Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
List of undecidable problems
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Computational problems no algorithm can solve}} In [[computability theory]], an '''[[undecidable problem]]''' is a [[decision problem]] for which an [[effective method]] (algorithm) to derive the correct answer does not exist. More formally, an undecidable problem is a problem whose language is not a [[recursive set]]; see the article [[Decidable language]]. There are [[uncountable set|uncountably]] many undecidable problems, so the list below is necessarily incomplete. Though undecidable languages are not recursive languages, they may be [[subset]]s of [[Alan Turing|Turing]] recognizable languages: i.e., such undecidable languages may be recursively enumerable. Many, if not most, undecidable problems in mathematics can be posed as [[word problem (mathematics)|word problems]]: determining when two distinct strings of symbols (encoding some mathematical concept or object) represent the same object or not. For undecidability in axiomatic mathematics, see [[List of statements undecidable in ZFC]]. ==Problems in logic== * Hilbert's [[Entscheidungsproblem]]. * [[Type inference]] and [[type checking]] for the [[second-order lambda calculus]] (or equivalent).<ref>{{cite journal | first = J. B. | last = Wells | title = Typability and type checking in the second-order lambda-calculus are equivalent and undecidable | citeseerx = 10.1.1.31.3590 | journal = Tech. Rep. 93-011 | publisher = Comput. Sci. Dept., Boston Univ. | year = 1993 | pages = 176–185 }}</ref> * Determining whether a first-order sentence in the [[logic of graphs]] can be realized by a finite undirected graph.<ref>{{cite journal | last = Trahtenbrot | first = B. A. | author-link = Boris Trakhtenbrot | journal = Doklady Akademii Nauk SSSR |series=New Series | mr = 0033784 | pages = 569–572 | title = The impossibility of an algorithm for the decision problem for finite domains | volume = 70 | year = 1950}}</ref> * [[Trakhtenbrot's theorem]] - Finite satisfiability is undecidable. * Satisfiability of first order [[Horn clause]]s. ==Problems about abstract machines== * The [[halting problem]] (determining whether a [[Turing machine]] halts on a given input) and the [[mortality (computability theory)|mortality problem]] (determining whether it halts for every starting configuration). * Determining whether a Turing machine is a [[Busy beaver#Non-computability|busy beaver champion]] (i.e., is the longest-running among halting Turing machines with the same number of states and symbols). * [[Rice's theorem]] states that for all nontrivial properties of partial functions, it is undecidable whether a given machine computes a partial function with that property. * The halting problem for a [[register machine]]: a finite-state automaton with no inputs and two counters that can be incremented, decremented, and tested for zero. * Universality of a nondeterministic [[pushdown automaton]]: determining whether all words are accepted. * The problem whether a [[tag system]] halts. ==Problems about matrices== * The [[mortal matrix problem]]. * Determining whether a finite set of upper triangular 3 × 3 matrices with nonnegative integer entries generates a free [[semigroup]].{{citation needed|date=April 2024}} * Determining whether two finitely generated subsemigroups of [[integer matrices]] have a common element.<ref>{{cite journal |last1=Halava |first1= Vesa |last2=Harju|first2=Tero|title=On Markov's Undecidability Theorem for Integer Matrices |journal=Semigroup Forum |volume=75 |issue=1 |date=September 2007 |pages= 173–180 |doi=10.1007/s00233-007-0714-x |url=https://link.springer.com/content/pdf/10.1007/s00233-007-0714-x.pdf}}</ref> ==Problems in combinatorial group theory== * The [[word problem for groups]]. * The [[conjugacy problem]]. * The [[group isomorphism problem]]. ==Problems in topology== {{Main|Simplicial complex recognition problem}} * Determining whether two finite [[simplicial complex]]es are [[homeomorphic]]. * Determining whether a finite [[simplicial complex]] is (homeomorphic to) a [[manifold]]. * Determining whether the [[fundamental group]] of a finite simplicial complex is trivial. * Determining whether two non-[[simply connected]] [[5-manifold]]s are homeomorphic, or if a 5-manifold is homeomorphic to '''S'''<sup>5</sup>.<ref>{{citation|title=Classical Topology and Combinatorial Group Theory|volume=72|series=Graduate Texts in Mathematics|first=John|last=Stillwell|authorlink=John Stillwell|publisher=Springer|year=1993|isbn=9780387979700|page=247|url=https://books.google.com/books?id=265lbM42REMC&pg=PA247}}.