Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
List of integrals of rational functions
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|None}} {{One source|date=November 2024}} {{Verifiability|date=February 2021}} The following is a list of [[integral]]s ([[antiderivative]] functions) of [[rational function]]s. Any rational function can be integrated by [[partial fraction decomposition]] of the function into a sum of functions of the form: {{blockindent|1= <math>\frac{a}{(x-b)^n}</math>, and <math>\frac{ax + b}{\left((x-c)^2+d^2\right)^n}.</math> }} which can then be integrated term by term. For other types of functions, see [[lists of integrals]]. <!--CAUTION: before 'correcting' one of these integrals, please check that the amended integral doesn't simply differ from the existing version by a constant term. NOTE: a constant *factor* in the argument of ln() may amount to a constant term in the integral. --> == Miscellaneous integrands == {{startplainlist|indent=1}} * <math>\int\frac{f'(x)}{f(x)} \, dx= \ln\left| f(x)\right| + C</math> * <math>\int\frac{1}{x^2+a^2} \, dx = \frac{1}{a}\arctan\frac{x}{a}\,\! + C</math> * <math>\int\frac{1}{x^2-a^2} \, dx = \frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right| + C = \begin{cases} \displaystyle -\frac{1}{a}\,\operatorname{artanh}\frac{x}{a} + C = \frac{1}{2a}\ln\frac{a-x}{a+x} + C & \text{(for }|x| < |a|\mbox{)} \\[12pt] \displaystyle -\frac{1}{a}\,\operatorname{arcoth}\frac{x}{a} + C = \frac{1}{2a}\ln\frac{x-a}{x+a} + C & \text{(for }|x| > |a| \mbox{)} \end{cases}</math> * <math>\int\frac{1}{a^2-x^2} \, dx = \frac{1}{2a}\ln\left|\frac{a+x}{a-x}\right| + C = \begin{cases} \displaystyle \frac{1}{a}\,\operatorname{artanh}\frac{x}{a} + C = \frac{1}{2a}\ln\frac{a+x}{a-x} + C & \text{(for }|x| < |a|\mbox{)} \\[12pt] \displaystyle \frac{1}{a}\,\operatorname{arcoth}\frac{x}{a} + C = \frac{1}{2a}\ln\frac{x+a}{x-a} + C & \text{(for }|x| > |a| \mbox{)} \end{cases}</math> * <math> \int \frac{dx}{x^{2^n} + 1} = \frac{1}{2^{n-1}}\sum_{k=1}^{2^{n-1}} \sin \left(\frac{2k -1}{2^n}\pi\right) \arctan\left[\left(x - \cos \left(\frac{2k -1}{2^n}\pi \right) \right ) \csc \left(\frac{2k -1}{2^n}\pi \right) \right] - \frac{1}{2} \cos \left(\frac{2k -1}{2^n}\pi \right) \ln \left | x^2 - 2 x \cos \left(\frac{2k -1}{2^n}\pi \right) + 1 \right | + C </math> {{endplainlist}} == Integrands of the form ''x''<sup>''m''</sup>(''a x'' + ''b'')<sup>''n''</sup> == Many of the following antiderivatives have a term of the form ln |''ax'' + ''b''|. Because this is undefined when ''x'' = β''b'' / ''a'', the most general form of the antiderivative replaces the [[constant of integration]] with a [[locally constant function]].<ref>"[http://golem.ph.utexas.edu/category/2012/03/reader_survey_logx_c.html Reader Survey: log|''x''| + ''C'']", Tom Leinster, ''The ''n''-category CafΓ©'', March 19, 2012</ref> However, it is conventional to omit this from the notation. For example, <math display=block>\int\frac{1}{ax + b} \, dx= \begin{cases} \dfrac{1}{a}\ln(-(ax + b)) + C^- & ax+b<0 \\ \dfrac{1}{a}\ln(ax + b) + C^+ & ax+b>0 \end{cases}</math> is usually abbreviated as <math display=block>\int\frac{1}{ax + b} \, dx= \frac{1}{a}\ln\left|ax + b\right| + C,</math> where ''C'' is to be understood as notation for a locally constant function of ''x''. This convention will be adhered to in the following. {{startplainlist|indent=1}} * <math>\int (ax + b)^n \, dx= \frac{(ax + b)^{n+1}}{a(n + 1)} + C \qquad\text{(for } n\neq -1\mbox{)}</math> ([[Cavalieri's quadrature formula]]) * <math>\int x^{a-1} (1-x)^{b-1} \, dx= \Beta(x;\,a,b) + C \qquad\text{(for } \operatorname{Re}(a), \operatorname{Re}(b)>0\mbox{)}</math> ([[Incomplete beta function]]) * <math>\int\frac{x}{ax + b} \, dx= \frac{x}{a} - \frac{b}{a^2}\ln\left|ax + b\right| + C</math> * <math>\int\frac{mx + n}{ax + b} \, dx= \frac{m}{a} x + \frac{an - bm}{a^2}\ln\left|ax + b\right| + C</math> * <math>\int\frac{x}{(ax + b)^2} \, dx= \frac{b}{a^2(ax + b)} + \frac{1}{a^2}\ln\left|ax + b\right| + C</math> * <math>\int\frac{x}{(ax + b)^n} \, dx= \frac{a(1 - n)x - b}{a^2(n - 1)(n - 2)(ax + b)^{n-1}} + C \qquad\text{(for } n\not\in \{1, 2\}\mbox{)}</math> * <math>\int x(ax + b)^n \, dx= \frac{a(n + 1)x - b}{a^2(n + 1)(n + 2)} (ax + b)^{n+1} + C \qquad\text{(for }n \not\in \{-1, -2\}\mbox{)}</math> * <math>\int\frac{x^2}{ax + b} \, dx= \frac{b^2\ln(\left|ax + b\right|)}{a^3}+\frac{ax^2 - 2bx}{2a^2} + C</math> * <math>\int\frac{x^2}{(ax + b)^2} \, dx= \frac{1}{a^3}\left(ax - 2b\ln\left|ax + b\right| - \frac{b^2}{ax + b}\right) + C</math> * <math>\int\frac{x^2}{(ax + b)^3} \, dx= \frac{1}{a^3}\left(\ln\left|ax + b\right| + \frac{2b}{ax + b} - \frac{b^2}{2(ax + b)^2}\right) + C</math> * <math>\int\frac{x^2}{(ax + b)^n} \, dx= \frac{1}{a^3}\left(-\frac{(ax + b)^{3-n}}{(n-3)} + \frac{2b (ax + b)^{2-n}}{(n-2)} - \frac{b^2 (ax + b)^{1-n}}{(n - 1)}\right) + C \qquad\text{(for } n\not\in \{1, 2, 3\}\mbox{)}</math> * <math>\int\frac{1}{x(ax + b)} \, dx = -\frac{1}{b}\ln\left|\frac{ax+b}{x}\right| + C</math> * <math>\int\frac{1}{x^2(ax+b)} \, dx = -\frac{1}{bx} + \frac{a}{b^2}\ln\left|\frac{ax+b}{x}\right| + C</math> * <math>\int\frac{1}{x^2(ax+b)^2} \, dx = -a\left(\frac{1}{b^2(ax+b)} + \frac{1}{ab^2x} - \frac{2}{b^3}\ln\left|\frac{ax+b}{x}\right|\right) + C</math> {{endplainlist}} == Integrands of the form ''x''<sup>''m''</sup> / (''a x''<sup>2</sup> + ''b x'' + ''c'')<sup>''n''</sup> == For <math>a\neq 0:</math> {{startplainlist|indent=1}} * <math>\int\frac{1}{ax^2+bx+c} dx = \begin{cases} \displaystyle \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} + C & \text{(for }4ac-b^2>0\mbox{)} \\[12pt] \displaystyle \frac{1}{\sqrt{b^2-4ac}}\ln\left|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right| + C = \begin{cases} \displaystyle -\frac{2}{\sqrt{b^2-4ac}}\,\operatorname{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} + C &\text{(for }|2ax+b|<\sqrt{b^2-4ac}\mbox{)} \\[6pt] \displaystyle -\frac{2}{\sqrt{b^2-4ac}}\,\operatorname{arcoth}\frac{2ax+b}{\sqrt{b^2-4ac}} + C &\text{(else)} \end{cases} & \text{(for }4ac-b^2<0\mbox{)} \\[12pt] \displaystyle -\frac{2}{2ax+b} + C & \text{(for }4ac-b^2=0\mbox{)} \end{cases}</math> * <math>\int\frac{x}{ax^2+bx+c} \, dx = \frac{1}{2a}\ln\left|ax^2+bx+c\right|-\frac{b}{2a}\int\frac{dx}{ax^2+bx+c} + C</math> * <math>\int\frac{mx+n}{ax^2+bx+c} \, dx = \begin{cases} \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} + C &\text{(for }4ac-b^2>0\mbox{)} \\[12pt] \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{2a\sqrt{b^2-4ac}}\ln\left|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right| + C = \begin{cases} \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|-\frac{2an-bm}{a\sqrt{b^2-4ac}}\,\operatorname{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} + C &\text{(for }|2ax+b|<\sqrt{b^2-4ac}\mbox{)} \\[6pt] \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|-\frac{2an-bm}{a\sqrt{b^2-4ac}}\,\operatorname{arcoth}\frac{2ax+b}{\sqrt{b^2-4ac}} + C &\text{(else)} \end{cases} & \text{(for }4ac-b^2<0\mbox{)} \\[12pt] \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|-\frac{2an-bm}{a(2ax+b)} + C = \frac{m}{a}\ln\left|x+\frac{b}{2a}\right|-\frac{2an-bm}{a(2ax+b)} + C &\text{(for }4ac-b^2=0\mbox{)}\end{cases}</math> * <math>\int\frac{1}{(ax^2+bx+c)^n} \, dx= \frac{2ax+b}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}+\frac{(2n-3)2a}{(n-1)(4ac-b^2)}\int\frac{1}{(ax^2+bx+c)^{n-1}} \, dx + C</math> * <math>\int\frac{x}{(ax^2+bx+c)^n} \, dx= -\frac{bx+2c}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}-\frac{b(2n-3)}{(n-1)(4ac-b^2)}\int\frac{1}{(ax^2+bx+c)^{n-1}} \, dx + C</math> * <math>\int\frac{1}{x(ax^2+bx+c)} \, dx= \frac{1}{2c}\ln\left|\frac{x^2}{ax^2+bx+c}\right|-\frac{b}{2c}\int\frac{1}{ax^2+bx+c} \, dx + C</math> {{endplainlist}} == Integrands of the form ''x''<sup>''m''</sup> (''a'' + ''b x''<sup>''n''</sup>)<sup>''p''</sup> == * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0. * These reduction formulas can be used for integrands having integer and/or fractional exponents. {{startplainlist|indent=1}} * <math> \int x^m \left(a+b\,x^n\right)^p dx = \frac{x^{m+1} \left(a+b\,x^n\right)^p}{m+n\,p+1}\,+\, \frac{a\,n\,p}{m+n\,p+1}\int x^m \left(a+b\,x^n\right)^{p-1}dx </math> * <math> \int x^m \left(a+b\,x^n\right)^p dx = -\frac{x^{m+1} \left(a+b\,x^n\right)^{p+1}}{a\,n (p+1)}\,+\, \frac{m+n (p+1)+1}{a\,n (p+1)}\int x^m \left(a+b\,x^n\right)^{p+1}dx </math> * <math> \int x^m \left(a+b\,x^n\right)^p dx = \frac{x^{m+1} \left(a+b\,x^n\right)^p}{m+1}\,-\, \frac{b\,n\,p}{m+1}\int x^{m+n} \left(a+b\,x^n\right)^{p-1}dx </math> * <math> \int x^m \left(a+b\,x^n\right)^p dx = \frac{x^{m-n+1} \left(a+b\,x^n\right)^{p+1}}{b\,n (p+1)}\,-\, \frac{m-n+1}{b\,n (p+1)}\int x^{m-n} \left(a+b\,x^n\right)^{p+1}dx </math> * <math> \int x^m \left(a+b\,x^n\right)^p dx = \frac{x^{m-n+1} \left(a+b\,x^n\right)^{p+1}}{b (m+n\,p+1)}\,-\, \frac{a (m-n+1)}{b (m+n\,p+1)}\int x^{m-n}\left(a+b\,x^n\right)^pdx </math> * <math> \int x^m \left(a+b\,x^n\right)^p dx = \frac{x^{m+1} \left(a+b\,x^n\right)^{p+1}}{a (m+1)}\,-\, \frac{b (m+n (p+1)+1)}{a (m+1)}\int x^{m+n}\left(a+b\,x^n\right)^pdx </math> {{endplainlist}} == Integrands of the form (''A'' + ''B x'') (''a'' + ''b x'')<sup>''m''</sup> (''c'' + ''d x'')<sup>''n''</sup> (''e'' + ''f x'')<sup>''p''</sup> == * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'', ''n'' and ''p'' toward 0. * These reduction formulas can be used for integrands having integer and/or fractional exponents. * Special cases of these reductions formulas can be used for integrands of the form <math>(a+b\,x)^m (c+d\,x)^n (e+f\,x)^p</math> by setting ''B'' to 0. {{startplainlist|indent=1}} * <math>\begin{align} &\int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx= -\frac{(A\,b-a\,B)(a+b\,x)^{m+1} (c+d\,x)^n(e+f\,x)^{p+1}}{b (m+1) (a\,f-b\,e)}\,+\, \frac{1}{b (m+1) (a\,f-b\,e)}\,\cdot \\ &\qquad \int (b\,c(m+1) (A\,f-B\,e)+(A\,b-a\,B) (n\,d\,e+c\,f(p+1))+d(b(m+1) (A\,f-B\,e)+f(n+p+1) (A\,b-a\,B))x)(a+b\,x)^{m+1} (c+d\,x)^{n-1}(e+f\,x)^p dx \end{align}</math> * <math>\begin{align} &\int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx= \frac{B(a+b\,x)^m (c+d\,x)^{n+1}(e+f\,x)^{p+1}}{d\,f(m+n+p+2)}\,+\, \frac{1}{d\,f(m+n+p+2)}\,\cdot \\ &\qquad \int (A\,a\,d\,f(m+n+p+2)-B (b\,c\,e\,m+a(d\,e(n+1)+c\,f(p+1)))+(A\,b\,d\,f(m+n+p+2)+B (a\,d\,f\,m-b(d\,e(m+n+1)+c\,f(m+p+1)))) x)(a+b\,x)^{m-1} (c+d\,x)^n(e+f\,x)^p dx \end{align}</math> * <math>\begin{align} &\int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx= \frac{(A\,b-a\,B)(a+b\,x)^{m+1} (c+d\,x)^{n+1}(e+f\,x)^{p+1}}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}\,+\, \frac{1}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}\,\cdot \\ &\qquad \int ((m+1) (A (a\,d\,f-b(c\,f+d\,e))+B\,b\,c\,e)-(A\,b-a\,B) (d\,e(n+1)+c\,f(p+1))-d\,f(m+n+p+3) (A\,b-a\,B)x)(a+b\,x)^{m+1} (c+d\,x)^n(e+f\,x)^p dx \end{align}</math> {{endplainlist}} == Integrands of the form ''x''<sup>''m''</sup> (''A'' + ''B x''<sup>''n''</sup>) (''a'' + ''b x''<sup>''n''</sup>)<sup>''p''</sup> (''c'' + ''d x''<sup>''n''</sup>)<sup>''q''</sup> == * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'', ''p'' and ''q'' toward 0. * These reduction formulas can be used for integrands having integer and/or fractional exponents. * Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^q</math> and <math>x^m\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^q</math> by setting ''m'' and/or ''B'' to 0. {{startplainlist|indent=1}} * <math>\begin{align} &\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx= -\frac{(A\,b-a\,B) x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{a\,b\,n (p+1)}\,+\, \frac{1}{a\,b\,n (p+1)}\,\cdot \\ &\qquad \int x^m\left(c (A\,b\,n (p+1)+(A\,b-a\,B) (m+1))+d (A\,b\,n (p+1)+(A\,b-a\,B) (m+n\,q+1)) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^{q-1}dx \end{align}</math> * <math>\begin{align} &\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx= \frac{B\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{b (m+n (p+q+1)+1)}\,+\, \frac{1}{b (m+n (p+q+1)+1)}\,\cdot \\ &\qquad \int x^m\left(c ((A\,b-a\,B) (1+m)+A\,b\,n (1+p+q))+(d(A\,b-a\,B) (1+m)+B\,n\,q(b\,c-a\,d)+A\,b\,d\,n (1+p+q))\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^{q-1}dx \end{align}</math> * <math>\begin{align} &\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx= -\frac{(A\,b-a\,B) x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{a\,n (b\,c-a\,d) (p+1)}\,+\, \frac{1}{a\,n(b\,c-a\,d)(p+1)}\,\cdot \\ &\qquad \int x^m\left(c(A\,b-a\,B)(m+1)+A\,n (b\,c-a\,d)(p+1)+d(A\,b-a\,B) (m+n (p+q+2)+1) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^qdx \end{align}</math> * <math>\begin{align} &\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx= \frac{B\,x^{m-n+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{b\,d (m+n (p+q+1)+1)}\,-\, \frac{1}{b\,d (m+n (p+q+1)+1)}\,\cdot \\ &\qquad \int x^{m-n}\left(a\,B\,c (m-n+1)+(a\,B\,d (m+n\,q+1)-b (-B\,c (m+n\,p+1)+A\,d (m+n (p+q+1)+1))) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx \end{align}</math> * <math>\begin{align} &\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx= \frac{A\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{a\,c (m+1)}\,+\, \frac{1}{a\,c (m+1)}\,\cdot \\ &\qquad \int x^{m+n}\left(a\,B\,c (m+1)-A (b\,c+a\,d) (m+n+1)-A\,n (b\,c\,p+a\,d\,q)-A\,b\,d (m+n (p+q+2)+1) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx \end{align}</math> * <math>\begin{align} &\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx= \frac{A\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{a (m+1)}\,-\, \frac{1}{a (m+1)}\,\cdot \\ &\qquad \int x^{m+n}\left(c(A\,b-a\,B)(m+1)+A\,n (b\,c (p+1)+a\,d\,q)+d ((A\,b-a\,B) (m+1)+A\,b\,n (p+q+1)) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^{q-1}dx \end{align}</math> * <math>\begin{align} &\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx= \frac{(A\,b-a\,B) x^{m-n+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{b\,n (b\,c-a\,d) (p+1)}\,-\, \frac{1}{b\,n(b\,c-a\,d)(p+1)}\,\cdot \\ &\qquad \int x^{m-n}\left(c(A\,b-a\,B)(m-n+1)+(d(A\,b-a\,B)(m+n\,q+1)-b\,n(B\,c-A\,d)(p+1)) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^qdx \end{align}</math> {{endplainlist}} == Integrands of the form (''d'' + ''e x'')<sup>''m''</sup> (''a'' + ''b x'' + ''c x''<sup>2</sup>)<sup>''p''</sup> when ''b''<sup>2</sup> β 4 ''a c'' = 0 == * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0. * These reduction formulas can be used for integrands having integer and/or fractional exponents. * Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x+c\,x^2\right)^p</math> when <math>b^2-4\,a\,c=0</math> by setting ''m'' to 0. {{startplainlist|indent=1}} * <math> \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx= \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+1)}\,-\, \frac{p (d+e\,x)^{m+2}(b+2 c\,x) \left(a+b\,x+c\,x^2\right)^{p-1}}{e^2(m+1)(m+2 p+1)}\,+\, \frac{p(2 p-1)(2 c\,d-b\,e)}{e^2(m+1)(m+2 p+1)} \int (d+e\,x)^{m+1}\left(a+b\,x+c\,x^2\right)^{p-1}dx </math> * <math> \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx= \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+1)}\,-\, \frac{p (d+e\,x)^{m+2}(b+2\,c\,x)\left(a+b\,x+c\,x^2\right)^{p-1}}{e^2(m+1)(m+2)}\,+\, \frac{2\,c\,p\,(2\,p-1)}{e^2(m+1)(m+2)} \int (d+e\,x)^{m+2} \left(a+b\,x+c\,x^2\right)^{p-1}dx </math> * <math> \int (d+e\,x)^m\left(a+b\,x+c\,x^2\right)^pdx= -\frac{e(m+2 p+2)(d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)(2p+1)(2 c\,d-b\,e)}\,+\, \frac{(d+e\,x)^{m+1}(b+2 c\,x) \left(a+b\,x+c\,x^2\right)^p}{(2p+1)(2 c\,d-b\,e)}\,+\, \frac{e^2m(m+2 p+2)}{(p+1)(2p+1)(2 c\,d-b\,e)} \int (d+e\,x)^{m-1} \left(a+b\,x+c\,x^2\right)^{p+1}dx </math> * <math> \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx= -\frac{e\,m(d+e\,x)^{m-1} \left(a+b\,x+c\,x^2\right)^{p+1}}{2c (p+1) (2p+1)}\,+\, \frac{(d+e\,x)^m(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{2c (2p+1)}\,+\, \frac{e^2m(m-1)}{2c (p+1) (2p+1)} \int (d+e\,x)^{m-2} \left(a+b\,x+c\,x^2\right)^{p+1}dx </math> * <math> \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx= \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+2p+1)}\,-\, \frac{p(2 c\,d-b\,e)(d+e\,x)^{m+1}(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^{p-1}}{2c\,e^2(m+2 p)(m+2p+1)}\,+\, \frac{p (2 p-1)(2 c\,d-b\,e)^2}{2c\,e^2(m+2 p)(m+2p+1)} \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p-1}dx </math> * <math> \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx= -\frac{2c\,e(m+2p+2)(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1) (2 p+1)(2 c\,d-b\,e)^2}\,+\, \frac{(d+e\,x)^{m+1}(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{(2 p+1)(2 c\,d-b\,e)}\,+\, \frac{2c\,e^2(m+2p+2)(m+2 p+3)}{(p+1) (2 p+1)(2 c\,d-b\,e)^2} \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p+1}dx </math> * <math> \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx= \frac{(d+e\,x)^m (b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{2c (m+2p+1)}\,+\, \frac{m(2 c\,d-b\,e)}{2c (m+2p+1)} \int (d+e\,x)^{m-1}\left(a+b\,x+c\,x^2\right)^pdx </math> * <math> \int (d+e\,x)^m\left(a+b\,x+c\,x^2\right)^pdx= -\frac{(d+e\,x)^{m+1} (b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{(m+1)(2 