Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
List of unsolved problems in mathematics
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{pp|small=yes}} {{Short description|none}} {{CS1 config|mode=cs1}} {{Dynamic list}} Many [[mathematical problems]] have been stated but not yet solved. These problems come from many [[areas of mathematics]], such as [[theoretical physics]], [[computer science]], [[algebra]], [[Mathematical analysis|analysis]], [[combinatorics]], [[Algebraic geometry|algebraic]], [[Differential geometry|differential]], [[Discrete geometry|discrete]] and [[Euclidean geometry|Euclidean geometries]], [[graph theory]], [[group theory]], [[model theory]], [[number theory]], [[set theory]], [[Ramsey theory]], [[dynamical system]]s, and [[partial differential equation]]s. Some problems belong to more than one discipline and are studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the [[Millennium Prize Problems]], receive considerable attention. This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative, and the problems listed here vary widely in both difficulty and importance. == Lists of unsolved problems in mathematics == Various mathematicians and organizations have published and promoted lists of unsolved mathematical problems. In some cases, the lists have been associated with prizes for the discoverers of solutions. {| class="wikitable sortable" |- ! List !! Number of<br />problems !! Number unsolved <br /> or incompletely solved !! Proposed by !! Proposed<br />in |- | [[Hilbert's problems]]<ref>{{citation|last=Thiele|first=Rüdiger|chapter=On Hilbert and his twenty-four problems|title=Mathematics and the historian's craft. The Kenneth O. May Lectures|pages=243–295|isbn=978-0-387-25284-1|editor-last=Van Brummelen|editor-first=Glen|year=2005|series=[[Canadian Mathematical Society|CMS]] Books in Mathematics/Ouvrages de Mathématiques de la SMC |volume=21|title-link=Kenneth May}}</ref> || 23 || 15 || [[David Hilbert]] || 1900 |- | [[Landau's problems]]<ref>{{citation|title=Unsolved Problems in Number Theory|first=Richard|last=Guy|author-link=Richard K. Guy|edition=2nd|publisher=Springer|year=1994|page=vii|url=https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7|isbn=978-1-4899-3585-4|access-date=2016-09-22|archive-url=https://web.archive.org/web/20190323220345/https://books.google.com/books?id=EbLzBwAAQBAJ&pg=PR7|archive-date=2019-03-23|url-status=live}}.</ref> || 4 || 4 || [[Edmund Landau]] || 1912 |- | [[Taniyama's problems]]<ref>{{cite journal | last = Shimura | first = G. | author-link = Goro Shimura | title = Yutaka Taniyama and his time | journal = Bulletin of the London Mathematical Society | volume = 21 | issue = 2 | pages = 186–196 | year = 1989 | doi = 10.1112/blms/21.2.186 }}</ref> || 36 || – || [[Yutaka Taniyama]] || 1955 |- | [[Thurston's 24 questions]]<ref>{{cite journal | last = Friedl | first = Stefan | doi = 10.1365/s13291-014-0102-x | issue = 4 | journal = Jahresbericht der Deutschen Mathematiker-Vereinigung | mr = 3280572 | pages = 223–241 | title = Thurston's vision and the virtual fibering theorem for 3-manifolds | volume = 116 | year = 2014| s2cid = 56322745 }}</ref><ref>{{cite journal | last = Thurston | first = William P. | doi = 10.1090/S0273-0979-1982-15003-0 | issue = 3 | journal = Bulletin of the American Mathematical Society | mr = 648524 | pages = 357–381 | series = New Series | title = Three-dimensional manifolds, Kleinian groups and hyperbolic geometry | volume = 6 | year = 1982}}</ref> || 24 || 2 || [[William Thurston]] || 1982 |- | [[Smale's problems]] || 18 || 14 || [[Stephen Smale]] || 1998 |- | [[Millennium Prize Problems]] || 7 || 6<ref name="auto1">{{cite web |title=Millennium Problems |url=http://claymath.org/millennium-problems |archive-url=https://web.archive.org/web/20170606121331/http://claymath.org/millennium-problems |archive-date=2017-06-06 |access-date=2015-01-20 |website=claymath.org}}</ref>|| [[Clay Mathematics Institute]] || 2000 |- | [[Simon problems]] || 15 || < 12<ref>{{cite web |url=http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12 |title=Fields Medal awarded to Artur Avila |website=[[Centre national de la recherche scientifique]] |date=2014-08-13 |access-date=2018-07-07 |archive-url=https://web.archive.org/web/20180710010437/http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12 |archive-date=2018-07-10 }}</ref><ref name="guardian">{{cite web |url=https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani |title=Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained |website=[[The Guardian]] |last=Bellos |first=Alex |date=2014-08-13 |access-date=2018-07-07 |archive-url=https://web.archive.org/web/20161021115900/https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani |archive-date=2016-10-21 |url-status=live }}</ref> || [[Barry Simon]] || 2000 |- | [[Unsolved Problems on Mathematics for the 21st Century]]<ref>{{cite book | last1 = Abe | first1 = Jair Minoro | last2 = Tanaka | first2 = Shotaro | title = Unsolved Problems on Mathematics for the 21st Century | publisher = IOS Press | year = 2001 | url = https://books.google.com/books?id=yHzfbqtVGLIC&q=unsolved+problems+in+mathematics | isbn = 978-90-5199-490-2}}</ref> || 22 || – || Jair Minoro Abe, Shotaro Tanaka || 2001 |- | [[DARPA]]'s math challenges<ref>{{cite web | title = DARPA invests in math | publisher = [[Cable News Network|CNN]] | date = 2008-10-14 | url = http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html | access-date = 2013-01-14 | archive-url = https://web.archive.org/web/20090304121240/http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html | archive-date = 2009-03-04}}</ref><ref>{{cite web | title = Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO) | publisher = DARPA | date = 2007-09-10 | url = http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html | access-date = 2013-06-25 | archive-url = https://web.archive.org/web/20121001111057/http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html | archive-date = 2012-10-01}}</ref> || 23 || – || [[DARPA]] || 2007 |- | [[Erdős's problems]]<ref>{{cite web|url=https://www.erdosproblems.com/|title=Erdős Problems|first=Thomas|last=Bloom|author-link=Thomas Bloom|access-date=2024-08-25}}</ref> || > 934 || 617 || [[Paul Erdős]] || Over six decades of Erdős' career, from the 1930s to 1990s |} [[File:Riemann-Zeta-Func.png|thumb|250px|The [[Riemann zeta function]], subject of the [[Riemann hypothesis]]<ref>{{Cite web |title=Math Problems Guide: From Simple to Hardest Math Problems Tips & Examples. |url=https://blendedlearningmath.com/math-word-problems-to-challenge-university-students/ |access-date=2024-11-28 |website=blendedlearningmath |language=en-US}}</ref>]] === Millennium Prize Problems === Of the original seven [[Millennium Prize Problems]] listed by the [[Clay Mathematics Institute]] in 2000, six remain unsolved to date:<ref name="auto1"/> * [[Birch and Swinnerton-Dyer conjecture]] * [[Hodge conjecture]] * [[Navier–Stokes existence and smoothness]] * [[P versus NP problem|P versus NP]] * [[Riemann hypothesis]] * [[Yang–Mills existence and mass gap]] The seventh problem, the [[Poincaré conjecture]], was solved by [[Grigori Perelman]] in 2003.<ref>{{cite web |title=Poincaré Conjecture |url=http://www.claymath.org/millenium-problems/poincar%C3%A9-conjecture |archive-url=https://web.archive.org/web/20131215120130/http://www.claymath.org/millenium-problems/poincar%C3%A9-conjecture |archive-date=2013-12-15 |website=Clay Mathematics Institute}}</ref> However, a generalization called the [[Generalized Poincaré conjecture|smooth four-dimensional Poincaré conjecture]]—that is, whether a ''four''-dimensional [[topological sphere]] can have two or more inequivalent [[smooth structure]]s—is unsolved.<ref>{{cite web |last=rybu |date=November 7, 2009 |title=Smooth 4-dimensional Poincare conjecture |url=http://www.openproblemgarden.org/?q=op/smooth_4_dimensional_poincare_conjecture |url-status=live |archive-url=https://web.archive.org/web/20180125203721/http://www.openproblemgarden.org/?q=op%2Fsmooth_4_dimensional_poincare_conjecture |archive-date=2018-01-25 |access-date=2019-08-06 |website=Open Problem Garden}}</ref> === Notebooks === * The [[Kourovka, Sverdlovsk Oblast|Kourovka]] Notebook ({{Langx|ru|Коуровская тетрадь}}) is a collection of unsolved problems in [[group theory]], first published in 1965 and updated many times since.<ref>{{citation |last1=Khukhro |first1=Evgeny I. |title=Unsolved Problems in Group Theory. The Kourovka Notebook |year=2019 |arxiv=1401.0300v16 |last2=Mazurov |first2=Victor D. |author-link2=Victor Mazurov}}</ref> * The [[Yekaterinburg|Sverdlovsk]] Notebook ({{Langx|ru|Свердловская тетрадь}}) is a collection of unsolved problems in [[semigroup theory]], first published in 1965 and updated every 2 to 4 years since.<ref>{{Cite book |last1=RSFSR |first1=MV i SSO |url=https://books.google.com/books?id=nKwgzgEACAAJ |title=Свердловская тетрадь: нерешенные задачи теории подгрупп |last2=Russie) |first2=Uralʹskij gosudarstvennyj universitet im A. M. Gorʹkogo (Ekaterinbourg |date=1969 |publisher=S. l. |language=ru}}</ref><ref>{{cite book| title = Свердловская тетрадь: Сб. нерешённых задач по теории полугрупп |location= [[Свердловск]] |date = 1979 |publisher= [[Уральский государственный университет]] }}</ref><ref>{{cite book| title = Свердловская тетрадь: Сб. нерешённых задач по теории полугрупп |location= [[Свердловск]] |date = 1989 |publisher= [[Уральский государственный университет]] }}</ref> * The [[Dniester]] Notebook ({{Langx|ru|Днестровская тетрадь}}) lists several hundred unsolved problems in algebra, particularly [[ring theory]] and [[Modulus (algebraic number theory)|modulus theory]].<ref>{{citation |title=ДНЕСТРОВСКАЯ ТЕТРАДЬ |url=http://math.nsc.ru/LBRT/a1/files/dnestr93.pdf |year=1993 |trans-title=DNIESTER NOTEBOOK |publisher=The Russian Academy of Sciences |language=ru}}</ref><ref>{{citation |title=DNIESTER NOTEBOOK: Unsolved Problems in the Theory of Rings and Modules |url=https://math.usask.ca/~bremner/research/publications/dniester.pdf |website=[[University of Saskatchewan]] |access-date=2019-08-15}}</ref> * The [[Erlagol]] Notebook ({{Langx|ru|Эрлагольская тетрадь}}) lists unsolved problems in algebra and [[model theory]].<ref>{{citation |title=Эрлагольская тетрадь |url=http://uamt.conf.nstu.ru/erl_note.pdf |year=2018 |trans-title=Erlagol notebook |publisher=The Novosibirsk State University |language=ru}}</ref> == Unsolved problems == === Algebra === {{Main|Algebra}} [[File:Regular tetrahedron inscribed in a sphere.svg|thumb|In the [[Bloch sphere]] representation of a [[qubit]], a [[SIC-POVM]] forms a [[regular tetrahedron]]. Zauner conjectured that analogous structures exist in complex [[Hilbert space]]s of all finite dimensions.]] * [[Birch–Tate conjecture]] on the relation between the order of the [[Center (group theory)|center]] of the [[Steinberg group (K-theory)|Steinberg group]] of the [[ring of integers]] of a [[Algebraic number field|number field]] to the field's [[Dedekind zeta function]]. * [[Bombieri–Lang conjecture]]s on densities of rational points of [[algebraic surface]]s and [[Algebraic variety|algebraic varieties]] defined on [[Algebraic number field|number fields]] and their [[field extension]]s. * [[Connes embedding problem]] in [[Von Neumann algebra]] theory * [[Crouzeix's conjecture]]: the [[matrix norm]] of a complex function <math>f</math> applied to a complex matrix <math>A</math> is at most twice the [[Infimum and supremum|supremum]] of <math>|f(z)|</math> over the [[numerical range|field of values]] of <math>A</math>. * [[Determinantal conjecture]] on the [[determinant]] of the sum of two [[Normal matrix|normal matrices]]. * [[Eilenberg–Ganea conjecture]]: a group with [[cohomological dimension]] 2 also has a 2-dimensional [[Eilenberg–MacLane space]] <math>K(G, 1)</math>. * [[Farrell–Jones conjecture]] on whether certain [[assembly map]]s are [[isomorphisms]]. ** [[Farrell–Jones conjecture#Bost conjecture|Bost conjecture]]: a specific case of the Farrell–Jones conjecture * [[Finite lattice representation problem]]: is every finite [[Lattice (order)|lattice]] isomorphic to the [[Quotient (universal algebra)#Congruence lattice|congruence lattice]] of some finite [[Universal algebra|algebra]]?<ref>{{cite journal |last1=Dowling |first1=T. A. |title=A class of geometric lattices based on finite groups|journal=[[Journal of Combinatorial Theory]] |series=Series B |date=February 1973 |volume=14 |issue=1 |pages=61–86 |doi=10.1016/S0095-8956(73)80007-3 | doi-access=free }}</ref> * [[Goncharov conjecture]] on the [[cohomology]] of certain [[Motivic cohomology|motivic complexes]]. * [[Green's conjecture]]: the [[Clifford's theorem on special divisors|Clifford index]] of a non-[[hyperelliptic curve]] is determined by the extent to which it, as a [[Canonical bundle|canonical curve]], has [[Linear relation|linear syzygies]]. * [[Grothendieck–Katz p-curvature conjecture]]: a conjectured [[Hasse principle|local–global principle]] for [[Linear differential equation|linear ordinary differential equations]]. * [[Hadamard conjecture]]: for every positive integer <math>k</math>, a [[Hadamard matrix]] of order <math>4k</math> exists. ** [[Williamson conjecture]]: the problem of finding Williamson matrices, which can be used to construct Hadamard matrices. * [[Hadamard's maximal determinant problem]]: what is the largest [[determinant]] of a matrix with entries all equal to 1 or −1? * [[Hilbert's fifteenth problem]]: put [[Schubert calculus]] on a rigorous foundation. * [[Hilbert's sixteenth problem]]: what are the possible configurations of the [[Connected space|connected components]] of [[Harnack's curve theorem|M-curves]]? * [[Homological conjectures in commutative algebra]] * [[Jacobson's conjecture]]: the intersection of all powers of the [[Jacobson radical]] of a left-and-right [[Noetherian ring]] is precisely 0. * [[Kaplansky's conjectures]] * [[Köthe conjecture]]: if a ring has no [[nil ideal]] other than <math>\{0\}</math>, then it has no nil [[Ideal (ring theory)|one-sided ideal]] other than <math>\{0\}</math>. * [[Monomial conjecture]] on [[Noetherian ring|Noetherian]] [[local ring]]s * Existence of [[perfect cuboid]]s and associated [[cuboid conjectures]] * [[Pierce–Birkhoff conjecture]]: every piecewise-polynomial <math>f:\mathbb{R}^{n}\rightarrow\mathbb{R}</math> is the maximum of a finite set of minimums of finite collections of polynomials. * [[Rota's basis conjecture]]: for matroids of rank <math>n</math> with <math>n</math> disjoint bases <math>B_{i}</math>, it is possible to create an <math>n \times n</math> matrix whose rows are <math>B_{i}</math> and whose columns are also bases. * [[Serre's conjecture II (algebra)|Serre's conjecture II]]: if <math>G</math> is a [[Simply connected space|simply connected]] [[semisimple algebraic group]] over a perfect [[Field (mathematics)|field]] of [[cohomological dimension]] at most <math>2</math>, then the [[Galois cohomology]] set <math>H^{1}(F, G)</math> is zero. * [[Serre's multiplicity conjectures|Serre's positivity conjecture]] that if <math>R</math> is a commutative [[regular local ring]], and <math>P, Q</math> are [[prime ideal]]s of <math>R</math>, then <math>\dim (R/P) + \dim (R/Q) = \dim (R)</math> implies <math>\chi(R/P, R/Q) > 0</math>. * [[Uniform boundedness conjecture for rational points]]: do [[algebraic curve]]s of [[Geometric genus|genus]] <math>g \geq 2</math> over [[Algebraic number field|number fields]] <math>K</math> have at most some bounded number <math>N(K, g)</math> of <math>K</math>-[[rational point]]s? * [[Wild problem]]s: problems involving classification of pairs of <math>n\times n</math> matrices under simultaneous conjugation. * [[Zariski–Lipman conjecture]]: for a [[complex algebraic variety]] <math>V</math> with [[coordinate ring]] <math>R</math>, if the [[Derivation (algebra)|derivations]] of <math>R</math> are a [[free module]] over <math>R</math>, then <math>V</math> is [[Smooth algebraic variety|smooth]]. * Zauner's conjecture: do [[SIC-POVM]]s exist in all dimensions? *[[Zilber–Pink conjecture]] that if <math>X</math> is a mixed [[Shimura variety]] or [[Abelian variety#Semiabelian variety|semiabelian variety]] defined over <math>\mathbb{C}</math>, and <math>V \subseteq X</math> is a subvariety, then <math>V</math> contains only finitely many atypical subvarieties. ==== Group theory ==== {{Main|Group theory }} [[File:FreeBurnsideGroupExp3Gens2.png|thumb|The [[free Burnside group]] <math>B(2,3)</math> is finite; in its [[Cayley graph]], shown here, each of its 27 elements is represented by a vertex. The question of which other groups <math>B(m,n)</math> are finite remains open.]] * [[Andrews–Curtis conjecture]]: every balanced [[Presentation of a group|presentation]] of the [[trivial group]] can be transformed into a trivial presentation by a sequence of [[Nielsen transformation]]s on [[Presentation of a group#Definition|relators]] and conjugations of relators * [[Burnside problem#Bounded Burnside problem|Bounded Burnside problem]]: for which positive integers ''m'', ''n'' is the free Burnside group {{nowrap|B(''m'',''n'')}} finite? In particular, is {{nowrap|B(2, 5)}} finite? * Guralnick–Thompson conjecture on the composition factors of groups in genus-0 systems<ref>{{citation |last=Aschbacher |first=Michael |author-link=Michael Aschbacher |title=On Conjectures of Guralnick and Thompson |journal=[[Journal of Algebra]] |volume=135 |issue=2 |pages=277–343 |year=1990 |doi=10.1016/0021-8693(90)90292-V}}</ref> * [[Herzog–Schönheim conjecture]]: if a finite system of left [[coset]]s of subgroups of a group <math>G</math> form a partition of <math>G</math>, then the finite indices of said subgroups