx = \frac{6ax-5b}{24a^{2}}R^3+\frac{5b^{2}-4ac}{16a^{2}} \int R\,dx</math> * <math>\int \frac{ R}{x}\,dx = R + \frac{b}{2} \int \frac{dx}{ R}+c \int \frac{dx}{x R}</math> * <math>\int \frac{ R}{x^{2}}\,dx = -\frac{ R}{x}+a \int \frac{dx}{R}+ \frac{b}{2} \int \frac{dx}{ xR}</math> * <math>\int \frac{x^{2}\,dx}{R^3} = \frac{(2b^{2}-4ac)x+2bc}{a(4ac-b^{2}) R}+ \frac{1}{a} \int \frac{dx}{ R}</math> {{endplainlist}} == Integrals involving ''S'' = {{sqrt|''ax'' + ''b''}} == {{startplainlist|indent=1}} * <math>\int S\,dx = \frac{2 S^{3}}{3 a}</math> * <math>\int \frac{dx}{S} = \frac{2S}{a}</math> * <math>\int \frac{dx}{x S} = \begin{cases} -\dfrac{2}{\sqrt{b}} \operatorname{arcoth}\left( \dfrac{S}{\sqrt{b}}\right) & \mbox{(for }b > 0, \quad a x > 0\mbox{)} \\ -\dfrac{2}{\sqrt{b}} \operatorname{artanh}\left( \dfrac{S}{\sqrt{b}}\right) & \mbox{(for }b > 0, \quad a x < 0\mbox{)} \\ \dfrac{2}{\sqrt{-b}} \arctan\left( \dfrac{S}{\sqrt{-b}}\right) & \mbox{(for }b < 0\mbox{)} \\ \end{cases}</math> * <math>\int\frac{S}{x}\,dx = \begin{cases} 2 \left( S - \sqrt{b}\,\operatorname{arcoth}\left( \dfrac{S}{\sqrt{b}}\right)\right) & \mbox{(for }b > 0, \quad a x > 0\mbox{)} \\ 2 \left( S - \sqrt{b}\,\operatorname{artanh}\left( \dfrac{S}{\sqrt{b}}\right)\right) & \mbox{(for }b > 0, \quad a x < 0\mbox{)} \\ 2 \left( S - \sqrt{-b} \arctan\left( \dfrac{S}{\sqrt{-b}}\right)\right) & \mbox{(for }b < 0\mbox{)} \\ \end{cases}</math><!--yes it is S minus etc. in both cases as --> * <math>\int \frac{x^{n}}{S}\,dx = \frac{2}{a (2 n + 1)} \left( x^{n} S - b n \int \frac{x^{n - 1}}{S}\,dx\right)</math><!-- (5.4) [need reference] - verified by differentiation only --> * <math>\int x^{n} S\,dx = \frac{2}{a (2 n + 3)} \left(x^{n} S^{3} - n b \int x^{n - 1} S\,dx\right)</math><!-- (5.5) [need reference] - verified by differentiation only --> * <math>\int \frac{1}{x^{n} S}\,dx = -\frac{1}{b (n - 1)} \left( \frac{S}{x^{n - 1}} + \left( n - \frac{3}{2}\right) a \int \frac{dx}{x^{n - 1} S}\right)</math> {{endplainlist}} == References == * {{cite book |editor1-last= Abramowitz |editor1-first= Milton |editor2-last= Stegun |editor2-first= Irene A. |date= 1972 |title= [[Abramowitz and Stegun|Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables]] |publisher= Dover |location= New York |chapter= Chapter 3 |chapter-url= http://www.math.sfu.ca/~cbm/aands/page_13.htm }} * {{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=[[Academic Press, Inc.]] |date=2015 |orig-year=October 2014 |edition=8 |language=en |isbn=978-0-12-384933-5 |lccn=2014010276 <!-- |url=https://books.google.com/books?id=NjnLAwAAQBAJ |access-date=2016-02-21-->|title-link=Gradshteyn and Ryzhik}} (Several previous editions as well.) * {{cite book |last=Peirce |first=Benjamin Osgood |title=A Short Table of Integrals |orig-year=1899 |edition=3rd revised |date=1929 |publisher=Ginn and Co |location=Boston |pages=16β30 |chapter=Chapter 3 }} {{Lists of integrals}} [[Category:Lists of integrals|Irrational functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Endplainlist
(
edit
)
Template:Lists of integrals
(
edit
)
Template:Short description
(
edit
)
Template:Sqrt
(
edit
)
Template:Startplainlist
(
edit
)