c\,d-b\,e)}\,+\, \frac{2c (m+2p+2)}{(m+1)(2 c\,d-b\,e)} \int (d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^pdx </math> {{endplainlist}} == Integrands of the form (''d'' + ''e x'')<sup>''m''</sup> (''A'' + ''B x'') (''a'' + ''b x'' + ''c x''<sup>2</sup>)<sup>''p''</sup> == * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0. * These reduction formulas can be used for integrands having integer and/or fractional exponents. * Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x+c\,x^2\right)^p</math> and <math>(d+e\,x)^m \left(a+b\,x+c\,x^2\right)^p</math> by setting ''m'' and/or ''B'' to 0. {{startplainlist|indent=1}} * <math>\begin{align} &\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx= \frac{(d+e\,x)^{m+1} (A\,e (m+2 p+2)-B\,d (2 p+1)+e\,B (m+1) x) \left(a+b\,x+c\,x^2\right)^p}{e^2(m+1) (m+2 p+2)}\,+\, \frac{1}{e^2(m+1) (m+2 p+2)}p\,\cdot \\ &\qquad \int (d+e\,x)^{m+1} (B (b\,d+2 a\,e+2 a\,e\,m+2 b\,d\,p)-A\,b\,e (m+2 p+2)+(B (2 c\,d+b\,e+b\,e m+4 c\,d\,p)-2 A\,c\,e (m+2 p+2))x)\left(a+b\,x+c\,x^2\right)^{p-1}dx \end{align}</math> * <math>\begin{align} &\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx= \frac{(d+e\,x)^m (A\,b-2 a\,B-(b\,B-2 A\,c) x)\left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)\left(b^2-4 a\,c\right) }\,+\, \frac{1}{(p+1)\left(b^2-4 a\,c\right) }\,\cdot \\ &\qquad \int (d+e\,x)^{m-1}(B (2 a\,e\,m+b\,d (2 p+3))-A (b\,e\,m+2 c\,d (2 p+3))+e(b\,B-2 A\,c) (m+2 p+3) x)\left(a+b\,x+c\,x^2\right)^{p+1}dx \end{align}</math> * <math>\begin{align} &\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx= \frac{(d+e\,x)^{m+1} (A\,c\,e (m+2 p+2)-B (c\,d+2 c\,d\,p-b\,e\,p)+B\,c\,e(m+2 p+1) x)\left(a+b\,x+c\,x^2\right)^p}{c\,e^2(m+2 p+1) (m+2 p+2)}\,-\, \frac{p}{c\,e^2(m+2 p+1) (m+2 p+2)}\,\cdot \\ &\qquad \int (d+e\,x)^m (A\,c\,e (b\,d-2 a\,e) (m+2 p+2)+B (a\,e (b\,e-2 c\,d\,m+b\,e\,m)+b\,d (b\,e\,p-c\,d-2 c\,d\,p))+ \\ &\qquad \qquad \left(A\,c\,e (2 c\,d-b\,e) (m+2 p+2)-B \left(-b^2 e^2 (m+p+1)+2 c^2 d^2 (1+2 p)+c\,e (b\,d (m-2 p)+2 a\,e (m+2 p+1))\right)\right) x)\left(a+b\,x+c\,x^2\right)^{p-1}dx \end{align}</math> * <math>\begin{align} &\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx= \frac{(d+e\,x)^{m+1} \left(A \left(b\,c\,d-b^2 e+2 a\,c\,e\right)-a\,B (2 c\,d-b\,e)+c (A (2 c\,d-b\,e)-B (b\,d-2 a\,e)) x\right)\left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)\left(b^2-4 a\,c\right) \left(c\,d^2-b\,d\,e+a\,e^2\right)}\,+ \\ &\qquad \frac{1}{(p+1)\left(b^2-4 a\,c\right) \left(c\,d^2-b\,d\,e+a\,e^2\right)}\,\cdot \\ &\qquad \qquad \int (d+e\,x)^m (A \left(b\,c\,d\,e (2 p-m+2)+b^2 e^2 (m+p+2)-2 c^2 d^2 (3+2 p)-2 a\,c\,e^2 (m+2 p+3)\right)- \\ &\qquad \qquad \qquad B (a\,e (b\,e-2 c\,d m+b\,e\,m)+b\,d (-3 c\,d+b\,e-2 c\,d\,p+b\,e\,p))+c\,e(B (b\,d-2 a\,e)-A (2 c\,d-b\,e)) (m+2 p+4) x)\left(a+b\,x+c\,x^2\right)^{p+1}dx \end{align}</math> * <math>\begin{align} &\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx= \frac{B(d+e\,x)^m\left(a+b\,x+c\,x^2\right)^{p+1}}{c(m+2 p+2)}\,+\, \frac{1}{c(m+2 p+2)}\,\cdot \\ &\qquad \int (d+e\,x)^{m-1} (m(A\,c\,d-a\,B\,e)-d(b\,B-2 A\,c)(p+1) +((B\,c\,d-b\,B\,e+A\,c\,e) m-e(b\,B-2 A\,c)(p+1))x) \left(a+b\,x+c\,x^2\right)^pdx \end{align}</math> * <math>\begin{align} &\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx= -\frac{(B\,d-A\,e) (d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^{p+1}}{(m+1)\left(c\,d^2-b\,d\,e+a\,e^2\right)}\,+\, \frac{1}{(m+1)\left(c\,d^2-b\,d\,e+a\,e^2\right)}\,\cdot \\ &\qquad \int (d+e\,x)^{m+1} ((A\,c\,d-A\,b\,e+a\,B\,e) (m+1)+b (B\,d-A\,e) (p+1)+c (B\,d-A\,e) (m+2 p+3) x)\left(a+b\,x+c\,x^2\right)^pdx \end{align}</math> {{endplainlist}} == Integrands of the form ''x''<sup>''m''</sup> (''a'' + ''b x''<sup>''n''</sup> + ''c x''<sup>2''n''</sup>)<sup>''p''</sup> when ''b''<sup>2</sup> β 4 ''a c'' = 0 == * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0. * These reduction formulas can be used for integrands having integer and/or fractional exponents. * Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n+c\,x^{2 n}\right)^p</math> when <math>b^2-4\,a\,c=0</math> by setting ''m'' to 0. {{startplainlist|indent=1}} * <math> \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx= \frac{ x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{m+2 n\,p+1}\,+\, \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+1)(m+2 n\,p+1)}\,-\, \frac{b\,n^2 p (2 p-1)}{(m+1)(m+2 n\,p+1)} \int x^{m+n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx </math> * <math> \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx= \frac{(m+n(2 p-1)+1) x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{(m+1)(m+n+1)}\,+\, \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+1)(m+n+1)}\,+\, \frac{2 c\,p\,n^2(2 p-1)}{(m+1)(m+n+1)} \int x^{m+2n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx </math> * <math> \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx= \frac{(m+n(2 p+1)+1) x^{m-n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{b\,n^2 (p+1) (2p+1)}\,-\, \frac{x^{m+1} \left(b+2 c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{b\,n (2p+1)}\,-\, \frac{(m-n+1)(m+n(2 p+1)+1)}{b\,n^2 (p+1) (2p+1)} \int x^{m-n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx </math> * <math> \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx= -\frac{(m-3 n-2 n\,p+1) x^{m-2n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{2 c\,n^2(p+1)(2p+1)}\,-\, \frac{ x^{m-2n+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2 c\,n(2p+1)}\,+\, \frac{(m-n+1)(m-2n+1)}{2 c\,n^2(p+1)(2p+1)} \int x^{m-2n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx </math> * <math> \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx= \frac{x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{m+2 n\,p+1}\,+\, \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+2 n\,p+1) (m+n(2 p-1)+1)}\,+\, \frac{2 a\,n^2 p (2 p-1)}{(m+2 n\,p+1) (m+n(2 p-1)+1)} \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx </math> * <math> \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx= -\frac{(m+n+2 n\,p+1) x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{2 a\,n^2 (p+1) (2p+1)}\,-\, \frac{x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2 a\,n(2p+1)}\,+\, \frac{(m+n(2 p+1)+1)(m+2 n (p+1)+1)}{2 a\,n^2 (p+1) (2p+1)} \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx </math> * <math> \int x^m\left(a+b\,x^n+c\,x^{2 n}\right)^p dx= \frac{x^{m-n+1} \left(b+2c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2c (m+2n\,p+1)}\,-\, \frac{b (m-n+1)}{2c (m+2n\,p+1)} \int x^{m-n} \left(a+b\,x^n+c\,x^{2 n}\right)^p dx </math> * <math> \int x^m\left(a+b\,x^n+c\,x^{2 n}\right)^p dx= \frac{x^{m+1} \left(b+2c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{b (m+1)}\,-\, \frac{2c (m+n(2 p+1)+1)}{b (m+1)} \int x^{m+n} \left(a+b\,x^n+c\,x^{2 n}\right)^p dx </math> {{endplainlist}} == Integrands of