cannot be distinct. * The [[inverse Galois problem]]: is every finite group the Galois group of a Galois extension of the rationals? * [[Isomorphism problem of Coxeter groups]] * Are there an infinite number of [[Leinster group]]s? * Does [[Monstrous moonshine#Generalized moonshine|generalized moonshine]] exist? * Is every [[finitely presented group|finitely presented]] [[periodic group]] finite? * Is every group [[surjunctive group|surjunctive]]? * Is every discrete, countable group [[sofic group|sofic]]? * [[Problems in loop theory and quasigroup theory]] consider generalizations of groups ==== Representation theory ==== * [[Arthur's conjectures]] * [[Dade's conjecture]] relating the numbers of [[Character theory|characters]] of [[Modular representation theory#Blocks and the structure of the group algebra|blocks]] of a finite group to the numbers of characters of blocks of local [[subgroup]]s. * [[Demazure conjecture]] on [[Group representation|representations]] of [[algebraic group]]s over the integers. * [[Kazhdan–Lusztig polynomial#Kazhdan–Lusztig conjectures|Kazhdan–Lusztig conjectures]] relating the values of the [[Kazhdan–Lusztig polynomial]]s at 1 with [[Group representation|representations]] of complex [[Semisimple Lie algebra#Semisimple and reductive groups|semisimple Lie groups]] and [[Semisimple Lie algebra|Lie algebras]]. * [[McKay conjecture]]: in a group <math>G</math>, the number of [[Character theory#Definitions|irreducible complex characters]] of degree not divisible by a [[prime number]] <math>p</math> is equal to the number of irreducible complex characters of the [[centralizer and normalizer|normalizer]] of any [[Sylow theorems|Sylow <math>p</math>-subgroup]] within <math>G</math>. === Analysis === {{Main|Mathematical analysis}} * The [[Brennan conjecture]]: estimating the integral of powers of the moduli of the derivative of [[conformal map]]s into the open unit disk, on certain subsets of <math>\mathbb{C}</math> * [[Fuglede's conjecture]] on whether nonconvex sets in <math>\mathbb{R}</math> and <math>\mathbb{R}^{2}</math> are spectral if and only if they tile by [[Translation (geometry)|translation]]. * [[Goodman's conjecture]] on the coefficients of [[multivalent function|multivalued function]]s * [[Invariant subspace problem]] – does every [[bounded operator]] on a complex [[Banach space]] send some non-trivial [[Closed set|closed]] subspace to itself? * Kung–Traub conjecture on the optimal order of a multipoint iteration without memory<ref>{{citation |last1=Kung |first1=H. T. |last2=Traub |first2=Joseph Frederick |author-link1=H. T. Kung |author-link2=Joseph F. Traub |title=Optimal order of one-point and multipoint iteration |journal=[[Journal of the ACM]] |year=1974 |volume=21 |number=4 |pages=643–651|doi=10.1145/321850.321860 |s2cid=74921 }}</ref> * [[Lehmer's conjecture]] on the Mahler measure of non-cyclotomic polynomials<ref>{{citation | first=Chris | last=Smyth | chapter=The Mahler measure of algebraic numbers: a survey | pages=322–349 | editor1-first=James | editor1-last=McKee | editor2-last=Smyth | editor2-first=Chris | title=Number Theory and Polynomials | series=London Mathematical Society Lecture Note Series | volume=352 | publisher=[[Cambridge University Press]] | year=2008 | isbn=978-0-521-71467-9 }}</ref> * The [[mean value problem]]: given a [[complex number|complex]] [[polynomial]] <math>f</math> of [[Degree of a polynomial|degree]] <math>d \ge 2</math> and a complex number <math>z</math>, is there a [[critical point (mathematics)|critical point]] <math>c</math> of <math>f</math> such that <math>|f(z)-f(c)| \le |f'(z)||z-c|</math>? * The [[Pompeiu problem]] on the topology of domains for which some nonzero function has integrals that vanish over every congruent copy<ref>{{SpringerEOM|title=Pompeiu problem|id=Pompeiu_problem&oldid=14506|author-last1=Berenstein|author-first1=Carlos A.}}</ref> * [[Sendov's conjecture]]: if a complex polynomial with degree at least <math>2</math> has all roots in the closed [[unit disk]], then each root is within distance <math>1</math> from some [[Critical point (mathematics)|critical point]]. * [[Analytic capacity#Vitushkin's conjecture|Vitushkin's conjecture]] on compact subsets of <math>\mathbb{C}</math> with [[analytic capacity]] <math>0</math> * What is the exact value of [[Landau's constants]], including [[Bloch's theorem (complex variables)#Bloch's and Landau's constants|Bloch's constant]]? * Regularity of solutions of [[Euler equations (fluid dynamics)|Euler equations]] * Convergence of [https://mathworld.wolfram.com/FlintHillsSeries.html Flint Hills series] * Regularity of solutions of [[Vlasov–Maxwell equations]] === Combinatorics === {{Main|Combinatorics}} * The [[1/3–2/3 conjecture]] – does every finite [[partially ordered set]] that is not [[totally ordered]] contain two elements ''x'' and ''y'' such that the probability that ''x'' appears before ''y'' in a random [[linear extension]] is between 1/3 and 2/3?<ref>{{citation | last1 = Brightwell | first1 = Graham R. | last2 = Felsner | first2 = Stefan | last3 = Trotter | first3 = William T. | doi = 10.1007/BF01110378 | mr = 1368815 | issue = 4 | journal = [[Order (journal)|Order]] | pages = 327–349 | title = Balancing pairs and the cross product conjecture | volume = 12 | year = 1995| citeseerx = 10.1.1.38.7841 | s2cid = 14793475 }}.</ref> * The [[Dittert conjecture]] concerning the maximum achieved by a particular function of matrices with real, nonnegative entries satisfying a summation condition * [[Problems in Latin squares]] – open questions concerning [[Latin squares]] * The [[lonely runner conjecture]] – if <math>k</math> runners with pairwise distinct speeds run round a track of unit length, will every runner be "lonely" (that is, be at least a distance <math>1/k</math> from each other runner) at some time?<ref>{{cite journal | last=Tao | first=Terence | author-link=Terence Tao | title=Some remarks on the lonely runner conjecture | journal=Contributions to Discrete Mathematics | volume=13 | issue=2 | pages=1–31 | date=2018 | arxiv=1701.02048 | doi=10.11575/cdm.v13i2.62728 | doi-access=free}}</ref> * [[Map folding]] – various problems in map folding and stamp folding. * [[No-three-in-line problem]] – how many points can be placed in the <math>n \times n</math> grid so that no three of them lie on a line? * [[Rudin's conjecture]] on the number of squares in finite [[arithmetic progression]]s<ref>{{cite journal|journal=LMS Journal of Computation and Mathematics|volume=17|issue=1|year=2014|pages=58–76|title=On a conjecture of Rudin on squares in arithmetic progressions|author=González-Jiménez, Enrique|author2=Xarles, Xavier|doi=10.1112/S1461157013000259|arxiv=1301.5122|s2cid=11615385 }}</ref> * The [[sunflower (mathematics)|sunflower conjecture]] – can the number of <math>k</math> size sets required for the existence of a sunflower of <math>r</math> sets be bounded by an exponential function in <math>k</math> for every fixed <math>r>2</math>? * Frankl's [[union-closed sets conjecture]] – for any family of sets closed under sums there exists an element (of the underlying space) belonging to half or more of the sets<ref>{{citation | last1 = Bruhn | first1 = Henning | last2 = Schaudt | first2 = Oliver | doi = 10.1007/s00373-014-1515-0 | issue = 6 | journal = Graphs and Combinatorics | mr = 3417215 | pages = 2043–2074 | title = The journey of the union-closed sets conjecture | url = http://www.zaik.uni-koeln.de/~schaudt/UCSurvey.pdf | volume = 31 | year = 2015 | arxiv = 1309.3297 | s2cid = 17531822 | access-date = 2017-07-18 | archive-url = https://web.archive.org/web/20170808104232/http://www.zaik.uni-koeln.de/~schaudt/UCSurvey.pdf | archive-date = 2017-08-08 | url-status = live }}</ref> * Give a combinatorial interpretation of the [[Kronecker coefficient]]s<ref>{{citation | last = Murnaghan | first = F. D. | doi = 10.2307/2371542 | issue = 1 | journal = [[American Journal of Mathematics]] | mr = 1507301 | pages = 44–65 | title = The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups | volume = 60 | year = 1938| pmc = 1076971 | pmid=16577800 | jstor = 2371542 }}</ref> * The values of the [[Dedekind number]]s <math>M(n)</math> for <math>n \ge 10</math><ref>{{Cite web |url=http://www.sfu.ca/~tyusun/ThesisDedekind.pdf |title=Dedekind Numbers and Related Sequences |access-date=2020-04-30 |archive-date=2015-03-15 |archive-url=https://web.archive.org/web/20150315021125/http://www.sfu.ca/~tyusun/ThesisDedekind.pdf }}</ref> * The values of the [[Ramsey numbers]], particularly <math>R(5, 5)</math> * The values of the [[Van der Waerden number]]s * Finding a function to model n-step [[self-avoiding walk]]s<ref>{{Cite journal|last1=Liśkiewicz|first1=Maciej|last2=Ogihara|first2=Mitsunori|last3=Toda|first3=Seinosuke|date=2003-07-28|title=The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes|journal=Theoretical Computer Science|volume=304|issue=1|pages=129–156|doi=10.1016/S0304-3975(03)00080-X|s2cid=33806100 }}</ref> === Dynamical systems === {{Main|Dynamical system}} [[File:Mandel zoom 07 satellite.jpg|thumb|A detail of the [[Mandelbrot set]]. It is not known whether the Mandelbrot set is [[locally connected space|locally connected]] or not.]] * [[Arnold–Givental conjecture]] and [[Symplectomorphism#Arnold conjecture|Arnold conjecture]] – relating symplectic geometry to Morse theory. * [[Quantum chaos#Berry–Tabor conjecture|Berry–Tabor conjecture]] in [[quantum chaos]] * [[Stefan Banach|Banach's]] problem – is there an [[Measure-preserving dynamical system|ergodic system]] with simple Lebesgue spectrum?<ref>S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc., New York, 1964, page 76.</ref> * [[George David Birkhoff|Birkhoff]] conjecture – if a [[dynamical billiards|billiard table]] is strictly convex and integrable, is its boundary necessarily an ellipse?<ref>{{cite journal |last1=Kaloshin |first1=Vadim |author-link1=Vadim Kaloshin |last2=Sorrentino |first2=Alfonso |title=On the local Birkhoff conjecture for convex billiards |doi=10.4007/annals.2018.188.1.6 |volume=188 |number=1 |year=2018 |pages=315–380 |journal=[[Annals of Mathematics]]|arxiv=1612.09194 |s2cid=119171182 }}</ref> * [[Collatz conjecture]] (also known as the <math>3n + 1</math> conjecture) * [[Eden's conjecture]] that the [[Infimum and supremum|supremum]] of the local [[Lyapunov dimension]]s on the global [[attractor]] is achieved on a stationary point or an unstable periodic orbit embedded into the attractor. * [[Alexandre Eremenko|Eremenko's]] conjecture: every component of the [[escaping set]] of an [[entire function|entire]] [[transcendental function|transcendental]] function is unbounded. * [[Fatou conjecture]] that a quadratic family of maps from the [[complex plane]] to itself is hyperbolic for an open dense set of parameters. * [[Hillel Furstenberg|Furstenberg]] conjecture – is every invariant and [[ergodicity|ergodic]] measure for the <math>\times 2,\times 3</math> action on the circle either Lebesgue or atomic? * [[Kaplan–Yorke conjecture]] on the dimension of an [[attractor]] in terms of its [[Lyapunov exponent]]s * [[Grigory Margulis|Margulis]] conjecture – measure classification for diagonalizable actions in higher-rank groups. * [[Hilbert–Arnold problem]] – is there a [[uniformly bounded|uniform bound]] on [[limit cycles]] in generic finite-parameter families of [[vector fields]] on a sphere? * [[MLC conjecture]] – is the Mandelbrot set locally connected? * Many problems concerning an [[Outer billiard#open problems|outer billiard]], for example showing that outer billiards relative to almost every convex polygon have unbounded orbits. * Quantum unique ergodicity conjecture on the distribution of large-frequency [[eigenfunction]]s of the [[Laplace operator|Laplacian]] on a [[curvature|negatively-curved]] [[manifold]]<ref>{{citation |last=Sarnak |first=Peter |author-link=Peter Sarnak |title=Recent progress on the quantum unique ergodicity conjecture |journal=[[Bulletin of the American Mathematical Society]] |volume=48 |issue=2 |year=2011 |pages=211–228 |doi=10.1090/S0273-0979-2011-01323-4 |mr=2774090|doi-access=free }}</ref> * [[Vladimir Abramovich Rokhlin|Rokhlin's]] multiple mixing problem – are all [[Mixing (mathematics)|strongly mixing]] systems also strongly 3-mixing?<ref>Paul Halmos, Ergodic theory. Chelsea, New York, 1956.</ref> * [[Weinstein conjecture]] – does a regular compact [[contact type]] [[level set]] of a [[Hamiltonian function|Hamiltonian]] on a [[symplectic manifold]] carry at least one periodic orbit of the Hamiltonian flow? * Does every positive integer generate a [[juggler sequence]] terminating at 1? * [[Lyapunov function|Lyapunov function: Lyapunov's second method for stability]] – For what classes of [[Ordinary differential equation|ODEs]], describing dynamical systems, does Lyapunov's second method, formulated in the classical and canonically generalized forms, define the necessary and sufficient conditions for the (asymptotical) stability of motion? * Is every [[reversible cellular automaton]] in three or more dimensions locally reversible?<ref>{{cite conference |last=Kari |first=Jarkko |author-link=Jarkko Kari |year=2009 |title=Structure of Reversible Cellular Automata |conference=International Conference on Unconventional Computation |series=[[Lecture Notes in Computer Science]] |publisher=Springer |volume=5715 |page=6 |bibcode=2009LNCS.5715....6K |doi=10.1007/978-3-642-03745-0_5 |isbn=978-3-642-03744-3 |doi-access=free |contribution=Structure of reversible cellular automata}}</ref> === Games and puzzles === {{Main|Game theory}} ====Combinatorial games==== {{Main|Combinatorial game theory}} * [[Sudoku]]: ** How many puzzles have exactly one solution?<ref name="openq"/> ** How many puzzles with exactly one solution are [[Glossary of Sudoku#Other terminology|minimal]]?<ref name="openq"/> ** What is the [[Mathematics of Sudoku#Maximum number of givens|maximum number of givens]] for a [[Glossary of Sudoku#Other terminology|minimal]] puzzle?<ref name="openq">{{Cite web |title=Open Q – Solving and rating of hard Sudoku |url=http://english.log-it-ex.com/2.html |archive-url=https://web.archive.org/web/20171110030932/http://english.log-it-ex.com/2.html |archive-date=10 November 2017 |website=english.log-it-ex.com}}</ref> * [[Tic-tac-toe variants]]: ** Given the width of a tic-tac-toe board, what is the smallest dimension such that X is guaranteed to have a winning strategy? (See also [[Hales–Jewett theorem]] and [[Nd game|''n''<sup>''d''</sup> game]])<ref>{{cite web |url=https://www.youtube.com/watch?v=FwJZa-helig |title=Higher-Dimensional Tic-Tac-Toe |website=[[PBS Digital Studios|PBS Infinite Series]] |publisher=[[YouTube]] |date=2017-09-21 |access-date=2018-07-29 |archive-url=https://web.archive.org/web/20171011000653/https://www.youtube.com/watch?v=FwJZa-helig |archive-date=2017-10-11 |url-status=live }}</ref> * [[Chess]]: ** What is the outcome of a perfectly played game of chess? (See also [[first-move advantage in chess]]) * [[Go (game)|Go]]: ** What is the perfect value of [[Komi (Go)|Komi]]? * Are the nim-sequences of all finite [[octal game]]s eventually periodic? * Is the nim-sequence of [[Grundy's game]] eventually periodic? ====Games with imperfect information==== * [[Rendezvous problem]] === Geometry === {{Main|Geometry}} ==== Algebraic geometry ==== {{Main|Algebraic geometry}} * [[Abundance conjecture]]: if the [[canonical bundle]] of a [[projective variety]] with [[Canonical singularity#Pairs|Kawamata log terminal singularities]] is [[Nef line bundle|nef]], then it is semiample. * [[Bass conjecture]] on the [[Finitely generated group|finite generation]] of certain [[Algebraic K-theory|algebraic K-groups]]. * [[Bass–Quillen conjecture]] relating [[vector bundle]]s over a [[Regular local ring#Regular ring|regular]] [[Noetherian ring]] and over the [[polynomial ring]] <math>A[t_{1}, \ldots, t_{n}]</math>. * [[Deligne conjecture]]: any one of numerous named for [[Pierre Deligne]]. ** [[Deligne's conjecture on Hochschild cohomology]] about the [[operad]]ic structure on [[Hochschild homology|Hochschild cochain complex]]. * [[Dixmier conjecture]]: any [[endomorphism]] of a [[Weyl algebra]] is an [[automorphism]]. * [[Fröberg conjecture]] on the [[Hilbert series and Hilbert polynomial|Hilbert functions]] of a set of forms. * [[Fujita conjecture]] regarding the line bundle <math>K_{M} \otimes L^{\otimes m}</math> constructed from a [[Positive form#Positive line bundles|positive]] [[Holomorphic vector bundle|holomorphic line bundle]] <math>L</math> on a [[Compact space|compact]] [[complex manifold]] <math>M</math> and the [[Canonical bundle|canonical line bundle]] <math>K_{M}</math> of <math>M</math> * [[General elephant|General elephant problem]]: do [[general elephant]]s have at most [[du Val singularity|Du Val singularities]]? * Hartshorne's conjectures<ref>{{cite journal|title=On two conjectures of Hartshorne's |last1=Barlet |first1=Daniel |last2=Peternell |first2=Thomas |last3=Schneider |first3=Michael |doi=10.1007/BF01453563 |journal=[[Mathematische Annalen]] |year=1990 |volume=286 |issue=1–3 |pages=13–25|s2cid=122151259 }}</ref> * In [[Spherical geometry|spherical]] or [[hyperbolic geometry]], must polyhedra with the same volume and [[Dehn invariant]] be [[scissors-congruent]]?<ref>{{citation |last = Dupont |first = Johan L. |doi = 10.1142/9789812810335 |isbn = 978-981-02-4507-8 |mr = 1832859 |page = 6 |publisher = World Scientific Publishing Co., Inc., River Edge, NJ |series = Nankai Tracts in Mathematics |title = Scissors congruences, group homology and characteristic classes |url = http://home.math.au.dk/dupont/scissors.ps |volume = 1 |year = 2001 |url-status = dead |archive-url = https://web.archive.org/web/20160429152252/http://home.math.au.dk/dupont/scissors.ps |archive-date = 2016-04-29 }}.