</ref> ==Problems in analysis== * For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see [[Richardson's theorem]]);<ref>Keith O. Geddes, Stephen R. Czapor, George Labahn, ''Algorithms for Computer Algebra'', {{isbn|0585332479}}, 2007, p. 81ff</ref> the zeroes of a function; whether the indefinite integral of a function is also in the class.<ref name="stall"/> Of course, some subclasses of these problems are decidable. For example, there is an effective decision procedure for the elementary integration of any function which belongs to a field of transcendental elementary functions, the [[Risch algorithm]]. * "The problem of deciding whether the definite contour multiple integral of an elementary meromorphic function is zero over an everywhere real analytic manifold on which it is analytic", a consequence of the [[Matiyasevich's theorem|MRDP theorem]] resolving [[Hilbert's tenth problem]].<ref name="stall">{{cite journal | last1=Stallworth | first1=Daniel T. | last2=Roush | first2=Fred W. | title=An Undecidable Property of Definite Integrals | journal=[[Proceedings of the American Mathematical Society]] | volume=125 | issue=7 | date=July 1997 | pages=2147–2148 | doi=10.1090/S0002-9939-97-03822-7 | doi-access=free}}</ref> * Determining the domain of a solution to an [[ordinary differential equation]] of the form ::<math>\frac{dx}{dt} = p(t, x),~x(t_0)=x_0,</math> :where ''x'' is a [[vector (mathematics and physics)|vector]] in '''R'''<sup>n</sup>, ''p''(''t'', ''x'') is a vector of [[polynomial]]s in ''t'' and ''x'', and ''(t<sub>0</sub>, x<sub>0</sub>)'' belongs to '''R'''<sup>n+1</sup>.<ref>{{cite journal|last1=Graça|first1=Daniel S.|last2=Buescu|first2=Jorge|last3=Campagnolo|first3=Manuel L.|date=21 March 2008|title=Boundedness of the Domain of Definition is Undecidable for Polynomial ODEs|journal=Electronic Notes in Theoretical Computer Science|volume=202|pages=49–57|doi=10.1016/j.entcs.2008.03.007|doi-access=free|hdl=10400.1/1016|hdl-access=free}}</ref> ==Problems about formal languages and grammars== * The [[Post correspondence problem]]. * Determining if a [[context-free grammar]] generates all possible strings, or if it is [[ambiguous grammar|ambiguous]]. * Given two context-free grammars, determining whether they generate the same set of strings, or whether one generates a subset of the strings generated by the other, or whether there is any string at all that both generate. ==Other problems== * The problem of determining if a given set of [[Wang tile]]s can tile the plane. * The problem of determining the [[Kolmogorov complexity]] of a string. * [[Hilbert's tenth problem]]: the problem of deciding whether a Diophantine equation (multivariable polynomial equation) has a solution in integers. * Determining whether a given initial point with rational coordinates is periodic, or whether it lies in the basin of attraction of a given open set, in a piecewise-linear iterated map in two dimensions, or in a piecewise-linear flow in three dimensions.<ref>{{citation|title=Unpredictability and undecidability in dynamical systems|url=http://www.seas.gwu.edu/~simhaweb/iisc/Moore.pdf|first=Cristopher|last=Moore|author-link=Cristopher Moore|journal=[[Physical Review Letters]]|volume=64|issue=20|year=1990|pages=2354–2357|doi=10.1103/PhysRevLett.64.2354|pmid=10041691|bibcode=1990PhRvL..64.2354M}}.</ref> * Determining whether a [[Lambda calculus#Undecidability of equivalence|λ-calculus]] formula has a normal form. * [[Conway's Game of Life#Undecidability|Conway's Game of Life]] on whether, given an initial pattern and another pattern, the latter pattern can ever appear from the initial one. * [[Rule 110]] - most questions involving "can property X appear later" are undecidable. * The problem of determining whether a quantum mechanical system has a [[spectral gap (physics)|spectral gap]].<ref>{{Cite journal | doi=10.1038/nature16059|pmid = 26659181| title=Undecidability of the spectral gap| journal=Nature| volume=528| issue=7581| pages=207–211| year=2015| last1=Cubitt| first1=Toby S.| last2=Perez-Garcia| first2=David| last3=Wolf| first3=Michael M.|bibcode = 2015Natur.528..207C|arxiv = 1502.04135|s2cid = 4451987}}</ref><ref>{{cite journal |last1=Bausch |first1=Johannes |last2=Cubitt |first2=Toby S. |last3=Lucia |first3=Angelo |last4=Perez-Garcia |first4=David |title=Undecidability of the Spectral Gap in One Dimension |journal=[[Physical Review X]] |date=17 August 2020 |volume=10 |issue=3 |pages=031038 |doi=10.1103/PhysRevX.10.031038 |bibcode=2020PhRvX..10c1038B |doi-access=free |arxiv=1810.01858 }}</ref> * Finding the capacity of an information-stable finite state machine channel.<ref name="elkouss_fsmc">{{cite journal|last1=Elkouss|first1=D.|title=Memory effects can make the transmission capability of a communication channel uncomputable|last2=Pérez-García|first2=D.|journal=Nature Communications|date=2018|volume=9|issue=1|page=1149|doi=10.1038/s41467-018-03428-0|pmid=29559615 |pmc=5861076 |bibcode=2018NatCo...9.1149E }}</ref> * In [[network coding]], determining whether a network is solvable.