the form ''x''<sup>''m''</sup> (''A'' + ''B x''<sup>''n''</sup>) (''a'' + ''b x''<sup>''n''</sup> + ''c x''<sup>2''n''</sup>)<sup>''p''</sup> == * The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0. * These reduction formulas can be used for integrands having integer and/or fractional exponents. * Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n+c\,x^{2 n}\right)^p</math> and <math>x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p</math> by setting ''m'' and/or ''B'' to 0. {{startplainlist|indent=1}} * <math>\begin{align} &\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx= \frac{x^{m+1} \left(A (m+n (2 p+1)+1)+B (m+1) x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^p}{(m+1) (m+n (2 p+1)+1)}\,+\, \frac{n\,p}{(m+1) (m+n (2 p+1)+1)}\,\cdot \\ &\qquad \int x^{m+n} \left(2 a\,B (m+1)-A\,b (m+n (2 p+1)+1)+(b\,B (m+1)-2\,A\,c (m+n (2 p+1)+1)) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx \end{align}</math> * <math>\begin{align} &\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx= \frac{x^{m-n+1} \left(A\,b-2 a\,B-(b\,B-2 A\,c) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{n(p+1) \left(b^2-4 a\,c\right)}\,+\, \frac{1}{n(p+1) \left(b^2-4 a\,c\right)}\,\cdot \\ &\qquad \int x^{m-n}\left((m-n+1)(2 a\,B-A\,b)+(m+2n (p+1)+1) (b\,B-2 A\,c) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx \end{align}</math> * <math>\begin{align} &\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx= \frac{x^{m+1} \left(b\,B\,n\,p+A\,c (m+n (2 p+1)+1)+B\,c (m+2 n\,p+1) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{c (m+2 n\,p+1) (m+n (2 p+1)+1)}\,+\, \frac{n\,p}{c (m+2 n\,p+1) (m+n (2 p+1)+1)}\,\cdot \\ &\qquad \int x^m \left(2 a\,A\,c (m+n (2 p+1)+1)-a\,b\,B (m+1)+\left(2 a\,B\,c (m+2 n\,p+1)+A\,b\,c (m+n (2 p+1)+1)-b^2 B (m+n\,p+1)\right) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx \end{align}</math> * <math>\begin{align} &\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx= -\frac{x^{m+1} \left(A\,b^2-a\,b\,B-2 a\,A\,c+(A\,b-2 a\,B) c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{a\,n(p+1) \left(b^2-4 a\,c\right)}\,+\, \frac{1}{a\,n(p+1) \left(b^2-4 a\,c\right)}\,\cdot \\ &\qquad \int x^m \left((m+n (p+1)+1) A\,b^2-a\,b\,B(m+1)-2(m+2n (p+1)+1)a\,A\,c+(m+n (2p+3)+1)(A\,b-2 a\,B) c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx \end{align}</math> * <math>\begin{align} &\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx= \frac{B\,x^{m-n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{c (m+n (2 p+1)+1)}\,-\, \frac{1}{c (m+n (2 p+1)+1)}\,\cdot \\ &\qquad \int x^{m-n} \left(a\,B (m-n+1)+(b\,B (m+n\,p+1)-A\,c (m+n (2 p+1)+1)) x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx \end{align}</math> * <math>\begin{align} &\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx= \frac{A\,x^{m+1} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{a(m+1)}\,+\, \frac{1}{a(m+1)}\,\cdot \\ &\qquad \int x^{m+n} \left(a\,B (m+1)-A\,b (m+n (p+1)+1)-A\,c (m+2 n(p+1)+1) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^pdx \end{align}</math> {{endplainlist}} == References == {{reflist}} {{Lists of integrals}} [[Category:Lists of integrals|Rational functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Blockindent
(
edit
)
Template:Endplainlist
(
edit
)
Template:Lists of integrals
(
edit
)
Template:One source
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Startplainlist
(
edit
)
Template:Verifiability
(
edit
)