</ref> * [[Jacobian conjecture]]: if a [[polynomial mapping]] over a [[Characteristic (algebra)|characteristic]]-0 field has a constant nonzero [[Jacobian matrix and determinant|Jacobian determinant]], then it has a [[Morphism of algebraic varieties|regular]] (i.e. with polynomial components) inverse function. * [[Manin conjecture]] on the distribution of [[rational point]]s of bounded [[Height function|height]] in certain subsets of [[Fano variety|Fano varieties]] * [[Maulik–Nekrasov–Okounkov–Pandharipande conjecture]] on an equivalence between [[Gromov–Witten invariant|Gromov–Witten theory]] and [[Donaldson–Thomas theory]]<ref>{{citation |last1=Maulik |first1=Davesh |last2=Nekrasov |first2=Nikita |author-link2=Nikita Nekrasov |last3=Okounov |first3=Andrei |author-link3=Andrei Okounov |last4=Pandharipande |first4=Rahul |author-link4=Rahul Pandharipande |title=Gromov–Witten theory and Donaldson–Thomas theory, I |arxiv=math/0312059 |date=2004-06-05|bibcode=2003math.....12059M }}</ref> * [[Nagata's conjecture on curves]], specifically the minimal degree required for a [[Algebraic curve|plane algebraic curve]] to pass through a collection of very general points with prescribed [[Multiplicity (mathematics)|multiplicities]]. * [[Nagata–Biran conjecture]] that if <math>X</math> is a smooth [[algebraic surface]] and <math>L</math> is an [[ample line bundle]] on <math>X</math> of degree <math>d</math>, then for sufficiently large <math>r</math>, the [[Seshadri constant]] satisfies <math>\varepsilon(p_1,\ldots,p_r;X,L) = d/\sqrt{r}</math>. * [[Nakai conjecture]]: if a [[complex algebraic variety]] has a ring of [[differential operator]]s generated by its contained [[Derivation (differential algebra)|derivations]], then it must be [[Singular point of an algebraic variety|smooth]]. * [[Parshin's conjecture]]: the higher [[Algebraic K-theory|algebraic K-groups]] of any [[Smooth morphism|smooth]] [[projective variety]] defined over a [[finite field]] must vanish up to torsion. * [[Section conjecture]] on splittings of [[group homomorphism]]s from [[fundamental group]]s of complete [[Curve#Differential geometry|smooth curves]] over finitely-generated [[Field (mathematics)|fields]] <math>k</math> to the [[Galois group]] of <math>k</math>. * [[Standard conjectures]] on algebraic cycles * [[Tate conjecture]] on the connection between [[algebraic cycle]]s on [[Algebraic variety|algebraic varieties]] and [[Galois module|Galois representations]] on [[Étale cohomology|étale cohomology groups]]. * [[Virasoro conjecture]]: a certain [[generating function]] encoding the [[Gromov–Witten invariant]]s of a [[Singular point of an algebraic variety|smooth]] [[projective variety]] is fixed by an action of half of the [[Virasoro algebra]]. * Zariski multiplicity conjecture on the topological equisingularity and equimultiplicity of [[algebraic variety|varieties]] at [[singular point of an algebraic variety|singular points]]<ref>{{cite journal|last=Zariski |first=Oscar |author-link=Oscar Zariski |title=Some open questions in the theory of singularities |journal=[[Bulletin of the American Mathematical Society]] |volume=77 |issue=4 |year=1971 |pages=481–491 |doi=10.1090/S0002-9904-1971-12729-5 |mr=0277533|doi-access=free }}</ref> * Are infinite sequences of [[Flip (mathematics)|flips]] possible in dimensions greater than 3? * [[Resolution of singularities]] in characteristic <math>p</math> ====Covering and packing==== * [[Borsuk's conjecture|Borsuk's problem]] on upper and lower bounds for the number of smaller-diameter subsets needed to cover a [[bounded set|bounded]] ''n''-dimensional set. * The [[covering problem of Rado]]: if the union of finitely many axis-parallel squares has unit area, how small can the largest area covered by a disjoint subset of squares be?<ref>{{citation|last1=Bereg|first1=Sergey|last2=Dumitrescu|first2=Adrian|last3=Jiang|first3=Minghui|doi=10.1007/s00453-009-9298-z|issue=3|journal=Algorithmica|mr=2609053|pages=538–561|title=On covering problems of Rado|volume=57|year=2010|s2cid=6511998}}</ref> * The [[Circle packing in an equilateral triangle|Erdős–Oler conjecture]]: when <math>n</math> is a [[triangular number]], packing <math>n-1</math> circles in an equilateral triangle requires a triangle of the same size as packing <math>n</math> circles.<ref>{{citation|last=Melissen|first=Hans|doi=10.2307/2324212|issue=10|journal=American Mathematical Monthly|mr=1252928|pages=916–925|title=Densest packings of congruent circles in an equilateral triangle|volume=100|year=1993|jstor=2324212}}</ref> * The [[disk covering problem]] abount finding the smallest [[real number]] <math>r(n)</math> such that <math>n</math> [[disk (mathematics)|disks]] of radius <math>r(n)</math> can be arranged in such a way as to cover the [[unit disk]]. * The [[kissing number problem]] for dimensions other than 1, 2, 3, 4, 8 and 24<ref>{{citation |first=John H. |last=Conway |author-link=John Horton Conway |author2=Neil J.A. Sloane |author-link2=Neil Sloane |year=1999 |title=Sphere Packings, Lattices and Groups |edition=3rd |publisher=Springer-Verlag |location=New York |isbn=978-0-387-98585-5|pages=[https://books.google.com/books?id=upYwZ6cQumoC&pg=PA21 21–22]}}</ref> * [[Reinhardt's conjecture]]: the smoothed octagon has the lowest maximum packing density of all centrally-symmetric convex plane sets<ref>{{citation | last = Hales | first = Thomas | author-link = Thomas Callister Hales | arxiv = 1703.01352 | title = The Reinhardt conjecture as an optimal control problem | year = 2017}}</ref> * [[Sphere packing]] problems, including the density of the densest packing in dimensions other than 1, 2, 3, 8 and 24, and its asymptotic behavior for high dimensions. * [[Square packing in a square]]: what is the asymptotic growth rate of wasted space?<ref>{{citation|last1=Brass|first1=Peter|last2=Moser|first2=William|last3=Pach|first3=János|author3-link=János Pach|isbn=978-0387-23815-9|mr=2163782|page=45|publisher=Springer|location=New York|title=Research Problems in Discrete Geometry|url=https://books.google.com/books?id=WehCspo0Qa0C&pg=PA45|year=2005}}</ref> * [[Ulam's packing conjecture]] about the identity of the worst-packing convex solid<ref>{{citation |last=Gardner |first=Martin |date=1995 |title=New Mathematical Diversions (Revised Edition) |location=Washington |publisher=Mathematical Association of America |page=251 }}</ref> * The [[Tammes problem]] for numbers of nodes greater than 14 (except 24).<ref>{{cite journal |last1=Musin |first1=Oleg R. |last2=Tarasov |first2=Alexey S. |title=The Tammes Problem for N = 14 |journal=Experimental Mathematics |date=2015 |volume=24 |issue=4 |pages=460–468 |doi=10.1080/10586458.2015.1022842|s2cid=39429109 }}</ref> ==== Differential geometry ==== {{Main|Differential geometry}} * The [[spherical Bernstein's problem]], a generalization of [[Bernstein's problem]] * [[Carathéodory conjecture]]: any convex, closed, and twice-differentiable surface in three-dimensional [[Euclidean space]] admits at least two [[umbilical point]]s. * [[Cartan–Hadamard conjecture]]: can the classical [[isoperimetric inequality]] for subsets of Euclidean space be extended to spaces of nonpositive curvature, known as [[Hadamard manifold|Cartan–Hadamard manifolds]]? * [[Chern's conjecture (affine geometry)]] that the [[Euler characteristic]] of a [[Closed manifold|compact]] [[affine manifold]] vanishes. * [[Chern's conjecture for hypersurfaces in spheres]], a number of closely related conjectures. * Closed curve problem: find (explicit) necessary and sufficient conditions that determine when, given two periodic functions with the same period, the integral curve is closed.<ref>{{citation | last = Barros | first = Manuel | jstor = 2162098 | journal = [[Proceedings of the American Mathematical Society]] | pages = 1503–1509 | title = General Helices and a Theorem of Lancret | volume = 125 | issue = 5 | year = 1997| doi = 10.1090/S0002-9939-97-03692-7 | doi-access = free }}</ref> * The [[filling area conjecture]], that a hemisphere has the minimum area among shortcut-free surfaces in Euclidean space whose boundary forms a closed curve of given length<ref>{{citation | last = Katz | first = Mikhail G. | doi = 10.1090/surv/137 | isbn = 978-0-8218-4177-8 | mr = 2292367 | page = 57 | publisher = American Mathematical Society, Providence, RI | series = Mathematical Surveys and Monographs | title = Systolic geometry and topology | url = https://books.google.com/books?id=R5_zBwAAQBAJ&pg=PA57 | volume = 137 | year = 2007}}</ref> * The [[Hopf conjecture]]s relating the curvature and Euler characteristic of higher-dimensional Riemannian manifolds<ref>{{citation | last = Rosenberg | first = Steven | doi = 10.1017/CBO9780511623783 | isbn = 978-0-521-46300-3 | location = Cambridge | mr = 1462892 | pages = 62–63 | publisher = Cambridge University Press | series = London Mathematical Society Student Texts | title = The Laplacian on a Riemannian Manifold: An introduction to analysis on manifolds | url = https://books.google.com/books?id=gzJ6Vn0y7XQC&pg=PA62 | volume = 31 | year = 1997}}</ref> * [[Osserman conjecture]]: that every [[Osserman manifold]] is either [[flat manifold|flat]] or locally [[Isometry|isometric]] to a rank-one [[symmetric space]]<ref>{{citation | last = Nikolayevsky | first = Y. | journal = Differential Geometry and Its Applications | title = Two theorems on Osserman manifolds | volume = 18 | pages = 239–253 | year = 2003 | issue = 3 | doi = 10.1016/S0926-2245(02)00160-2}}</ref> * [[Yau's conjecture on the first eigenvalue]] that the first [[Eigenvalues and eigenvectors|eigenvalue]] for the [[Laplace–Beltrami operator]] on an embedded [[Minimal surface|minimal hypersurface]] of <math>S^{n+1}</math> is <math>n</math>. ==== Discrete geometry ==== {{Main|Discrete geometry }} [[File:Kissing-3d.png|thumb|In three dimensions, the [[kissing number problem|kissing number]] is 12, because 12 non-overlapping unit spheres can be put into contact with a central unit sphere. (Here, the centers of outer spheres form the vertices of a [[regular icosahedron]].) Kissing numbers are only known exactly in dimensions 1, 2, 3, 4, 8 and 24.]] * The [[big-line-big-clique conjecture]] on the existence of either many collinear points or many mutually visible points in large planar point sets<ref>{{citation | last1 = Ghosh | first1 = Subir Kumar | last2 = Goswami | first2 = Partha P. | arxiv = 1012.5187 | doi = 10.1145/2543581.2543589 | issue = 2 | journal = ACM Computing Surveys | pages = 22:1–22:29 | title = Unsolved problems in visibility graphs of points, segments, and polygons | volume = 46 | year = 2013| s2cid = 8747335 }}</ref> * The [[Hadwiger conjecture (combinatorial geometry)|Hadwiger conjecture]] on covering ''n''-dimensional convex bodies with at most 2<sup>''n''</sup> smaller copies<ref>{{citation|title=Results and Problems in Combinatorial Geometry|first1=V.|last1=Boltjansky|first2=I.|last2=Gohberg|publisher=Cambridge University Press|year=1985|contribution=11. Hadwiger's Conjecture|pages=44–46}}.</ref> * Solving the [[happy ending problem]] for arbitrary <math>n</math><ref>{{citation | last1 = Morris | first1 = Walter D. | last2 = Soltan | first2 = Valeriu | doi = 10.1090/S0273-0979-00-00877-6 | issue = 4 | journal = Bull. Amer. Math. Soc. | mr = 1779413 | pages = 437–458 | title = The Erdős-Szekeres problem on points in convex position—a survey | volume = 37 | year = 2000| doi-access = free }}; {{citation | last = Suk | first = Andrew | arxiv = 1604.08657 | doi = 10.1090/jams/869 | journal = J. Amer. Math. Soc. | title = On the Erdős–Szekeres convex polygon problem | year = 2016 | volume=30 | issue = 4 | pages=1047–1053| s2cid = 15732134 }}</ref> *Improving lower and upper bounds for the [[Heilbronn triangle problem]]. * [[Kalai's 3^d conjecture|Kalai's 3<sup>''d''</sup> conjecture]] on the least possible number of faces of [[point symmetry|centrally symmetric]] [[polytopes]].<ref name="kalai">{{citation | last = Kalai | first = Gil | author-link = Gil Kalai | doi = 10.1007/BF01788696 | issue = 1 | journal = [[Graphs and Combinatorics]] | mr = 1554357 | pages = 389–391 | title = The number of faces of centrally-symmetric polytopes | volume = 5 | year = 1989| s2cid = 8917264 }}.</ref> * The [[Kobon triangle problem]] on triangles in line arrangements<ref>{{cite journal | last1 = Moreno | first1 = José Pedro | last2 = Prieto-Martínez | first2 = Luis Felipe | hdl = 10486/705416 | issue = 1 | journal = La Gaceta de la Real Sociedad Matemática Española | language = es | mr = 4225268 | pages = 111–130 | title = El problema de los triángulos de Kobon | trans-title = The Kobon triangles problem | volume = 24 | year = 2021}}</ref> * The [[Kusner conjecture]]: at most <math>2d</math> points can be equidistant in <math>L^1</math> spaces<ref>{{citation | last = Guy | first = Richard K. | author-link = Richard K. Guy | issue = 3 | journal = [[American Mathematical Monthly]] | mr = 1540158 | pages = 196–200 | title = An olla-podrida of open problems, often oddly posed | jstor = 2975549 | volume = 90 | year = 1983 | doi = 10.2307/2975549 }}</ref> * The [[McMullen problem]] on projectively transforming sets of points into [[convex position]]<ref>{{citation | last = Matoušek | first = Jiří | author-link = Jiří Matoušek (mathematician) | doi = 10.1007/978-1-4613-0039-7 | isbn = 978-0-387-95373-1 | mr = 1899299 | page = 206 | publisher = Springer-Verlag, New York | series = Graduate Texts in Mathematics | title = Lectures on discrete geometry | volume = 212 | year = 2002}}</ref> *[[Opaque forest problem]] on finding [[opaque set]]s for various planar shapes * [[Unit distance graph#Counting unit distances|How many unit distances]] can be determined by a set of {{mvar|n}} points in the Euclidean plane?<ref>{{citation | last1 = Brass | first1 = Peter | last2 = Moser | first2 = William | last3 = Pach | first3 = János | contribution = 5.1 The Maximum Number of Unit Distances in the Plane | isbn = 978-0-387-23815-9 | mr = 2163782 | pages = 183–190 | publisher = Springer, New York | title = Research problems in discrete geometry | year = 2005}}</ref> * Finding matching upper and lower bounds for [[K-set (geometry)|''k''-sets]] and halving lines<ref>{{citation | last = Dey | first = Tamal K. | author-link = Tamal Dey | doi = 10.1007/PL00009354 | journal = [[Discrete & Computational Geometry]] | mr = 1608878 | pages = 373–382 | title = Improved bounds for planar ''k''-sets and related problems | volume = 19 | issue = 3 | year = 1998| doi-access = free }}; {{citation | last = Tóth | first = Gábor | doi = 10.1007/s004540010022 | issue = 2 | journal = [[Discrete & Computational Geometry]] | mr = 1843435 | pages = 187–194 | title = Point sets with many ''k''-sets | volume = 26 | year = 2001| doi-access = free }}.</ref> * [[Tripod packing]]:<ref>{{citation|last1=Aronov|first1=Boris|author1-link=Boris Aronov|last2=Dujmović|first2=Vida|author2-link=Vida Dujmović|last3=Morin|first3=Pat|author3-link= Pat Morin |last4=Ooms|first4=Aurélien|last5=Schultz Xavier da Silveira |first5=Luís Fernando|issue=1|journal=[[Electronic Journal of Combinatorics]]|page=P1.8|title=More Turán-type theorems for triangles in convex point sets |url=https://www.combinatorics.org/ojs/index.php/eljc/article/view/v26i1p8 |volume=26 |year=2019 |bibcode=2017arXiv170610193A |arxiv=1706.10193 |access-date=2019-02-18 |archive-url=https://web.archive.org/web/20190218082023/https://www.combinatorics.org/ojs/index.php/eljc/article/view/v26i1p8|archive-date=2019-02-18|url-status=live|doi-access=free|doi=10.37236/7224}}</ref> how many tripods can have their apexes packed into a given cube? ====Euclidean geometry==== {{Main|Euclidean geometry}} * The [[Atiyah conjecture on configurations]] on the invertibility of a certain <math>n</math>-by-<math>n</math> matrix depending on <math>n</math> points in <math>\mathbb{R}^{3}</math><ref>{{Citation | last1=Atiyah | first1=Michael | author1-link=Michael Atiyah | title=Configurations of points | doi=10.1098/rsta.2001.0840 | mr=1853626 | year=2001 | journal= Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences| issn=1364-503X | volume=359 | issue=1784 | pages=1375–1387| bibcode=2001RSPTA.359.1375A | s2cid=55833332 }}</ref> * [[Bellman's lost-in-a-forest problem]] – find the shortest route that is guaranteed to reach the boundary of a given shape, starting at an unknown point of the shape with unknown orientation<ref>{{citation |last1=Finch |first1=S. R. |last2=Wetzel |first2=J. E. |title=Lost in a forest |volume=11 |issue=8 |year=2004 |journal=[[American Mathematical Monthly]] |pages=645–654 |mr=2091541 |doi=10.2307/4145038 |jstor=4145038}}</ref> * [[Borromean rings]] — are there three unknotted space curves, not all three circles, which cannot be arranged to form this link?<ref>{{citation | last = Howards | first = Hugh Nelson | arxiv = 1406.3370 | doi = 10.1142/S0218216513500831 | issue = 14 | journal = Journal of Knot Theory and Its Ramifications | mr = 3190121 | pages = 1350083, 15 | title = Forming the Borromean rings out of arbitrary polygonal unknots | volume = 22 | year = 2013| s2cid = 119674622 }}</ref> * [[Connelly’s blooming conjecture]]: Does every net of a convex polyhedron have a [[Blooming (geometry)|blooming]]?<ref>{{citation | last1 = Miller | first1 = Ezra | last2 = Pak | first2 = Igor | author2-link = Igor Pak | doi = 10.1007/s00454-008-9052-3 | issue = 1–3 | journal = [[Discrete & Computational Geometry]] | mr = 2383765 | pages = 339–388 | title = Metric combinatorics of convex polyhedra: Cut loci and nonoverlapping unfoldings | volume = 39 | year = 2008| doi-access = free }}. Announced in 2003.