<ref name="li_nc">{{cite journal|last1=Li|first1=C. T.|title=Undecidability of Network Coding, Conditional Information Inequalities, and Conditional Independence Implication|journal=IEEE Transactions on Information Theory|date=2023|volume=69 |issue=6 |page=1 |doi=10.1109/TIT.2023.3247570|arxiv=2205.11461 |s2cid=248986512 }}</ref><ref name="kuhne_matroid">{{cite journal|last1=Kühne|first1=L.|title=Representability of Matroids by c-Arrangements is Undecidable|last2=Yashfe|first2=G.|journal=[[Israel Journal of Mathematics]]|date=2022|volume=252 |page=1-53|doi=10.1007/s11856-022-2345-z|arxiv=1912.06123 |s2cid=209324252 }}</ref> * Determining whether a player has a winning strategy in a game of ''[[Magic: The Gathering]]''.<ref>{{Cite arXiv|last1=Herrick|first1=Austin|last2=Biderman|first2=Stella|last3=Churchill|first3=Alex|date=2019-03-24|title=Magic: The Gathering is Turing Complete|class=cs.AI |eprint=1904.09828v2|language=en}}</ref> * Planning in a [[partially observable Markov decision process]]. * The problem of planning [[air travel]] from one destination to another, when [[fare]]s are taken into account.<ref>{{cite web |last1=de Marcken |first1=Carl |title=Computational Complexity of Air Travel Planning |url=http://www.demarcken.org/carl/papers/ITA-software-travel-complexity/ITA-software-travel-complexity.pdf |publisher=[[ITA Software]] |access-date=4 January 2021}}</ref> * In the [[ray tracing (graphics)|ray tracing]] problem for a 3-dimensional system of reflective or refractive objects, determining if a ray beginning at a given position and direction eventually reaches a certain point.<ref>{{cite web |title=Computability and Complexity of Ray Tracing |url=https://www.cs.duke.edu/~reif/paper/tygar/raytracing.pdf |website=CS.Duke.edu }}</ref> * Determining if a particle path of an ideal fluid on a three dimensional domain eventually reaches a certain region in space.<ref>{{cite journal|last1=Cardona|first1=R.|title=Constructing Turing complete Euler flows in dimension 3|last2=Miranda|first2=E.|last3=Peralta-Salas|first3=D.|last4=Presas|first4=F.|journal=Proceedings of the National Academy of Sciences|date=2021|volume=118 |issue=19 |page=19|doi=10.1073/pnas.2026818118|doi-access=free |pmid=33947820 |pmc=8126859|arxiv=2012.12828 |bibcode=2021PNAS..11826818C }}</ref><ref>{{cite journal|last1=Cardona|first1=R.|title=Computability and Beltrami fields in Euclidean space|last2=Miranda|first2=E.|last3=Peralta-Salas|first3=D.|journal=Journal de Mathématiques Pures et Appliquées|date=2023|volume=169 |page=50-81|doi=10.1016/j.matpur.2022.11.007|arxiv=2111.03559}}</ref> ==See also== * [[Lists of problems]] * [[List of unsolved problems]] * [[Reduction (complexity)]] * [[Unknowability]] ==Notes== {{reflist}} ==Bibliography== * {{cite book | last = Brookshear | first = J. Glenn | title = Theory of Computation: Formal Languages, Automata, and Complexity | year = 1989 | publisher = Benjamin/Cummings Publishing Company, Inc. | location = Redwood City, California}} Appendix C includes impossibility of algorithms deciding if a grammar contains ambiguities, and impossibility of verifying program correctness by an algorithm as example of Halting Problem. * {{cite report | last = Halava | first = Vesa | title = Decidable and undecidable problems in matrix theory | year = 1997 | type = TUCS technical report | volume = 127 | publisher = Turku Centre for Computer Science | citeseerx = 10.1.1.31.5792 }} * {{cite book | last = Moret | first = B. M. E. | title = Algorithms from P to NP, volume 1 - Design and Efficiency | year = 1991 | publisher = Benjamin/Cummings Publishing Company, Inc. | location = Redwood City, California |author2=H. D. Shapiro }} Discusses intractability of problems with algorithms having exponential performance in Chapter 2, "Mathematical techniques for the analysis of algorithms." * {{cite book | last = Weinberger | first = Shmuel | title = Computers, rigidity, and moduli | year = 2005 | publisher = Princeton University Press | location = Princeton, NJ}} Discusses undecidability of the word problem for groups, and of various problems in topology. ==Further reading== *{{cite arXiv |last=Poonen |first=Bjorn |author-link=Bjorn Poonen |date=2 April 2012 |title=Undecidable problems: a sampler |class=math.LO |eprint=1204.0299 }} {{DEFAULTSORT:Undecidable Problems}} [[Category:Mathematics-related lists]] [[Category:Theory of computation|*]] [[Category:Computability theory|*]] [[Category:Undecidable problems| ]] [[Category:Lists of problems]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite report
(
edit
)
Template:Cite web
(
edit
)
Template:Isbn
(
edit
)
Template:Main
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)