</ref> * Danzer's problem and Conway's dead fly problem – do [[Danzer set]]s of bounded density or bounded separation exist?<ref>{{citation |last1=Solomon |first1=Yaar |last2=Weiss |first2=Barak |arxiv=1406.3807 |doi=10.24033/asens.2303 |issue=5 |journal=Annales Scientifiques de l'École Normale Supérieure |mr=3581810 |pages=1053–1074 |title=Dense forests and Danzer sets |volume=49 |year=2016 |s2cid=672315}}; {{citation |last=Conway |first=John H. |author-link=John Horton Conway |publisher=[[On-Line Encyclopedia of Integer Sequences]] |title=Five $1,000 Problems (Update 2017) |url=https://oeis.org/A248380/a248380.pdf |archive-url=https://web.archive.org/web/20190213123825/https://oeis.org/A248380/a248380.pdf |archive-date=2019-02-13 |access-date=2019-02-12 |url-status=live}}</ref> * [[Dissection into orthoschemes]] – is it possible for [[simplex|simplices]] of every dimension?<ref>{{citation |last1=Brandts |first1=Jan |last2=Korotov |first2=Sergey |last3=Křížek |first3=Michal |last4=Šolc |first4=Jakub |doi=10.1137/060669073 |issue=2 |journal=SIAM Review |mr=2505583 |pages=317–335 |title=On nonobtuse simplicial partitions |volume=51 |year=2009 |url=https://pure.uva.nl/ws/files/836396/73198_315330.pdf |bibcode=2009SIAMR..51..317B |s2cid=216078793 |access-date=2018-11-22 |archive-date=2018-11-04 |archive-url=https://web.archive.org/web/20181104211116/https://pure.uva.nl/ws/files/836396/73198_315330.pdf |url-status=live}}. See in particular Conjecture 23, p. 327.</ref> * [[Ehrhart's volume conjecture]]: a convex body <math>K</math> in <math>n</math> dimensions containing a single lattice point in its interior as its [[center of mass]] cannot have volume greater than <math>(n+1)^{n}/n!</math> * [[Falconer's conjecture]]: sets of Hausdorff dimension greater than <math>d/2</math> in <math>\mathbb{R}^d</math> must have a distance set of nonzero [[Lebesgue measure]]<ref>{{citation |last1=Arutyunyants |first1=G. |last2=Iosevich |first2=A. |editor-last=Pach |editor-first=János |editor-link=János Pach |contribution=Falconer conjecture, spherical averages and discrete analogs |doi=10.1090/conm/342/06127 |mr=2065249 |pages=15–24 |publisher=Amer. Math. Soc., Providence, RI|series=Contemp. Math. |title=Towards a Theory of Geometric Graphs |volume=342 |year=2004 |isbn=978-0-8218-3484-8 |doi-access=free}}</ref> * The values of the [[Hermite constant]]s for dimensions other than 1–8 and 24 * What is the lowest number of faces possible for a [[holyhedron]]? * [[Inscribed square problem]], also known as [[Toeplitz' conjecture]] and the square peg problem – does every [[Jordan curve]] have an inscribed square?<ref name="matschke">{{citation|last=Matschke|first=Benjamin|date=2014|title=A survey on the square peg problem|journal=[[Notices of the American Mathematical Society]]|volume=61|issue=4|pages=346–352|doi=10.1090/noti1100|doi-access=free}}</ref> * The [[Kakeya conjecture]] – do <math>n</math>-dimensional sets that contain a unit line segment in every direction necessarily have [[Hausdorff dimension]] and [[Minkowski dimension]] equal to <math>n</math>?<ref>{{citation |last1=Katz |first1=Nets |author1-link=Nets Katz|last2=Tao|first2=Terence|author2-link=Terence Tao|title=Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000) |doi=10.5565/PUBLMAT_Esco02_07|series=Publicacions Matemàtiques|mr=1964819 |pages=161–179 |contribution=Recent progress on the Kakeya conjecture |year=2002 |citeseerx=10.1.1.241.5335 |s2cid=77088}}</ref> * The Kelvin problem on minimum-surface-area partitions of space into equal-volume cells, and the optimality of the [[Weaire–Phelan structure]] as a solution to the Kelvin problem<ref>{{citation |title=The Kelvin Problem |editor-first=Denis |editor-last=Weaire |editor-link=Denis Weaire |publisher=CRC Press |year=1997 |isbn=978-0-7484-0632-6 |page=1 |url=https://books.google.com/books?id=otokU4KQnXIC&pg=PA1}}</ref> * [[Lebesgue's universal covering problem]] on the minimum-area convex shape in the plane that can cover any shape of diameter one<ref>{{citation |last1=Brass |first1=Peter |last2=Moser |first2=William |last3=Pach |first3=János |location=New York |mr=2163782 |page=457 |publisher=Springer |title=Research problems in discrete geometry|url=https://books.google.com/books?id=cT7TB20y3A8C&pg=PA457 |year=2005 |isbn=978-0-387-29929-7}}</ref> * [[Mahler volume|Mahler's conjecture]] on the product of the volumes of a [[central symmetry|centrally symmetric]] [[convex body]] and its [[Polar set|polar]].<ref>{{Cite journal|last1=Mahler|first1=Kurt|title=Ein Minimalproblem für konvexe Polygone |journal=Mathematica (Zutphen) B|pages=118–127|year=1939}}</ref> * [[Moser's worm problem]] – what is the smallest area of a shape that can cover every unit-length curve in the plane?<ref>{{citation |last1=Norwood |first1=Rick |last2=Poole |first2=George |last3=Laidacker |first3=Michael |doi=10.1007/BF02187832 |issue=2 |journal=[[Discrete & Computational Geometry]] |mr=1139077 |pages=153–162 |title=The worm problem of Leo Moser |volume=7 |year=1992 |doi-access=free}}</ref> * The [[moving sofa problem]] – what is the largest area of a shape that can be maneuvered through a unit-width L-shaped corridor?<ref>{{citation |last=Wagner |first=Neal R. |date=1976 |title=The Sofa Problem |journal=The American Mathematical Monthly |doi=10.2307/2977022 |jstor=2977022 |volume=83 |issue=3 |pages=188–189 |url=http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf |access-date=2014-05-14 |archive-url=https://web.archive.org/web/20150420160001/http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf |archive-date=2015-04-20 |url-status=live}}</ref> * In [[parallelohedron]]: ** Can every spherical non-convex polyhedron that tiles space by translation have its faces grouped into patches with the same combinatorial structure as a parallelohedron?<ref>{{cite journal|last1=Senechal|first1=Marjorie|author1-link=Marjorie Senechal|last2=Galiulin|first2=R. V.|hdl=2099/1195|issue=10|journal=Structural Topology|language=en,fr|mr=768703|pages=5–22|title=An introduction to the theory of figures: the geometry of E. S. Fedorov|year=1984}}</ref> ** Does every higher-dimensional tiling by translations of convex polytope tiles have an affine transformation taking it to a [[Voronoi diagram]]?<ref>{{cite journal|last1=Grünbaum|first1=Branko|author1-link=Branko Grünbaum|last2=Shephard|first2=G. C.|author2-link=Geoffrey Colin Shephard|doi=10.1090/S0273-0979-1980-14827-2|issue=3|journal=Bulletin of the American Mathematical Society|mr=585178|pages=951–973|series=New Series|title=Tilings with congruent tiles|volume=3|year=1980|doi-access=free}}</ref> * Does every convex polyhedron have [[Prince Rupert's cube#Generalizations|Rupert's property]]?<ref name=cyz>{{citation |first1=Ying |last1=Chai |first2=Liping |last2=Yuan |first3=Tudor |last3=Zamfirescu |title=Rupert Property of Archimedean Solids |journal=[[The American Mathematical Monthly]] |volume=125 |issue=6 |pages=497–504 |date=June–July 2018 |doi=10.1080/00029890.2018.1449505| s2cid=125508192}}</ref><ref name=styu>{{citation|title=An algorithmic approach to Rupert's problem |first1=Jakob |last1=Steininger |first2=Sergey |last2=Yurkevich| date=December 27, 2021 |arxiv=2112.13754}}</ref> * [[Shephard's conjecture|Shephard's problem (a.k.a. Dürer's conjecture)]] – does every [[convex polyhedron]] have a [[net (polyhedron)|net]], or simple edge-unfolding?<ref>{{citation |last1=Demaine |first1=Erik D. |author1-link=Erik Demaine |last2=O'Rourke |first2=Joseph |author2-link=Joseph O'Rourke (professor) |date=2007 |title=Geometric Folding Algorithms: Linkages, Origami, Polyhedra |title-link=Geometric Folding Algorithms |publisher=Cambridge University Press |contribution=Chapter 22. Edge Unfolding of Polyhedra |pages=306–338}}</ref><ref>{{Cite journal |last=Ghomi |first=Mohammad |date=2018-01-01 |title=Dürer's Unfolding Problem for Convex Polyhedra |journal=Notices of the American Mathematical Society |volume=65 |issue=1 |pages=25–27 |doi=10.1090/noti1609 |issn=0002-9920 |doi-access=free}}</ref> * Is there a non-convex polyhedron without self-intersections with [[Szilassi polyhedron|more than seven faces]], all of which share an edge with each other? * The [[Thomson problem]] – what is the minimum energy configuration of <math>n</math> mutually-repelling particles on a unit sphere?<ref>{{citation|last=Whyte|first=L. L.|doi=10.2307/2306764|journal=The American Mathematical Monthly|mr=0050303|pages=606–611|title=Unique arrangements of points on a sphere|volume=59|issue=9|year=1952|jstor=2306764}}</ref> * Convex [[uniform 5-polytope]]s – find and classify the complete set of these shapes<ref>{{citation |author=ACW |date=May 24, 2012 |title=Convex uniform 5-polytopes |url=http://www.openproblemgarden.org/op/convex_uniform_5_polytopes |work=Open Problem Garden |access-date=2016-10-04 |archive-url=https://web.archive.org/web/20161005164840/http://www.openproblemgarden.org/op/convex_uniform_5_polytopes |archive-date=October 5, 2016 |url-status=live}}.</ref> === Graph theory === {{Main|Graph theory}} ==== Algebraic graph theory ==== * [[Babai's problem]]: which groups are Babai invariant groups? * [[Brouwer's conjecture]] on upper bounds for sums of [[eigenvalues and eigenvectors|eigenvalues]] of [[Laplacian matrix|Laplacians]] of graphs in terms of their number of edges ==== Games on graphs ==== * Does there exist a graph <math>G</math> such that the [[dominating set|dominating number]] <math>\gamma(G)</math> equals the [[eternal dominating set|eternal dominating number]] <math>\gamma</math><sub>∞</sub><math>(G)</math> of <math>G</math> and <math>\gamma(G)</math> is less than the [[clique cover|clique covering number]] of <math>G</math>? <ref>{{cite journal |last1=Klostermeyer |first1=W. |last2=Mynhardt |first2=C. |year=2015 |title=Protecting a graph with mobile guards |journal=Applicable Analysis and Discrete Mathematics |volume=10 |pages=21 |arxiv=1407.5228 |doi=10.2298/aadm151109021k }}.</ref> * [[Graham's pebbling conjecture]] on the pebbling number of Cartesian products of graphs<ref>{{cite journal | last = Pleanmani | first = Nopparat | doi = 10.1142/s179383091950068x | issue = 6 | journal = Discrete Mathematics, Algorithms and Applications | mr = 4044549 | pages = 1950068, 7 | title = Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph | volume = 11 | year = 2019| s2cid = 204207428 }}</ref> * Meyniel's conjecture that [[cop number]] is <math>O(\sqrt n)</math><ref>{{cite journal | last1 = Baird | first1 = William | last2 = Bonato | first2 = Anthony | arxiv = 1308.3385 | doi = 10.4310/JOC.2012.v3.n2.a6 | issue = 2 | journal = Journal of Combinatorics | mr = 2980752 | pages = 225–238 | title = Meyniel's conjecture on the cop number: a survey | volume = 3 | year = 2012| s2cid = 18942362 }}</ref> * Suppose Alice has a winning strategy for the [[graph coloring game|vertex coloring game]] on a graph <math>G</math> with <math>k</math> colors. Does she have one for <math>k+1</math> colors?<ref name=zhu1999>{{cite journal | last = Zhu | first = Xuding | date = 1999 | title = The Game Coloring Number of Planar Graphs | journal = Journal of Combinatorial Theory, Series B | volume = 75 | issue = 2 | pages =245–258 | doi=10.1006/jctb.1998.1878 | doi-access= free }}</ref> ==== Graph coloring and labeling ==== [[File:Erdős–Faber–Lovász conjecture.svg|thumb|An instance of the Erdős–Faber–Lovász conjecture: a graph formed from four cliques of four vertices each, any two of which intersect in a single vertex, can be four-colored.]] * The [[Graph factorization#1-factorization conjecture|1-factorization conjecture]] that if <math>n</math> is odd or even and <math>k \geq n, n - 1</math> respectively, then a <math>k</math>-[[regular graph]] with <math>2n</math> vertices is [[Graph factorization#1-factorization|1-factorable]]. ** The [[Graph factorization#Perfect 1-factorization|perfect 1-factorization conjecture]] that every [[complete graph]] on an even number of vertices admits a [[Graph factorization#Perfect 1-factorization|perfect 1-factorization]]. * [[Cereceda's conjecture]] on the diameter of the space of colorings of degenerate graphs<ref>{{citation | last1 = Bousquet | first1 = Nicolas | last2 = Bartier | first2 = Valentin | editor1-last = Bender | editor1-first = Michael A. | editor2-last = Svensson | editor2-first = Ola | editor3-last = Herman | editor3-first = Grzegorz | contribution = Linear Transformations Between Colorings in Chordal Graphs | doi = 10.4230/LIPIcs.ESA.2019.24 | pages = 24:1–24:15 | publisher = Schloss Dagstuhl – Leibniz-Zentrum für Informatik | series = LIPIcs | title = 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany | volume = 144 | year = 2019| doi-access = free | isbn = 978-3-95977-124-5 | s2cid = 195791634 }}</ref> * The [[Earth–Moon problem]]: what is the maximum chromatic number of biplanar graphs?<ref>{{citation | last = Gethner | first = Ellen | author-link = Ellen Gethner | editor1-last = Gera | editor1-first = Ralucca | editor1-link = Ralucca Gera | editor2-last = Haynes | editor2-first = Teresa W. | editor2-link = Teresa W. Haynes | editor3-last = Hedetniemi | editor3-first = Stephen T. | contribution = To the Moon and beyond | doi = 10.1007/978-3-319-97686-0_11 | mr = 3930641 | pages = 115–133 | publisher = Springer International Publishing | series = Problem Books in Mathematics | title = Graph Theory: Favorite Conjectures and Open Problems, II | year = 2018| isbn = 978-3-319-97684-6 }}</ref> * The [[Erdős–Faber–Lovász conjecture]] on coloring unions of cliques<ref>{{citation | last1 = Chung | first1 = Fan | author-link1 = Fan Chung | last2 = Graham | first2 = Ron | author-link2 = Ronald Graham | title = Erdős on Graphs: His Legacy of Unsolved Problems | year = 1998 | publisher = A K Peters | pages = 97–99}}.</ref> * The [[graceful labeling|graceful tree conjecture]] that every tree admits a graceful labeling ** [[Graceful labeling|Rosa's conjecture]] that all [[Cactus graph#Triangular cactus|triangular cacti]] are graceful or nearly-graceful * The [[Gyárfás–Sumner conjecture]] on χ-boundedness of graphs with a forbidden induced tree<ref>{{citation | last1 = Chudnovsky | first1 = Maria | author1-link = Maria Chudnovsky | last2 = Seymour | first2 = Paul | author2-link = Paul Seymour (mathematician) | doi = 10.1016/j.jctb.2013.11.002 | journal = [[Journal of Combinatorial Theory]] | mr = 3171779 | pages = 11–16 | series = Series B | title = Extending the Gyárfás-Sumner conjecture | volume = 105 | year = 2014| doi-access = free }}</ref> * The [[Hadwiger conjecture (graph theory)|Hadwiger conjecture]] relating coloring to clique minors<ref>{{citation | last = Toft | first = Bjarne | journal = Congressus Numerantium | mr = 1411244 | pages = 249–283 | title = A survey of Hadwiger's conjecture | volume = 115 | year = 1996}}.</ref> * The [[Hadwiger–Nelson problem]] on the chromatic number of unit distance graphs<ref>{{citation | last1 = Croft | first1 = Hallard T. | last2 = Falconer | first2 = Kenneth J. | last3 = Guy | first3 = Richard K. | author-link3 = Richard K. Guy | title = Unsolved Problems in Geometry | publisher = Springer-Verlag | year = 1991}}, Problem G10.</ref> * [[Petersen graph#Petersen coloring conjecture|Jaeger's Petersen-coloring conjecture]]: every bridgeless cubic graph has a cycle-continuous mapping to the Petersen graph<ref>{{citation | last1 = Hägglund | first1 = Jonas | last2 = Steffen | first2 = Eckhard | issue = 1 | journal = Ars Mathematica Contemporanea | mr = 3047618 | pages = 161–173 | title = Petersen-colorings and some families of snarks | url = http://amc-journal.eu/index.php/amc/article/viewFile/288/247 | volume = 7 | year = 2014 | doi = 10.26493/1855-3974.288.11a | access-date = 2016-09-30 | archive-url = https://web.archive.org/web/20161003070647/http://amc-journal.eu/index.php/amc/article/viewFile/288/247 | archive-date = 2016-10-03 | url-status = live | doi-access = free }}.</ref> * The [[list coloring conjecture]]: for every graph, the list chromatic index equals the chromatic index<ref>{{citation |last1=Jensen |first1=Tommy R. |last2=Toft |first2=Bjarne |year=1995 |title=Graph Coloring Problems |location=New York |publisher=Wiley-Interscience |isbn=978-0-471-02865-9 |chapter=12.20 List-Edge-Chromatic Numbers |pages=201–202}}.</ref> * The [[Overfull graph#Overfull conjecture|overfull conjecture]] that a graph with maximum degree <math>\Delta(G) \geq n/3</math> is [[Vizing's theorem|class 2]] if and only if it has an [[Overfull graph|overfull subgraph]] <math>S</math> satisfying <math>\Delta(S) = \Delta(G)</math>. * The [[total coloring conjecture]] of Behzad and Vizing that the total chromatic number is at most two plus the maximum degree<ref>{{citation | last1 = Molloy | first1 = Michael | last2 = Reed | first2 = Bruce | author1-link = Bruce Reed (mathematician) | doi = 10.1007/PL00009820 | issue = 2 | journal = [[Combinatorica]] | mr = 1656544 | pages = 241–280 | title = A bound on the total chromatic number | volume = 18 | year = 1998| citeseerx = 10.1.1.24.6514 | s2cid = 9600550 }}.</ref> ==== Graph drawing and embedding ==== * The [[Albertson conjecture]]: the crossing number can be lower-bounded by the crossing number of a [[complete graph]] with the same [[chromatic number]]<ref>{{citation|first1=János|last1=Barát|first2=Géza|last2=Tóth|year=2010|title=Towards the Albertson Conjecture|arxiv=0909.0413|journal=Electronic Journal of Combinatorics|volume=17|issue=1|page=R73|bibcode=2009arXiv0909.0413B|doi-access=free|doi=10.37236/345}}.</ref> * [[Conway's thrackle conjecture]]<ref>{{citation |last1=Fulek |first1=Radoslav |last2=Pach |first2=János |author-link2=János Pach |title=A computational approach to Conway's thrackle conjecture|journal=[[Computational Geometry (journal)|Computational Geometry]] |volume=44 |year=2011|issue=6–7 |pages=345–355 |mr=2785903 |doi=10.1016/j.comgeo.2011.02.001|doi-access=free|arxiv=1002.3904 }}.</ref> that [[thrackle]]s cannot have more edges than vertices * The [[GNRS conjecture]] on whether minor-closed graph families have <math>\ell_1</math> embeddings with bounded distortion<ref>{{citation | last1 = Gupta | first1 = Anupam | last2 = Newman | first2 = Ilan | last3 = Rabinovich | first3 = Yuri | last4 = Sinclair | first4 = Alistair | author4-link = Alistair Sinclair | doi = 10.1007/s00493-004-0015-x | issue = 2 | journal = [[Combinatorica]] | mr = 2071334 | pages = 233–269 | title = Cuts, trees and <math>\ell_1</math>-embeddings of graphs | volume = 24 | year = 2004| citeseerx = 10.1.1.698.8978 | s2cid = 46133408 }}</ref> * [[Harborth's conjecture]]: every planar graph can be drawn with integer edge lengths<ref>{{citation|title=Pearls in Graph Theory: A Comprehensive Introduction|title-link= Pearls in Graph Theory |series=Dover Books on Mathematics|last1=Hartsfield|first1=Nora|last2=Ringel|first2=Gerhard|author2-link=Gerhard Ringel|publisher=Courier Dover Publications|year=2013|isbn=978-0-486-31552-2|at=[https://books.google.com/books?id=VMjDAgAAQBAJ&pg=PA247 p. 247]|mr=2047103}}.</ref> * [[Negami's conjecture]] on projective-plane embeddings of graphs with planar covers<ref>{{citation | last = Hliněný | first = Petr | doi = 10.1007/s00373-010-0934-9 | issue = 4 | journal = [[Graphs and Combinatorics]] | mr = 2669457 | pages = 525–536 | title = 20 years of Negami's planar cover conjecture | url = http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf | volume = 26 | year = 2010 | citeseerx = 10.1.1.605.4932 | s2cid = 121645 | access-date = 2016-10-04 | archive-url = https://web.archive.org/web/20160304030722/http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf | archive-date = 2016-03-04 | url-status = live }}.</ref> * The [[Greedy embedding#Planar graphs|strong Papadimitriou–Ratajczak conjecture]]: every polyhedral graph has a convex greedy embedding<ref>{{citation | last1 = Nöllenburg | first1 = Martin | last2 = Prutkin | first2 = Roman | last3 = Rutter | first3 = Ignaz | doi = 10.20382/jocg.v7i1a3 | issue = 1 | journal = [[Journal of Computational Geometry]] | mr = 3463906 | pages = 47–69 | title = On self-approaching and increasing-chord drawings of 3-connected planar graphs | volume = 7 | year = 2016| arxiv = 1409.0315 | s2cid = 1500695 }}</ref> * [[Turán's brick factory problem]] – Is there a drawing of any complete bipartite graph with fewer crossings than the number given by Zarankiewicz?<ref>{{citation | last1 = Pach | first1 = János | author1-link = János Pach | last2 = Sharir | first2 = Micha | author2-link = Micha Sharir | contribution = 5.1 Crossings—the Brick Factory Problem | pages = 126–127 | publisher = [[American Mathematical Society]] | series = Mathematical Surveys and Monographs | title = Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures | volume = 152 | year = 2009}}.</ref> * [[Universal point set]]s of subquadratic size for planar graphs<ref>{{citation | last1 = Demaine | first1 = E. | author1-link = Erik Demaine | last2 = O'Rourke | first2 = J. | author2-link = Joseph O'Rourke (professor) | contribution = Problem 45: Smallest Universal Set of Points for Planar Graphs | title = The Open Problems Project | url = http://cs.smith.edu/~orourke/TOPP/P45.html | year = 2002–2012 | access-date = 2013-03-19 | archive-url = https://web.archive.org/web/20120814154255/http://cs.smith.edu/~orourke/TOPP/P45.html | archive-date = 2012-08-14 | url-status = live }}.</ref> ==== Restriction of graph parameters ==== * [[Conway's 99-graph problem]]: does there exist a [[strongly regular graph]] with parameters (99,14,1,2)?<ref>{{citation | last = Conway | first = John H. | author-link = John Horton Conway | access-date = 2019-02-12 | publisher = Online Encyclopedia of Integer Sequences | title = Five $1,000 Problems (Update 2017) | url = https://oeis.org/A248380/a248380.pdf | archive-url = https://web.archive.org/web/20190213123825/https://oeis.org/A248380/a248380.pdf | archive-date = 2019-02-13 | url-status = live }}</ref> * [[Degree diameter problem]]: given two positive integers <math>d, k</math>, what is the largest graph of diameter <math>k</math> such that all vertices have degrees at most <math>d</math>? * Jørgensen's conjecture that every 6-vertex-connected ''K''<sub>6</sub>-minor-free graph is an [[apex graph]]<ref>{{citation |last1=mdevos |title=Jorgensen's Conjecture |date=December 7, 2019 |url=http://www.openproblemgarden.org/op/jorgensens_conjecture |work=Open Problem Garden |archive-url=https://web.archive.org/web/20161114232136/http://www.openproblemgarden.org/op/jorgensens_conjecture |access-date=2016-11-13 |archive-date=2016-11-14 |last2=Wood |first2=David |url-status=live}}.</ref> * Does a [[Moore graph]] with girth 5 and degree 57 exist?<ref>{{citation | last=Ducey | first=Joshua E. | doi=10.1016/j.disc.2016.10.001 | issue=5 | journal=[[Discrete Mathematics (journal)|Discrete Mathematics]] | mr=3612450 | pages=1104–1109 | title=On the critical group of the missing Moore graph | volume=340 | year=2017 | arxiv=1509.00327 | s2cid=28297244}} </ref> * Do there exist infinitely many [[strongly regular graph|strongly regular]] [[geodetic graph]]s, or any strongly regular geodetic graphs that are not Moore graphs?<ref>{{citation | last1 = Blokhuis | first1 = A. | last2 = Brouwer | first2 = A. E. | author-link = Andries Brouwer | doi = 10.1007/BF00191941 | issue = 1–3 | journal = [[Geometriae Dedicata]] | mr = 925851 | pages = 527–533 | title = Geodetic graphs of diameter two | volume = 25 | year = 1988| s2cid = 189890651 }}</ref> ==== Subgraphs ==== * [[Barnette's conjecture]]: every cubic bipartite three-connected planar graph has a Hamiltonian cycle<ref>{{citation | last = Florek | first = Jan | doi = 10.1016/j.disc.2010.01.018 | issue = 10–11 | journal = [[Discrete Mathematics (journal)|Discrete Mathematics]] | mr = 2601261 | pages = 1531–1535 | title = On Barnette's conjecture | volume = 310 | year = 2010}}.</ref> * [[Gilbert–Pollack conjecture on the Steiner ratio of the Euclidean plane]] that the Steiner ratio is <math>\sqrt{3}/2</math> * [[Graph toughness|Chvátal's toughness conjecture]], that there is a number {{mvar|t}} such that every {{mvar|t}}-tough graph is Hamiltonian<ref>{{citation | last1 = Broersma | first1 = Hajo | last2 = Patel | first2 = Viresh | last3 = Pyatkin | first3 = Artem | doi = 10.1002/jgt.21734 | issue = 3 | journal = [[Journal of Graph Theory]] | mr = 3153119 | pages = 244–255 | title = On toughness and Hamiltonicity of $2K_2$-free graphs | volume = 75 | year = 2014| s2cid = 1377980 | url = https://ris.utwente.nl/ws/files/6416631/jgt21734.pdf }}</ref> * The [[cycle double cover conjecture]]: every bridgeless graph has a family of cycles that includes each edge twice<ref>{{citation | last = Jaeger | first = F. | contribution = A survey of the cycle double cover conjecture | doi = 10.1016/S0304-0208(08)72993-1 | pages = 1–12 | series = North-Holland Mathematics Studies | title = Annals of Discrete Mathematics 27 – Cycles in Graphs | volume = 27 | year = 1985| isbn = 978-0-444-87803-8 }}.</ref> * The [[Erdős–Gyárfás conjecture]] on cycles with power-of-two lengths in cubic graphs<ref>{{citation|title=Erdös-Gyárfás conjecture for cubic planar graphs |first1=Christopher Carl |last1=Heckman |first2=Roi |last2=Krakovski |volume=20 |issue=2 |year=2013 |at=P7 |journal=Electronic Journal of Combinatorics |doi-access=free |doi=10.37236/3252}}.</ref> * The [[Erdős–Hajnal conjecture]] on large cliques or independent sets in graphs with a forbidden induced subgraph<ref>{{citation | last = Chudnovsky | first = Maria | author-link = Maria Chudnovsky | arxiv = 1606.08827 | doi = 10.1002/jgt.21730 | issue = 2 | journal = [[Journal of Graph Theory]] | mr = 3150572 | zbl = 1280.05086 | pages = 178–190 | title = The Erdös–Hajnal conjecture—a survey | url = http://www.columbia.edu/~mc2775/EHsurvey.pdf | volume = 75 | year = 2014 | s2cid = 985458 | access-date = 2016-09-22 | archive-url = https://web.archive.org/web/20160304102611/http://www.columbia.edu/~mc2775/EHsurvey.pdf | archive-date = 2016-03-04 | url-status = live }}.</ref> * The [[linear arboricity]] conjecture on decomposing graphs into disjoint unions of paths according to their maximum degree<ref>{{citation | last1 = Akiyama | first1 = Jin | author1-link = Jin Akiyama | last2 = Exoo | first2 = Geoffrey | last3 = Harary | first3 = Frank | doi = 10.1002/net.3230110108 | issue = 1 | journal = Networks | mr = 608921 | pages = 69–72 | title = Covering and packing in graphs. IV. Linear arboricity | volume = 11 | year = 1981}}.</ref> * The [[Lovász conjecture]] on Hamiltonian paths in symmetric graphs<ref>{{Cite book |last=Babai |first=László |url=http://newtraell.cs.uchicago.edu/files/tr_authentic/TR-94-10.ps |title=Handbook of Combinatorics |date=June 9, 1994 |chapter=Automorphism groups, isomorphism, reconstruction |format=PostScript |author-link=László Babai |archive-url=https://web.archive.org/web/20070613201449/http://www.cs.uchicago.edu/research/publications/techreports/TR-94-10 |archive-date=13 June 2007}}</ref> * The [[Oberwolfach problem]] on which 2-regular graphs have the property that a complete graph on the same number of vertices can be decomposed into edge-disjoint copies of the given graph.<ref>{{citation | last1 = Lenz | first1 = Hanfried | last2 = Ringel | first2 = Gerhard | doi = 10.1016/0012-365X(91)90416-Y | issue = 1–3 | journal = [[Discrete Mathematics (journal)|Discrete Mathematics]] | mr = 1140782 | pages = 3–16 | title = A brief review on Egmont Köhler's mathematical work | volume = 97 | year = 1991}}</ref> * What is the largest possible [[pathwidth]] of an {{mvar|n}}-vertex [[cubic graph]]?<ref>{{citation | last1 = Fomin | first1 = Fedor V. | last2 = Høie | first2 = Kjartan | doi = 10.1016/j.ipl.2005.10.012 | issue = 5 | journal = Information Processing Letters | mr = 2195217 | pages = 191–196 | title = Pathwidth of cubic graphs and exact algorithms | volume = 97 | year = 2006}} </ref> * The [[reconstruction conjecture]] and [[new digraph reconstruction conjecture]] on whether a graph is uniquely determined by its vertex-deleted subgraphs.<ref>{{cite conference |last=Schwenk |first=Allen |year=2012 |title=Some History on the Reconstruction Conjecture |url=http://faculty.nps.edu/rgera/conjectures/jmm2012/Schwenk,%20%20Some%20History%20on%20the%20RC.pdf |conference=Joint Mathematics Meetings |archive-url=https://web.archive.org/web/20150409233306/http://faculty.nps.edu/rgera/Conjectures/jmm2012/Schwenk,%20%20Some%20History%20on%20the%20RC.pdf |archive-date=2015-04-09 |access-date=2018-11-26}}</ref><ref>{{citation | last = Ramachandran | first = S. | doi = 10.1016/S0095-8956(81)80019-6 | issue = 2 | journal = [[Journal of Combinatorial Theory]] | mr = 630977 | pages = 143–149 | series = Series B | title = On a new digraph reconstruction conjecture | volume = 31 | year = 1981| doi-access = free }}</ref> * The [[snake-in-the-box]] problem: what is the longest possible [[induced path]] in an <math>n</math>-dimensional [[hypercube]] graph? * [[Sumner's conjecture]]: does every <math>(2n-2)</math>-vertex tournament contain as a subgraph every <math>n</math>-vertex oriented tree?<ref>{{citation | last1 = Kühn | first1 = Daniela | author1-link = Daniela Kühn | last2 = Mycroft | first2 = Richard | last3 = Osthus | first3 = Deryk | arxiv = 1010.4430 | doi = 10.1112/plms/pdq035 | issue = 4 | journal = Proceedings of the London Mathematical Society | series = Third Series | mr = 2793448 | zbl=1218.05034 | pages = 731–766 | title = A proof of Sumner's universal tournament conjecture for large tournaments | volume = 102 | year = 2011| s2cid = 119169562 }}.</ref> * [[Szymanski's conjecture]]: every [[permutation]] on the <math>n</math>-dimensional doubly-[[Directed graph|directed]] [[hypercube graph]] can be routed with edge-disjoint [[Path (graph theory)|paths]]. * [[Tuza's conjecture]]: if the maximum number of disjoint triangles is <math>\nu</math>, can all triangles be hit by a set of at most <math>2\nu</math> edges?<ref>{{cite journal | last = Tuza | first = Zsolt | doi = 10.1007/BF01787705 | issue = 4 | journal = Graphs and Combinatorics | mr = 1092587 | pages = 373–380 | title = A conjecture on triangles of graphs | volume = 6 | year = 1990| s2cid = 38821128 }}</ref> * [[Vizing's conjecture]] on the [[domination number]] of [[cartesian product of graphs|cartesian products of graphs]]<ref>{{citation | last1 = Brešar | first1 = Boštjan | last2 = Dorbec | first2 = Paul | last3 = Goddard | first3 = Wayne | last4 = Hartnell | first4 = Bert L. | last5 = Henning | first5 = Michael A. | last6 = Klavžar | first6 = Sandi | last7 = Rall | first7 = Douglas F. | doi = 10.1002/jgt.20565 | issue = 1 | journal = [[Journal of Graph Theory]] | mr = 2864622 | pages = 46–76 | title = Vizing's conjecture: a survey and recent results | volume = 69 | year = 2012| citeseerx = 10.1.1.159.7029 | s2cid = 9120720 }}.</ref> * [[Zarankiewicz problem]]: how many edges can there be in a [[bipartite graph]] on a given number of vertices with no [[complete bipartite graph|complete bipartite subgraphs]] of a given size? ==== Word-representation of graphs ==== *Are there any graphs on ''n'' vertices whose [[Word-representable graph|representation]] requires more than floor(''n''/2) copies of each letter?<ref name="KL15">{{Cite book |last1=Kitaev |first1=Sergey | author1-link = Sergey Kitaev|url=https://link.springer.com/book/10.1007/978-3-319-25859-1 |title=Words and Graphs |last2=Lozin |first2=Vadim |year=2015 |isbn=978-3-319-25857-7 |series=Monographs in Theoretical Computer Science. An EATCS Series |doi=10.1007/978-3-319-25859-1 |via=link.springer.com |s2cid=7727433}}</ref><ref name="K17">{{Cite conference |last=Kitaev |first=Sergey |date=2017-05-16 |title=A Comprehensive Introduction to the Theory of Word-Representable Graphs |conference=[[International Conference on Developments in Language Theory]] |language=en |doi=10.1007/978-3-319-62809-7_2|arxiv=1705.05924v1 }}</ref><ref name="KP18">{{Cite journal|title=Word-Representable Graphs: a Survey|first1=S. V.|last1=Kitaev|first2=A. V.|last2=Pyatkin|date=April 1, 2018|journal=Journal of Applied and Industrial Mathematics|volume=12|issue=2|pages=278–296|via=Springer Link|doi=10.1134/S1990478918020084|s2cid=125814097 }}</ref><ref name="KP18-2">{{Cite journal |last1=Kitaev |first1=Sergey V. |last2=Pyatkin |first2=Artem V. |date=2018 |title=Графы, представимые в виде слов. Обзор результатов |trans-title=Word-representable graphs: A survey |url=http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=da&paperid=894&option_lang=rus |journal=Дискретн. анализ и исслед. опер. |language=ru |volume=25 |issue=2 |pages=19–53 |doi=10.17377/daio.2018.25.588}}</ref> *Characterise (non-)[[Word-representable graph|word-representable]] [[planar graph]]s<ref name="KL15"/><ref name="K17"/><ref name="KP18"/><ref name="KP18-2"/> *Characterise [[word-representable graph]]s in terms of (induced) forbidden subgraphs.<ref name="KL15"/><ref name="K17"/><ref name="KP18"/><ref name="KP18-2"/> *Characterise [[Word-representable graph|word-representable]] near-triangulations containing the complete graph ''K''<sub>4</sub> (such a characterisation is known for ''K''<sub>4</sub>-free planar graphs<ref name="Glen2019">{{cite arXiv |eprint=1605.01688|author1=Marc Elliot Glen|title=Colourability and word-representability of near-triangulations|class=math.CO|year=2016}}</ref>) *Classify graphs with representation number 3, that is, graphs that can be [[Word-representable graph|represented]] using 3 copies of each letter, but cannot be represented using 2 copies of each letter<ref name="Kit2013-3-repr">{{Cite arXiv|last=Kitaev |first=Sergey |date=2014-03-06 |title=On graphs with representation number 3 |class=math.CO |eprint=1403.1616v1 }}</ref> *Is it true that out of all [[bipartite graph]]s, [[crown graph]]s require longest word-representants?<ref name="GKP18">{{cite journal|url = https://www.sciencedirect.com/science/article/pii/S0166218X18301045 | doi=10.1016/j.dam.2018.03.013 | volume=244 | title=On the representation number of a crown graph | year=2018 | journal=Discrete Applied Mathematics | pages=89–93 | last1 = Glen | first1 = Marc | last2 = Kitaev | first2 = Sergey | last3 = Pyatkin | first3 = Artem| arxiv=1609.00674 | s2cid=46925617 }}</ref> *Is the [[line graph]] of a non-[[Word-representable graph|word-representable]] graph always non-[[Word-representable graph|word-representable]]?<ref name="KL15"/><ref name="K17"/><ref name="KP18"/><ref name="KP18-2"/> *Which (hard) problems on graphs can be translated to words [[Word-representable graph|representing]] them and solved on words (efficiently)?<ref name="KL15"/><ref name="K17"/><ref name="KP18"/><ref name="KP18-2"/> ==== Miscellaneous graph theory ==== * The [[implicit graph conjecture]] on the existence of implicit representations for slowly-growing [[Hereditary property#In graph theory|hereditary families of graphs]]<ref>{{citation|first=Jeremy P.|last=Spinrad|title=Efficient Graph Representations|year=2003|isbn=978-0-8218-2815-1|chapter=2. Implicit graph representation|pages=17–30|publisher=American Mathematical Soc. |chapter-url=https://books.google.com/books?id=RrtXSKMAmWgC&pg=PA17}}.</ref> * [[Ryser's conjecture]] relating the maximum [[Matching in hypergraphs|matching]] size and minimum [[Vertex cover in hypergraphs|transversal]] size in [[hypergraph]]s * The [[second neighborhood problem]]: does every oriented graph contain a vertex for which there are at least as many other vertices at distance two as at distance one?<ref>{{Cite web |title=Seymour's 2nd Neighborhood Conjecture |url=https://faculty.math.illinois.edu/~west/openp/2ndnbhd.html |url-status=live |archive-url=https://web.archive.org/web/20190111175310/https://faculty.math.illinois.edu/~west/openp/2ndnbhd.html |archive-date=11 January 2019 |access-date=17 August 2022 |website=faculty.math.illinois.edu}}</ref> * [[Sidorenko's conjecture]] on [[Homomorphism density|homomorphism densities]] of graphs in [[graphon]]s * Tutte's conjectures: ** every bridgeless graph has a [[nowhere-zero flows|nowhere-zero 5-flow]]<ref>{{cite web |last=mdevos |date=May 4, 2007 |title=5-flow conjecture |url=http://www.openproblemgarden.org/op/5_flow_conjecture |url-status=live |archive-url=https://web.archive.org/web/20181126134833/http://www.openproblemgarden.org/op/5_flow_conjecture |archive-date=November 26, 2018 |website=Open Problem Garden}}</ref> ** every [[Petersen graph|Petersen]]-[[Graph minor|minor]]-free bridgeless graph has a nowhere-zero 4-flow<ref>{{cite web |last=mdevos |date=March 31, 2010 |title=4-flow conjecture |url=http://www.openproblemgarden.org/op/4_flow_conjecture |url-status=live |archive-url=https://web.archive.org/web/20181126134908/http://www.openproblemgarden.org/op/4_flow_conjecture |archive-date=November 26, 2018 |website=Open Problem Garden}}</ref> * [[Woodall's conjecture]] that the minimum number of edges in a [[dicut]] of a [[directed graph]] is equal to the maximum number of disjoint [[dijoin]]s === Model theory and formal languages === {{Main|Model theory|formal languages}} * The [[Stable group|Cherlin–Zilber conjecture]]: A simple group whose first-order theory is [[Stable theory|stable]] in <math>\aleph_0</math> is a simple algebraic group over an algebraically closed field. * [[Generalized star height problem]]: can all [[regular language]]s be expressed using [[Regular expression#Expressive power and compactness|generalized regular expressions]] with limited nesting depths of [[Kleene star]]s? * For which number fields does [[Hilbert's tenth problem]] hold? * Kueker's conjecture<ref>{{cite journal |last1=Hrushovski |first1=Ehud |year=1989 |title=Kueker's conjecture for stable theories |journal=Journal of Symbolic Logic |volume=54 |issue=1| pages=207–220 |doi=10.2307/2275025| jstor=2275025 |s2cid=41940041}}</ref> * The main gap conjecture, e.g. for uncountable [[First order theory|first order theories]], for [[Abstract elementary class|AECs]], and for <math>\aleph_1</math>-saturated models of a countable theory.<ref name=":0">{{cite book |vauthors=Shelah S |title=Classification Theory |publisher=North-Holland |year=1990}}</ref> * Shelah's categoricity conjecture for <math>L_{\omega_1,\omega}</math>: If a sentence is categorical above the Hanf number then it is categorical in all cardinals above the Hanf number.<ref name=":0" /> * Shelah's eventual categoricity conjecture: For every cardinal <math>\lambda</math> there exists a cardinal <math>\mu(\lambda)</math> such that if an [[Abstract elementary class|AEC]] ''K'' with LS(''K'')<math>{} \le \lambda</math> is categorical in a cardinal above <math>\mu(\lambda)</math> then it is categorical in all cardinals above <math>\mu(\lambda)</math>.<ref name=":0" /><ref>{{Cite book | title = Classification theory for abstract elementary classes | last = Shelah | first = Saharon | publisher = College Publications | year = 2009 | isbn = 978-1-904987-71-0 }}</ref> * The stable field conjecture: every infinite field with a [[Stable theory|stable]] first-order theory is separably closed. * The stable forking conjecture for simple theories<ref>{{cite journal | last1 = Peretz | first1 = Assaf | year = 2006 | title = Geometry of forking in simple theories | journal = Journal of Symbolic Logic| volume = 71 | issue = 1| pages = 347–359 | doi=10.2178/jsl/1140641179| arxiv = math/0412356| s2cid = 9380215 }}</ref> * [[Tarski's exponential function problem]]: is the [[Theory (mathematical logic)|theory]] of the [[real number]]s with the [[exponential function]] [[Decidability (logic)#Decidability of a theory|decidable]]? * The universality problem for ''C''-free graphs: For which finite sets ''C'' of graphs does the class of ''C''-free countable graphs have a universal member under strong embeddings?<ref>{{cite journal |last1=Cherlin |first1=Gregory |last2=Shelah |first2=Saharon | author-link2=Saharon Shelah|date=May 2007 |title=Universal graphs with a forbidden subtree |journal=[[Journal of Combinatorial Theory]] | series=Series B |arxiv=math/0512218 |doi=10.1016/j.jctb.2006.05.008 | doi-access=free |volume=97 |issue=3 |pages=293–333|s2cid=10425739 }}</ref> * The universality spectrum problem: Is there a first-order theory whose universality spectrum is minimum?<ref>Džamonja, Mirna, "Club guessing and the universal models." ''On PCF'', ed. M. Foreman, (Banff, Alberta, 2004).</ref> * [[Vaught conjecture]]: the number of [[Countable set|countable]] models of a [[First-order logic|first-order]] [[complete theory]] in a countable [[Formal language|language]] is either finite, <math>\aleph_0</math>, or <math>2^{\aleph_0}</math>. * Assume ''K'' is the class of models of a countable first order theory omitting countably many [[Type (model theory)|types]]. If ''K'' has a model of cardinality <math>\aleph_{\omega_1}</math> does it have a model of cardinality continuum?<ref>{{cite journal |last=Shelah |first=Saharon |author-link=Saharon Shelah |date=1999 |title=Borel sets with large squares |journal=[[Fundamenta Mathematicae]] |arxiv=math/9802134 |volume=159 |issue=1 |pages=1–50|bibcode=1998math......2134S |doi=10.4064/fm-159-1-1-50 |s2cid=8846429 }}</ref> * Do the [[Henson graph]]s have the [[finite model property]]? * Does a finitely presented homogeneous structure for a finite relational language have finitely many [[reduct]]s? * Does there exist an [[o-minimal]] first order theory with a trans-exponential (rapid growth) function? * If the class of atomic models of a complete first order theory is [[Categorical (model theory)|categorical]] in the <math>\aleph_n</math>, is it categorical in every cardinal?<ref>{{cite book |last=Baldwin |first=John T. |date=July 24, 2009 |title=Categoricity |publisher=[[American Mathematical Society]] |isbn=978-0-8218-4893-7 |url=http://www.math.uic.edu/~jbaldwin/pub/AEClec.pdf |access-date=February 20, 2014 |archive-url=https://web.archive.org/web/20100729073738/http://www.math.uic.edu/%7Ejbaldwin/pub/AEClec.pdf |archive-date=July 29, 2010 |url-status=live }}</ref><ref>{{cite arXiv |last=Shelah |first=Saharon |title=Introduction to classification theory for abstract elementary classes |year=2009 |class=math.LO |eprint=0903.3428 }}</ref> * Is every infinite, minimal field of characteristic zero [[algebraically closed field|algebraically closed]]? (Here, "minimal" means that every definable subset of the structure is finite or co-finite.) * Is the Borel monadic theory of the real order (BMTO) decidable? Is the monadic theory of well-ordering (MTWO) consistently decidable?<ref>Gurevich, Yuri, "Monadic Second-Order Theories," in [[Jon Barwise|J. Barwise]], [[Solomon Feferman|S. Feferman]], eds., ''Model-Theoretic Logics'' (New York: Springer-Verlag, 1985), 479–506.</ref> * Is the theory of the field of Laurent series over <math>\mathbb{Z}_p</math> [[Decidability (logic)|decidable]]? of the field of polynomials over <math>\mathbb{C}</math>? * Is there a logic L which satisfies both the Beth property and Δ-interpolation, is compact but does not satisfy the interpolation property?<ref>Makowsky J, "Compactness, embeddings and definability," in ''Model-Theoretic Logics'', eds Barwise and Feferman, Springer 1985 pps. 645–715.</ref> * Determine the structure of Keisler's order.<ref>{{cite journal | last1 = Keisler | first1 = HJ | year = 1967 | title = Ultraproducts which are not saturated | journal = J. Symb. Log. | volume = 32 | issue = 1| pages = 23–46 | doi=10.2307/2271240| jstor = 2271240 | s2cid = 250345806 }}</ref><ref>{{Cite arXiv |eprint=1208.2140 |class=math.LO |first1=Maryanthe |last1=Malliaris |first2=Saharon |last2=Shelah |author-link=Maryanthe Malliaris |author-link2=Saharon Shelah |title=A Dividing Line Within Simple Unstable Theories |date=10 August 2012}} {{Cite arXiv |title=A Dividing Line within Simple Unstable Theories |eprint=1208.2140 |last1=Malliaris |first1=M. |last2=Shelah |first2=S. |date=2012 |class=math.LO }}</ref> === Probability theory === {{Main|Probability theory}} * [[Ibragimov–Iosifescu conjecture for φ-mixing sequences]] === Number theory === {{Main articles|Category:Unsolved problems in number theory}} {{See also|Number theory }} ==== General ==== [[File:Perfect number Cuisenaire rods 6 exact.svg|thumb|6 is a [[perfect number]] because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them is odd.]] *[[Special values of L-functions|Beilinson's conjectures]] * [[Brocard's problem]]: are there any integer solutions to <math>n! + 1 = m^{2}</math> other than <math>n = 4, 5, 7</math>? * [[Büchi's problem]] on sufficiently large sequences of square numbers with constant second difference. * [[Carmichael's totient function conjecture]]: do all values of [[Euler's totient function]] have [[Multiplicity (mathematics)|multiplicity]] greater than <math>1</math>? * [[Casas-Alvero conjecture]]: if a polynomial of degree <math>d</math> defined over a [[Field (mathematics)|field]] <math>K</math> of [[Characteristic (algebra)|characteristic]] <math>0</math> has a factor in common with its first through <math>d - 1</math>-th derivative, then must <math>f</math> be the <math>d</math>-th power of a linear polynomial? * [[Aliquot sequence#Catalan-Dickson conjecture|Catalan–Dickson conjecture on aliquot sequences]]: no [[aliquot sequence]]s are infinite but non-repeating. * [[Erdős–Ulam problem]]: is there a [[dense set]] of points in the plane all at rational distances from one-another? * [[Van der Corput's method#Exponent pairs|Exponent pair conjecture]]: for all <math>\varepsilon > 0</math>, is the pair <math>(\varepsilon, 1/2 + \varepsilon)</math> an [[Van der Corput's method#Exponent pairs|exponent pair]]? * The [[Gauss circle problem]]: how far can the number of integer points in a circle centered at the origin be from the area of the circle? *[[Grand Riemann hypothesis]]: do the nontrivial zeros of all [[automorphic L-function]]s lie on the critical line <math>1/2 + it</math> with real <math>t</math>? **[[Generalized Riemann hypothesis]]: do the nontrivial zeros of all [[Dirichlet L-function]]s lie on the critical line <math>1/2 + it</math> with real <math>t</math>? ***[[Riemann hypothesis]]: do the nontrivial zeros of the [[Riemann zeta function]] lie on the critical line <math>1/2 + it</math> with real <math>t</math>? * [[Grimm's conjecture]]: each element of a set of consecutive [[composite number]]s can be assigned a distinct [[prime number]] that divides it. * [[Hall's conjecture]]: for any <math>\varepsilon > 0</math>, there is some constant <math>c(\varepsilon)</math> such that either <math>y^2 = x^3</math> or <math>|y^2 - x^3| > c(\varepsilon)x^{1/2 - \varepsilon}</math>. * [[Hardy–Littlewood zeta function conjectures]] * [[Hilbert–Pólya conjecture]]: the nontrivial zeros of the [[Riemann zeta function]] correspond to [[Eigenvalues and eigenvectors|eigenvalues]] of a [[self-adjoint operator]]. * [[Hilbert's eleventh problem]]: classify [[quadratic form]]s over [[algebraic number field]]s. * [[Hilbert's ninth problem]]: find the most general [[reciprocity law]] for the [[Hilbert symbol|norm residues]] of <math>k</math>-th order in a general [[algebraic number field]], where <math>k</math> is a power of a prime. * [[Hilbert's twelfth problem]]: extend the [[Kronecker–Weber theorem]] on [[Abelian extension]]s of <math>\mathbb{Q}</math> to any base number field. * Keating–Snaith conjecture concerning the asymptotics of an integral involving the [[Riemann zeta function]]<ref>{{citation |last=Conrey |first=Brian |author-link=Brian Conrey |doi=10.1090/bull/1525 |title=Lectures on the Riemann zeta function (book review) |journal=[[Bulletin of the American Mathematical Society]] |volume=53 |number=3 |pages=507–512 |year=2016|doi-access=free}}</ref> *[[Lehmer's totient problem]]: if <math>\phi(n)</math> divides <math>n - 1</math>, must <math>n</math> be prime? * [[Leopoldt's conjecture]]: a [[p-adic number|p-adic]] analogue of the [[Dirichlet's unit theorem#The regulator|regulator]] of an [[algebraic number field]] does not vanish. * [[Lindelöf hypothesis]] that for all <math>\varepsilon > 0</math>, <math>\zeta(1/2 + it) = o(t^\varepsilon)</math> ** The [[Bombieri–Vinogradov theorem|density hypothesis]] for zeroes of the Riemann zeta function * [[Littlewood conjecture]]: for any two real numbers <math>\alpha, \beta</math>, <math>\liminf_{n \rightarrow \infty} n\,\Vert n\alpha\Vert\,\Vert n\beta\Vert = 0</math>, where <math>\Vert x\Vert</math> is the distance from <math>x</math> to the nearest integer. * [[Mahler's 3/2 problem]] that no real number <math>x</math> has the property that the fractional parts of <math>x(3/2)^n</math> are less than <math>1/2</math> for all positive integers <math>n</math>. * [[Montgomery's pair correlation conjecture]]: the normalized pair [[correlation function]] between pairs of zeros of the [[Riemann zeta function]] is the same as the pair correlation function of [[Random matrix#Gaussian ensembles|random Hermitian matrices]]. * [[n conjecture|''n'' conjecture]]: a generalization of the ''abc'' conjecture to more than three integers. ** [[abc conjecture|''abc'' conjecture]]: for any <math>\varepsilon > 0</math>, <math>\operatorname{rad}(abc)^{1+\varepsilon} < c</math> is true for only finitely many positive <math>a, b, c</math> such that <math>a + b = c</math>. ** [[Szpiro's conjecture]]: for any <math>\varepsilon > 0</math>, there is some constant <math>C(\varepsilon)</math> such that, for any elliptic curve <math>E</math> defined over <math>\mathbb{Q}</math> with minimal discriminant <math>\Delta</math> and conductor <math>f</math>, we have <math>|\Delta| \leq C(\varepsilon) \cdot f^{6+\varepsilon}</math>. * [[Newman's conjecture]]: the [[Partition function (number theory)|partition function]] satisfies any arbitrary congruence infinitely often. * [[Divisor summatory function#Piltz divisor problem|Piltz divisor problem]] on bounding <math>\Delta_k(x) = D_k(x) - xP_k(\log(x))</math> ** [[Divisor summatory function#Dirichlet's divisor problem|Dirichlet's divisor problem]]: the specific case of the Piltz divisor problem for <math>k = 1</math> * [[Ramanujan–Petersson conjecture]]: a number of related conjectures that are generalizations of the original conjecture. * [[Sato–Tate conjecture]]: also a number of related conjectures that are generalizations of the original conjecture. * [[Scholz conjecture]]: the length of the shortest [[addition chain]] producing <math>2^n - 1</math> is at most <math>n - 1</math> plus the length of the shortest addition chain producing <math>n</math>. * Do [[Siegel zero]]s exist? * [[Singmaster's conjecture]]: is there a finite upper bound on the multiplicities of the entries greater than 1 in [[Pascal's triangle]]?<ref>{{citation |last=Singmaster |first=David |title=Research Problems: How often does an integer occur as a binomial coefficient? |journal=[[American Mathematical Monthly]] |volume=78 |issue=4 |pages=385–386 |year=1971 |doi=10.2307/2316907 |jstor=2316907 |mr=1536288 |author-link=David Singmaster}}.</ref> * [[Vojta's conjecture]] on [[Height function|heights]] of points on [[Algebraic variety|algebraic varieties]] over [[algebraic number field]]s. * Are there infinitely many [[perfect number]]s? *Do any [[odd perfect number]]s exist? *Do [[quasiperfect number]]s exist? *Do any non-power of 2 [[almost perfect number]]s exist? *Are there 65, 66, or 67 [[idoneal number]]s? * Are there any pairs of [[amicable numbers]] which have opposite parity? * Are there any pairs of [[betrothed numbers]] which have same parity? * Are there any pairs of [[relatively prime]] [[amicable numbers]]? * Are there infinitely many [[amicable numbers]]? * Are there infinitely many [[betrothed numbers]]? * Are there infinitely many [[Giuga number]]s? * Does every [[rational number]] with an odd denominator have an [[odd greedy expansion]]? * Do any [[Lychrel number]]s exist? * Do any odd [[noncototient]]s exist? * Do any odd [[weird number]]s exist? * Do any [[Superperfect number#Generalizations|(2, 5)-perfect numbers]] exist? * Do any [[Generalized taxicab number|Taxicab(5, 2, n)]] exist for ''n'' > 1? * Is there a [[covering system]] with odd distinct moduli?<ref>{{citation | last1 = Guo | first1 = Song | last2 = Sun | first2 = Zhi-Wei | doi = 10.1016/j.aam.2005.01.004 | issue = 2 | journal = Advances in Applied Mathematics | mr = 2152886 | pages = 182–187 | title = On odd covering systems with distinct moduli | volume = 35 | year = 2005| arxiv = math/0412217 | s2cid = 835158 }}</ref> * Is <math>\pi</math> a [[normal number]] (i.e., is each digit 0–9 equally frequent)?<ref>{{cite web|url=http://www2.lbl.gov/Science-Articles/Archive/pi-random.html|title=Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160327035021/http://www2.lbl.gov/Science-Articles/Archive/pi-random.html|archive-date=2016-03-27|url-status=live}}</ref> * Are all [[Irrational number|irrational]] [[Algebraic number|algebraic]] numbers normal? * Is 10 a [[solitary number]]? * Can a 3×3 [[magic square]] be constructed from 9 distinct perfect square numbers?<ref>{{Cite journal |last=Robertson |first=John P. |date=1996-10-01 |title=Magic Squares of Squares |journal=Mathematics Magazine |volume=69 |issue=4 |pages=289–293 |doi=10.1080/0025570X.1996.11996457 |issn=0025-570X}}</ref> * Find the value of the [[De Bruijn–Newman constant]]. ==== Additive number theory ==== {{Main|Additive number theory }} {{See also|Problems involving arithmetic progressions}} * [[Erdős conjecture on arithmetic progressions]] that if the sum of the reciprocals of the members of a set of positive integers diverges, then the set contains arbitrarily long [[arithmetic progression]]s. * [[Erdős–Turán conjecture on additive bases]]: if <math>B</math> is an [[additive basis]] of order <math>2</math>, then the number of ways that positive integers <math>n</math> can be expressed as the sum of two numbers in <math>B</math> must tend to infinity as <math>n</math> tends to infinity. * [[Gilbreath's conjecture]] on consecutive applications of the unsigned [[Finite difference|forward difference]] operator to the sequence of [[prime number]]s. * [[Goldbach's conjecture]]: every even natural number greater than <math>2</math> is the sum of two [[prime number]]s. * [[Lander, Parkin, and Selfridge conjecture]]: if the sum of <math>m</math> <math>k</math>-th powers of positive integers is equal to a different sum of <math>n</math> <math>k</math>-th powers of positive integers, then <math>m + n \geq k</math>. * [[Lemoine's conjecture]]: all odd integers greater than <math>5</math> can be represented as the sum of an odd [[prime number]] and an even [[semiprime]]. * [[Minimum overlap problem]] of estimating the minimum possible maximum number of times a number appears in the termwise difference of two equally large sets partitioning the set <math>\{1, \ldots, 2n\}</math> * [[Pollock's conjectures]] * Does every nonnegative integer appear in [[Recamán's sequence]]? * [[Skolem problem]]: can an algorithm determine if a [[constant-recursive sequence]] contains a zero? * The values of ''g''(''k'') and ''G''(''k'') in [[Waring's problem]] * Do the [[Ulam number]]s have a positive density? * Determine growth rate of ''r''<sub>''k''</sub>(''N'') (see [[Szemerédi's theorem]]) ==== Algebraic number theory ==== {{Main|Algebraic number theory }} * [[Class number problem]]: are there infinitely many [[Class number problem#Real quadratic fields|real quadratic number fields]] with [[unique factorization]]? * [[Fontaine–Mazur conjecture]]: actually numerous conjectures, all proposed by [[Jean-Marc Fontaine]] and [[Barry Mazur]]. * [[Gan–Gross–Prasad conjecture]]: a [[Restricted representation|restriction]] problem in [[Representation of a Lie group|representation theory of real or p-adic Lie groups]]. * [[Greenberg's conjectures]] * [[Hermite's problem]]: is it possible, for any natural number <math>n</math>, to assign a sequence of [[natural number]]s to each [[real number]] such that the sequence for <math>x</math> is eventually [[Periodic sequence|periodic]] if and only if <math>x</math> is [[Algebraic number|algebraic]] of degree <math>n</math>? * [[Kummer–Vandiver conjecture]]: primes <math>p</math> do not divide the [[Ideal class group#Properties|class number]] of the maximal real [[Field extension|subfield]] of the <math>p</math>-th [[cyclotomic field]]. * Lang and Trotter's conjecture on [[Supersingular prime (algebraic number theory)|supersingular primes]] that the number of [[Supersingular prime (algebraic number theory)|supersingular primes]] less than a constant <math>X</math> is within a constant multiple of <math>\sqrt{X}/\ln{X}</math> * [[Selberg's 1/4 conjecture]]: the [[Eigenvalues and eigenvectors|eigenvalues]] of the [[Laplace operator]] on [[Maass wave form]]s of [[congruence subgroup]]s are at least <math>1/4</math>. * [[Stark conjectures]] (including [[Brumer–Stark conjecture]]) * Characterize all algebraic number fields that have some [[Algebraic number field#Bases for number fields|power basis]]. ====Computational number theory==== {{Main|Computational number theory}} * Can [[integer factorization]] be done in [[polynomial time]]? ==== Diophantine approximation and transcendental number theory ==== {{Further|Diophantine approximation|Transcendental number theory}} [[File:gamma-area.svg|right|thumb|The area of the blue region converges to the [[Euler–Mascheroni constant]], which may or may not be a rational number.]] * [[Schanuel's conjecture]] on the [[transcendence degree]] of certain [[Field extension|field extensions]] of the rational numbers.<ref name="waldschmidt">{{citation |last=Waldschmidt |first=Michel |title=Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables |pages=14, 16 |year=2013 |url=https://books.google.com/books?id=Wrj0CAAAQBAJ&pg=PA14 |publisher=Springer |isbn=978-3-662-11569-5}}</ref> In particular: Are <math>\pi</math> and <math>e</math> [[Algebraic independence|algebraically independent]]? Which nontrivial combinations of [[Transcendental number|transcendental numbers]] (such as <math>e + \pi, e\pi, \pi^e, \pi^{\pi}, e^e</math>) are themselves transcendental?<ref>{{Cite conference |last=Waldschmidt |first=Michel |date=2008 |title=An introduction to irrationality and transcendence methods. |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture5.pdf |conference=2008 Arizona Winter School |archive-url=https://web.archive.org/web/20141216004531/http://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture5.pdf |archive-date=16 December 2014 |access-date=15 December 2014}}</ref><ref>{{Citation |last=Albert |first=John |title=Some unsolved problems in number theory |url=http://www2.math.ou.edu/~jalbert/courses/openprob2.pdf |access-date=15 December 2014 |archive-url=https://web.archive.org/web/20140117150133/http://www2.math.ou.edu/~jalbert/courses/openprob2.pdf |archive-date=17 January 2014}}</ref> * The [[four exponentials conjecture]]: the transcendence of at least one of four exponentials of combinations of irrationals<ref name="waldschmidt" /> * Are [[Euler–Mascheroni constant|Euler's constant]] <math>\gamma</math> and [[Catalan's constant]] <math>G</math> irrational? Are they transcendental? Is [[Apéry's constant]] <math>\zeta(3)</math> transcendental?<ref>For some background on the numbers in this problem, see articles by [[Eric W. Weisstein]] at [[Wolfram MathWorld|''Wolfram'' ''MathWorld'']] (all articles accessed 22 August 2024): *[https://mathworld.wolfram.com/Euler-MascheroniConstant.html Euler's Constant] *[https://mathworld.wolfram.com/CatalansConstant.html Catalan's Constant] *[https://mathworld.wolfram.com/AperysConstant.html Apéry's Constant] *[http://mathworld.wolfram.com/IrrationalNumber.html irrational numbers] ({{Webarchive|url=https://web.archive.org/web/20150327024040/http://mathworld.wolfram.com/IrrationalNumber.html|date=2015-03-27}}) *[http://mathworld.wolfram.com/TranscendentalNumber.html transcendental numbers] ({{Webarchive|url=https://web.archive.org/web/20141113174913/http://mathworld.wolfram.com/TranscendentalNumber.html|date=2014-11-13}}) *[http://mathworld.wolfram.com/IrrationalityMeasure.html irrationality measures] ({{Webarchive|url=https://web.archive.org/web/20150421203736/http://mathworld.wolfram.com/IrrationalityMeasure.html|date=2015-04-21}})</ref><ref name=":1">{{Cite arXiv |last=Waldschmidt |first=Michel |date=2003-12-24 |title=Open Diophantine Problems |eprint=math/0312440 |language=en}}</ref> * Which transcendental numbers are [[Period (algebraic geometry)|(exponential) periods]]?<ref>{{Citation |last1=Kontsevich |first1=Maxim |title=Periods |date=2001 |work=Mathematics Unlimited — 2001 and Beyond |pages=771–808 |editor-last=Engquist |editor-first=Björn |url=https://link.springer.com/chapter/10.1007/978-3-642-56478-9_39 |access-date=2024-08-22 |place=Berlin, Heidelberg |publisher=Springer |language=en |doi=10.1007/978-3-642-56478-9_39 |isbn=978-3-642-56478-9 |last2=Zagier |first2=Don |editor2-last=Schmid |editor2-first=Wilfried}}</ref> * How well can [[Quadratic equation|non-quadratic]] irrational numbers be approximated? What is the [[irrationality measure]] of specific (suspected) transcendental numbers such as <math>\pi</math> and <math>\gamma</math>?<ref name=":1" /> * Which irrational numbers have [[simple continued fraction]] terms whose [[geometric mean]] converges to [[Khinchin's constant]]?<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Khinchin's Constant |url=https://mathworld.wolfram.com/KhinchinsConstant.html |access-date=2024-09-22 |website=mathworld.wolfram.com |language=en}}</ref> ==== Diophantine equations ==== {{Further|Diophantine equation}} * [[Beal's conjecture]]: for all integral solutions to <math>A^x + B^y = C^z</math> where <math>x, y, z > 2</math>, all three numbers <math>A, B, C</math> must share some prime factor. * [[Congruent number problem]] (a corollary to [[Birch and Swinnerton-Dyer conjecture]], per [[Tunnell's theorem]]): determine precisely what rational numbers are [[congruent number]]s. * Erdős–Moser problem: is <math>1^1 + 2^1 = 3^1</math> the only solution to the [[Erdős–Moser equation]]? * [[Erdős–Straus conjecture]]: for every <math>n \geq 2</math>, there are positive integers <math>x, y, z</math> such that <math>4/n = 1/x + 1/y + 1/z</math>. * [[Fermat–Catalan conjecture]]: there are finitely many distinct solutions <math>(a^m, b^n, c^k)</math> to the equation <math>a^m + b^n = c^k</math> with <math>a, b, c</math> being positive [[coprime integers]] and <math>m, n, k</math> being positive integers satisfying <math>1/m + 1/n + 1/k < 1</math>. * [[Goormaghtigh conjecture]] on solutions to <math>(x^m - 1)/(x - 1) = (y^n - 1)/(y - 1)</math> where <math>x > y > 1</math> and <math>m, n > 2</math>. * The [[Markov number#Other properties|uniqueness conjecture for Markov numbers]]<ref>{{citation | last = Aigner | first = Martin | doi = 10.1007/978-3-319-00888-2 | isbn = 978-3-319-00887-5 | location = Cham | mr = 3098784 | publisher = Springer | title = Markov's theorem and 100 years of the uniqueness conjecture | year = 2013}}</ref> that every [[Markov number]] is the largest number in exactly one normalized solution to the Markov [[Diophantine equation]]. * [[Pillai's conjecture]]: for any <math>A, B, C</math>, the equation <math>Ax^m - By^n = C</math> has finitely many solutions when <math>m, n</math> are not both <math>2</math>. * Which integers can be written as the [[Sums of three cubes|sum of three perfect cubes]]?<ref>{{Cite arXiv |eprint = 1604.07746|last1 = Huisman |first1 = Sander G.|title = Newer sums of three cubes|class = math.NT|year = 2016}}</ref> * [[Sum of four cubes problem|Can every integer be written as a sum of four perfect cubes?]] ==== Prime numbers ==== {{Main|Prime numbers}} {{Prime number conjectures}} [[File:Goldbach partitions of the even integers from 4 to 50 rev4b.svg|thumb=Goldbach_partitions_of_the_even_integers_from_4_to_28_300px.png|[[Goldbach's conjecture]] states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28.]] * [[Agoh–Giuga conjecture]] on the [[Bernoulli number]]s that <math>p</math> is prime if and only if <math>pB_{p-1} \equiv -1 \pmod p</math> * [[Agrawal's conjecture]] that given [[Coprime integers|coprime positive integers]] <math>n</math> and <math>r</math>, if <math>(X - 1)^n \equiv X^n - 1 \pmod{n, X^r - 1}</math>, then either <math>n</math> is prime or <math>n^{2} \equiv 1 \pmod{r}</math> * [[Artin's conjecture on primitive roots]] that if an integer is neither a perfect square nor <math>-1</math>, then it is a [[Primitive root modulo n|primitive root]] modulo infinitely many [[prime number]]s <math>p</math> * [[Brocard's conjecture]]: there are always at least <math>4</math> [[prime number]]s between consecutive squares of prime numbers, aside from <math>2^{2}</math> and <math>3^{2}</math>. * [[Bunyakovsky conjecture]]: if an integer-coefficient polynomial <math>f</math> has a positive leading coefficient, is irreducible over the integers, and has no common factors over all <math>f(x)</math> where <math>x</math> is a positive integer, then <math>f(x)</math> is prime infinitely often. * [[Catalan's Mersenne conjecture]]: some [[Double Mersenne number#Catalan–Mersenne number conjecture|Catalan–Mersenne number]] is composite and thus all Catalan–Mersenne numbers are composite after some point. * [[Dickson's conjecture]]: for a finite set of linear forms <math>a_1 + b_1 n, \ldots, a_k + b_k n</math> with each <math>b_i \geq 1</math>, there are infinitely many <math>n</math> for which all forms are [[prime number|prime]], unless there is some [[Modular arithmetic|congruence]] condition preventing it. * Dubner's conjecture: every even number greater than <math>4208</math> is the sum of two [[prime number|primes]] which both have a [[Twin prime|twin]]. * [[Elliott–Halberstam conjecture]] on the distribution of [[prime number]]s in [[arithmetic progression]]s. * [[Powerful number#Mathematical properties|Erdős–Mollin–Walsh conjecture]]: no three consecutive numbers are all [[Powerful number|powerful]]. * [[Feit–Thompson conjecture]]: for all distinct [[prime number]]s <math>p</math> and <math>q</math>, <math>(p^q - 1)/(p - 1)</math> does not divide <math>(q^p - 1)/(q - 1)</math> * Fortune's conjecture that no [[Fortunate number]] is composite. * The [[Gaussian moat]] problem: is it possible to find an infinite sequence of distinct [[Gaussian prime number]]s such that the difference between consecutive numbers in the sequence is bounded? * [[Gillies' conjecture]] on the distribution of [[Prime number|prime]] divisors of [[Mersenne prime|Mersenne numbers]]. * [[Landau's problems]] ** [[Goldbach conjecture]]: all even [[natural number]]s greater than <math>2</math> are the sum of two [[prime number]]s. ** [[Legendre's conjecture]]: for every positive integer <math>n</math>, there is a prime between <math>n^{2}</math> and <math>(n+1)^{2}</math>. ** [[Twin prime#Twin prime conjecture|Twin prime conjecture]]: there are infinitely many [[twin prime]]s. ** Are there infinitely many primes of the form <math>n^{2} + 1</math>? * Problems associated to [[Linnik's theorem]] * [[Mersenne conjectures#New Mersenne conjecture|New Mersenne conjecture]]: for any odd [[natural number]] <math>p</math>, if any two of the three conditions <math>p = 2^k \pm 1</math> or <math>p = 4^k \pm 3</math>, <math>2^p - 1</math> is prime, and <math>(2^{p} + 1)/3</math> is prime are true, then the third condition is also true. * [[Polignac's conjecture]]: for all positive even numbers <math>n</math>, there are infinitely many [[prime gap]]s of size <math>n</math>. * [[Schinzel's hypothesis H]] that for every finite collection <math>\{f_1, \ldots, f_k\}</math> of nonconstant [[irreducible polynomial]]s over the integers with positive leading coefficients, either there are infinitely many positive integers <math>n</math> for which <math>f_1(n), \ldots, f_k(n)</math> are all [[prime number|primes]], or there is some fixed divisor <math>m > 1</math> which, for all <math>n</math>, divides some <math>f_i(n)</math>. * [[Sierpiński number|Selfridge's conjecture]]: is 78,557 the lowest [[Sierpiński number]]? * Does the [[Wolstenholme's theorem#The converse as a conjecture|converse of Wolstenholme's theorem]] hold for all natural numbers? * Are all [[Euclid number]]s [[Square-free integer|square-free]]? * Are all [[Fermat number]]s [[Square-free integer|square-free]]? * Are all [[Mersenne number]]s of prime index [[Square-free integer|square-free]]? * Are there any composite ''c'' satisfying 2<sup>''c'' − 1</sup> ≡ 1 (mod ''c''<sup>2</sup>)? * Are there any [[Wall–Sun–Sun prime]]s? * Are there any [[Wieferich prime]]s in base 47? * Are there infinitely many [[balanced prime]]s? * Are there infinitely many Carol primes? * Are there infinitely many [[cluster prime]]s? * Are there infinitely many [[cousin prime]]s? * Are there infinitely many [[Cullen number|Cullen prime]]s? * Are there infinitely many [[Euclid number|Euclid prime]]s? * Are there infinitely many [[Fibonacci prime]]s? * Are there infinitely many [[Euclid number#Generalization|Kummer prime]]s? * Are there infinitely many Kynea primes? * Are there infinitely many [[Lucas number#Lucas primes|Lucas prime]]s? * Are there infinitely many [[Mersenne prime]]s ([[Lenstra–Pomerance–Wagstaff conjecture]]); equivalently, infinitely many even [[perfect number]]s? * Are there infinitely many [[Newman–Shanks–Williams prime]]s? * Are there infinitely many [[palindromic prime]]s to every base? * Are there infinitely many [[Pell number|Pell primes]]? * Are there infinitely many [[Pierpont prime]]s? * Are there infinitely many [[prime quadruplet]]s? * Are there infinitely many [[prime triplet]]s? * [[Regular prime|Siegel's conjecture]]: are there infinitely many regular primes, and if so is their [[natural density]] as a subset of all primes <math>e^{-1/2}</math>? * Are there infinitely many [[sexy prime]]s? * Are there infinitely many [[safe and Sophie Germain primes]]? * Are there infinitely many [[Wagstaff prime]]s? * Are there infinitely many [[Wieferich prime]]s? * Are there infinitely many [[Wilson prime]]s? * Are there infinitely many [[Wolstenholme prime]]s? * Are there infinitely many [[Woodall number#Woodall primes|Woodall prime]]s? * Can a prime ''p'' satisfy <math>2^{p-1}\equiv 1\pmod{p^2}</math> and <math>3^{p-1}\equiv 1\pmod{p^2}</math> simultaneously?<ref>{{cite arXiv |last=Dobson |first= J. B. |date=1 April 2017 |title=On Lerch's formula for the Fermat quotient |eprint=1103.3907v6|page=23|mode=cs2|class= math.NT }}</ref> * Does every prime number appear in the [[Euclid–Mullin sequence]]? * What is the smallest [[Skewes's number]]? * For any given integer ''a'' > 0, are there infinitely many [[Lucas–Wieferich prime]]s associated with the pair (''a'', −1)? (Specially, when ''a'' = 1, this is the Fibonacci-Wieferich primes, and when ''a'' = 2, this is the Pell-Wieferich primes) * For any given integer ''a'' > 0, are there infinitely many primes ''p'' such that ''a''<sup>''p'' − 1</sup> ≡ 1 (mod ''p''<sup>2</sup>)?<ref>{{cite book |last=Ribenboim |first=P. |author-link=Paulo Ribenboim |date=2006 |title=Die Welt der Primzahlen |edition=2nd |language=de |publisher=Springer |doi=10.1007/978-3-642-18079-8 |isbn=978-3-642-18078-1 |pages=242–243 |url=https://books.google.com/books?id=XMyzh-2SClUC&q=die+folgenden+probleme+sind+ungel%C3%B6st&pg=PA242|series=Springer-Lehrbuch }}</ref> * For any given integer ''b'' which is not a perfect power and not of the form −4''k''<sup>4</sup> for integer ''k'', are there infinitely many [[repunit]] primes to base ''b''? * For any given integers <math>k\geq 1, b\geq 2, c\neq 0</math>, with {{nowrap|1=gcd(''k'', ''c'') = 1}} and {{nowrap|1=gcd(''b'', ''c'') = 1,}} are there infinitely many primes of the form <math>(k\times b^n+c)/\gcd(k+c,b-1)</math> with integer ''n'' ≥ 1? * Is every [[Fermat number]] <math>2^{2^n} + 1</math> composite for <math>n > 4</math>? * Is 509,203 the lowest [[Riesel number]]? === Set theory === {{Main|Set theory}} Note: These conjectures are about [[model theory|models]] of [[Zermelo-Frankel set theory]] with [[axiom of choice|choice]], and may not be able to be expressed in models of other set theories such as the various [[constructive set theory|constructive set theories]] or [[non-wellfounded set theory]]. * ([[W. Hugh Woodin|Woodin]]) Does the [[generalized continuum hypothesis]] below a [[strongly compact cardinal]] imply the [[generalized continuum hypothesis]] everywhere? * Does the [[generalized continuum hypothesis]] entail [[Diamondsuit|<math>{\diamondsuit(E^{\lambda^+}_{\operatorname{cf}(\lambda)}})</math>]] for every [[singular cardinal]] <math>\lambda</math>? * Does the [[generalized continuum hypothesis]] imply the existence of an [[Suslin tree|ℵ<sub>2</sub>-Suslin tree]]? * If ℵ<sub>ω</sub> is a strong limit cardinal, is <math>2^{\aleph_\omega} < \aleph_{\omega_1}</math> (see [[Singular cardinals hypothesis]])? The best bound, ℵ<sub>ω<sub>4</sub></sub>, was obtained by [[Saharon Shelah|Shelah]] using his [[PCF theory]]. * The problem of finding the ultimate [[core model]], one that contains all [[Large cardinal property|large cardinals]]. * [[W. Hugh Woodin|Woodin's]] [[Ω-logic|Ω-conjecture]]: if there is a [[Class (set theory)|proper class]] of [[Woodin cardinal]]s, then [[Ω-logic]] satisfies an analogue of [[Gödel's completeness theorem]]. * Does the [[consistency]] of the existence of a [[strongly compact cardinal]] imply the consistent existence of a [[supercompact cardinal]]? * Does there exist a [[Jónsson cardinal|Jónsson algebra]] on ℵ<sub>ω</sub>? * Is OCA (the [[open coloring axiom]]) consistent with <math>2^{\aleph_{0}}>\aleph_{2}</math>? * [[Reinhardt cardinal]]s: Without assuming the [[axiom of choice]], can a [[Reinhardt cardinal|nontrivial elementary embedding]] ''V''→''V'' exist? ===Topology=== {{Main|Topology}} [[File:Ochiai_unknot.svg|thumb|The [[unknotting problem]] asks whether there is an efficient algorithm to identify when the shape presented in a [[knot diagram]] is actually the [[unknot]].]] * [[Baum–Connes conjecture]]: the [[Baum–Connes conjecture#Formulation|assembly map]] is an [[isomorphism]]. * [[Berge knot|Berge conjecture]] that the only [[Knot (mathematics)|knots]] in the [[3-sphere]] which admit [[lens space]] [[Dehn surgery|surgeries]] are [[Berge knot]]s. * [[Bing–Borsuk conjecture]]: every <math>n</math>-dimensional [[Homogeneous space|homogeneous]] [[Retraction (topology)|absolute neighborhood retract]] is a [[topological manifold]]. * [[Borel conjecture]]: [[Aspherical space|aspherical]] [[closed manifold]]s are determined up to [[homeomorphism]] by their [[fundamental group]]s. * [[Halperin conjecture]] on rational [[Serre spectral sequence]]s of certain [[fibration]]s. * [[Hilbert–Smith conjecture]]: if a [[Locally compact space|locally compact]] [[topological group]] has a [[Continuous function|continuous]], [[Group action#Remarkable properties of actions|faithful group action]] on a [[topological manifold]], then the group must be a [[Lie group]]. * Mazur's conjectures<ref>{{citation |last=Mazur |first=Barry |author-link=Barry Mazur |title=The topology of rational points |journal=[[Experimental Mathematics (journal)|Experimental Mathematics]] |volume=1 |number=1 |year=1992 |pages=35–45 |doi=10.1080/10586458.1992.10504244 |s2cid=17372107 |url=https://projecteuclid.org/euclid.em/1048709114 |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20190407161124/https://projecteuclid.org/euclid.em/1048709114 |archive-date=2019-04-07 |url-status=live }}</ref> * [[Novikov conjecture]] on the [[Homotopy#Invariance|homotopy invariance]] of certain [[polynomial]]s in the [[Pontryagin class]]es of a [[manifold]], arising from the [[fundamental group]]. * [[Quadrisecant]]s of [[wild knot]]s: it has been conjectured that wild knots always have infinitely many quadrisecants.<ref>{{citation | last = Kuperberg | first = Greg | author-link = Greg Kuperberg | arxiv = math/9712205 | doi = 10.1142/S021821659400006X | journal = [[Journal of Knot Theory and Its Ramifications]] | mr = 1265452 | pages = 41–50 | title = Quadrisecants of knots and links | volume = 3 | year = 1994| s2cid = 6103528 }}</ref> * [[Ravenel conjectures|Telescope conjecture]]: the last of [[Ravenel's conjectures]] in [[stable homotopy theory]] to be resolved.{{efn|A disproof has been announced, with a preprint made available on [[arXiv]].<ref>{{cite arXiv |last1=Burklund |first1=Robert |last2=Hahn |first2=Jeremy |last3=Levy |first3=Ishan |last4=Schlank |first4=Tomer |title=K-theoretic counterexamples to Ravenel's telescope conjecture |date=2023 |class=math.AT |eprint=2310.17459 }}</ref>}} * [[Unknotting problem]]: can [[unknot]]s be recognized in [[Time complexity#Polynomial time|polynomial time]]? * [[Volume conjecture]] relating [[quantum invariant]]s of [[Knot (mathematics)|knots]] to the [[hyperbolic geometry]] of their [[knot complement]]s. * [[Whitehead conjecture]]: every [[Connectedness|connected]] [[CW complex#Inductive construction of CW complexes|subcomplex]] of a two-dimensional [[Aspherical space|aspherical]] [[CW complex]] is aspherical. * [[Zeeman conjecture]]: given a finite [[Contractible space|contractible]] two-dimensional [[CW complex]] <math>K</math>, is the space <math>K \times [0, 1]</math> [[Collapse (topology)|collapsible]]? == Problems solved since 1995 == [[File:Ricci flow.png|thumb|[[Ricci flow]], here illustrated with a 2D manifold, was the key tool in [[Grigori Perelman]]'s [[Poincaré conjecture#Solution|solution of the Poincaré conjecture]].]] ===Algebra=== * [[Uniform boundedness conjecture for rational points#Mazur's conjecture B|Mazur's conjecture B]] (Vessilin Dimitrov, Ziyang Gao, and Philipp Habegger, 2020)<ref>{{cite journal |first1=Vessilin |last1=Dimitrov |first2=Ziyang |last2=Gao |first3=Philipp |last3=Habegger |title=Uniformity in Mordell–Lang for curves |journal = [[Annals of Mathematics]] |volume = 194 |year=2021 |pages=237–298 |doi=10.4007/annals.2021.194.1.4 |arxiv=2001.10276 |s2cid=210932420 |url=https://hal.sorbonne-universite.fr/hal-03374335/file/Dimitrov%20et%20al.%20-%202021%20-%20Uniformity%20in%20Mordell%E2%80%93Lang%20for%20curves.pdf}} </ref> * [[Suita conjecture]] (Qi'an Guan and [[Xiangyu Zhou]], 2015) <ref>{{cite journal | jstor=24523356 | last1=Guan | first1=Qi'an | last2=Zhou | first2=Xiangyu | author2-link=Xiangyu Zhou | title=A solution of an <math>L^2</math> extension problem with optimal estimate and applications | journal=Annals of Mathematics | year=2015 | volume=181 | issue=3 | pages=1139–1208 | doi=10.4007/annals.2015.181.3.6 | s2cid=56205818 | arxiv=1310.7169}} </ref> * [[Torsion conjecture]] ([[Loïc Merel]], 1996)<ref>{{cite journal | last1 = Merel | first1 = Loïc | year = 1996 | title = "Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields] | journal = Inventiones Mathematicae | volume = 124 | issue = 1 | pages = 437–449 | doi = 10.1007/s002220050059 | mr = 1369424 | bibcode = 1996InMat.124..437M | s2cid = 3590991 }} </ref> * [[Carlitz–Wan conjecture]] ([[Hendrik Lenstra]], 1995)<ref>{{citation | last1=Cohen | first1=Stephen D. | last2=Fried | first2=Michael D. | author2-link=Michael D. Fried | doi=10.1006/ffta.1995.1027 | issue=3 | journal=Finite Fields and Their Applications | mr=1341953 | pages=372–375 | title=Lenstra's proof of the Carlitz–Wan conjecture on exceptional polynomials: an elementary version | volume=1 | year=1995 | doi-access=free}} </ref> * [[Serre's multiplicity conjectures#Nonnegativity|Serre's nonnegativity conjecture]] ([[Ofer Gabber]], 1995) ===Analysis=== * [[Kadison–Singer problem]] ([[Adam Marcus (mathematician)|Adam Marcus]], [[Daniel Spielman]] and [[Nikhil Srivastava]], 2013)<ref name=Casazza2006>{{cite book|last1=Casazza|first1=Peter G.|last2=Fickus|first2=Matthew|last3=Tremain|first3=Janet C.|last4=Weber|first4=Eric|editor1-last=Han|editor1-first=Deguang|editor2-last=Jorgensen|editor2-first=Palle E. T.|editor3-last=Larson|editor3-first=David Royal|contribution=The Kadison-Singer problem in mathematics and engineering: A detailed account|series=Contemporary Mathematics|date=2006|volume=414|pages=299–355|contribution-url=https://books.google.com/books?id=9b-4uqEGJdoC&pg=PA299|access-date=24 April 2015|title=Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida|publisher=American Mathematical Society.|isbn=978-0-8218-3923-2|doi=10.1090/conm/414/07820}}</ref><ref name=SIAM02.2014>{{cite news|last1=Mackenzie|first1=Dana|title=Kadison–Singer Problem Solved|url=https://www.siam.org/pdf/news/2123.pdf|access-date=24 April 2015|work=SIAM News|issue=January/February 2014|publisher=[[Society for Industrial and Applied Mathematics]]|archive-url=https://web.archive.org/web/20141023120958/http://www.siam.org/pdf/news/2123.pdf|archive-date=23 October 2014|url-status=live}}</ref> (and the [[Hans Georg Feichtinger#Feichtinger's conjecture|Feichtinger's conjecture]], Anderson's paving conjectures, Weaver's discrepancy theoretic <math>KS_r</math> and <math>KS'_r</math> conjectures, Bourgain-Tzafriri conjecture and <math>R_\varepsilon</math>-conjecture) * [[Ahlfors measure conjecture]] ([[Ian Agol]], 2004)<ref name="Agol">{{cite arXiv | eprint = math/0405568|last1 = Agol |first1 = Ian|title = Tameness of hyperbolic 3-manifolds|year = 2004}}</ref> * [[Gradient conjecture]] (Krzysztof Kurdyka, Tadeusz Mostowski, Adam Parusinski, 1999)<ref>{{Cite journal | arxiv=math/9906212 | last1=Kurdyka | first1=Krzysztof | last2=Mostowski | first2=Tadeusz | last3=Parusiński | first3=Adam | title = Proof of the gradient conjecture of R. Thom | journal=Annals of Mathematics | pages=763–792 | volume=152 | date=2000 | issue=3 | doi=10.2307/2661354| jstor=2661354 | s2cid=119137528 }}</ref> ===Combinatorics=== * [[Erdős sumset conjecture]] (Joel Moreira, Florian Richter, Donald Robertson, 2018)<ref>{{Cite journal |last1=Moreira |first1=Joel |last2=Richter |first2=Florian K. |last3=Robertson |first3=Donald |title=A proof of a sumset conjecture of Erdős |journal=[[Annals of Mathematics]] |doi=10.4007/annals.2019.189.2.4 |volume=189 |number=2 |pages=605–652 |language=en-US|year=2019 |arxiv=1803.00498 |s2cid=119158401 }}</ref> * [[Simplicial sphere|McMullen's g-conjecture]] on the possible numbers of faces of different dimensions in a simplicial sphere (also Grünbaum conjecture, several conjectures of Kühnel) (Karim Adiprasito, 2018)<ref>{{citation|last=Stanley|first=Richard P. |editor1-last=Bisztriczky|editor1-first=T.|editor2-last=McMullen|editor2-first=P.|editor3-last=Schneider|editor3-first=R.|editor4-last=Weiss|editor4-first=A. Ivić|contribution=A survey of Eulerian posets|location=Dordrecht|mr=1322068|pages=301–333 |publisher=Kluwer Academic Publishers|series=NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences |title=Polytopes: abstract, convex and computational (Scarborough, ON, 1993)|volume=440|year=1994}}. See in particular [https://books.google.com/books?id=gHjrCAAAQBAJ&pg=PA316 p. 316].</ref><ref>{{cite web |last1=Kalai |first1=Gil |title=Amazing: Karim Adiprasito proved the g-conjecture for spheres! |url=https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/ |access-date=2019-02-15 |archive-url=https://web.archive.org/web/20190216031650/https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/ |archive-date=2019-02-16 |url-status=live |date=2018-12-25 }}</ref> * [[Hirsch conjecture]] ([[Francisco Santos Leal]], 2010)<ref>{{cite journal |last=Santos |first=Franciscos |date=2012 |title=A counterexample to the Hirsch conjecture |journal=Annals of Mathematics |volume=176 |issue=1 |pages=383–412 |doi=10.4007/annals.2012.176.1.7 |arxiv=1006.2814 |s2cid=15325169 }}</ref><ref>{{cite journal |last=Ziegler |first=Günter M. |date=2012 |title=Who solved the Hirsch conjecture? |journal=Documenta Mathematica |series=Documenta Mathematica Series |volume=6 |issue=Extra Volume "Optimization Stories" |pages=75–85 |doi=10.4171/dms/6/13 |doi-access=free |isbn=978-3-936609-58-5 | url=https://www.math.uni-bielefeld.de/documenta/vol-ismp/22_ziegler-guenter.html}}</ref> * [[Ira Gessel#Gessel's lattice path conjecture|Gessel's lattice path conjecture]] ([[Manuel Kauers]], [[Christoph Koutschan]], and [[Doron Zeilberger]], 2009)<ref>{{cite journal | last1=Kauers | first1=Manuel | author1-link=Manuel Kauers | last2=Koutschan | first2=Christoph | author2-link=Christoph Koutschan | last3=Zeilberger | first3=Doron | author3-link=Doron Zeilberger | title=Proof of Ira Gessel's lattice path conjecture | journal=Proceedings of the National Academy of Sciences | volume=106 | issue=28 | date=2009-07-14 | issn=0027-8424 | doi=10.1073/pnas.0901678106 | pages=11502–11505 | pmc=2710637 | arxiv=0806.4300 | bibcode=2009PNAS..10611502K | doi-access=free }}</ref> * [[Stanley–Wilf conjecture]] ([[Gábor Tardos]] and [[Adam Marcus (mathematician)|Adam Marcus]], 2004)<ref>{{cite journal |last1=Chung |first1=Fan |last2=Greene |first2=Curtis |last3=Hutchinson |first3=Joan |date=April 2015 |title=Herbert S. Wilf (1931–2012) |journal=[[Notices of the AMS]] |volume=62 |issue=4 |page=358 |issn=1088-9477 |oclc=34550461 |quote=The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004. |doi=10.1090/noti1247 |doi-access=free }}</ref> (and also the Alon–Friedgut conjecture) * [[Kemnitz's conjecture]] ([[Christian Reiher]], 2003, Carlos di Fiore, 2003)<ref>{{cite journal|title=Kemnitz' conjecture revisited | doi=10.1016/j.disc.2005.02.018 |doi-access=free| volume=297|issue=1–3 |journal=Discrete Mathematics|pages=196–201|year=2005 | last1 = Savchev | first1 = Svetoslav}}</ref> * [[Cameron–Erdős conjecture]] ([[Ben J. Green]], 2003, Alexander Sapozhenko, 2003)<ref>{{cite journal | last = Green | first = Ben | author-link = Ben J. Green | arxiv = math.NT/0304058 | doi = 10.1112/S0024609304003650 | issue = 6 | journal = The Bulletin of the London Mathematical Society | mr = 2083752 | pages = 769–778 | title = The Cameron–Erdős conjecture | volume = 36 | year = 2004| s2cid = 119615076 }}</ref><ref>{{cite web |url=https://www.ams.org/news?news_id=155 |title=News from 2007 |author=<!--Staff writer(s); no by-line.--> |date=31 December 2007 |website=American Mathematical Society |publisher=AMS |access-date=2015-11-13 |quote=The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..." |archive-url=https://web.archive.org/web/20151117030726/http://www.ams.org/news?news_id=155 |archive-date=17 November 2015 |url-status=live }}</ref> ===Dynamical systems=== * [[Zimmer's conjecture]] (Aaron Brown, David Fisher, and Sebastián Hurtado-Salazar, 2017)<ref>{{cite arXiv | last1=Brown | first1=Aaron | last2=Fisher | first2=David | last3=Hurtado | first3=Sebastian | date=2017-10-07 | title=Zimmer's conjecture for actions of {{not a typo|SL(𝑚,ℤ)}} | eprint=1710.02735 | class=math.DS}} </ref> * [[Painlevé conjecture]] (Jinxin Xue, 2014)<ref name="Xue1">{{Cite arXiv|title=Noncollision Singularities in a Planar Four-body Problem|last=Xue|first=Jinxin|date=2014|class=math.DS |eprint = 1409.0048}}</ref><ref name="Xue2">{{Cite journal|title=Non-collision singularities in a planar 4-body problem|last=Xue|first=Jinxin|date=2020|journal=[[Acta Mathematica]]|volume=224|issue=2|pages=253–388|doi=10.4310/ACTA.2020.v224.n2.a2|s2cid=226420221}}</ref> ===Game theory=== * Existence of a non-terminating game of [[beggar-my-neighbour]] (Brayden Casella, 2024)<ref> {{cite web | url= https://richardpmann.com/beggar-my-neighbour-records.html | title= Known Historical Beggar-My-Neighbour Records |author= Richard P Mann |access-date= 2024-02-10 }}</ref> * The [[angel problem]] (Various independent proofs, 2006)<ref>{{Cite web |url=http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf |title=The angel game in the plane |first=Brian H. |last=Bowditch|date=2006|location=School of Mathematics, [[University of Southampton]] |publisher=warwick.ac.uk [[Warwick University]]|access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160304185616/http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf |archive-date=2016-03-04 |url-status=live }}</ref><ref>{{Cite web |url=http://home.broadpark.no/~oddvark/angel/Angel.pdf |title=A Solution to the Angel Problem |first=Oddvar |last=Kloster |publisher=SINTEF ICT |location=Oslo, Norway|access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160107125925/http://home.broadpark.no/~oddvark/angel/Angel.pdf |archive-date=2016-01-07 }}</ref><ref>{{Cite journal |url=http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf |title=The Angel of power 2 wins |first=Andras |last=Mathe |date=2007|journal=[[Combinatorics, Probability and Computing]] |volume=16 |number=3|pages= 363–374|doi=10.1017/S0963548306008303 |doi-broken-date=1 November 2024 |s2cid=16892955 |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20161013034302/http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf |archive-date=2016-10-13 |url-status=live }}</ref><ref>{{Cite web |last=Gacs |first=Peter |date=June 19, 2007 |title=THE ANGEL WINS |url=http://www.cs.bu.edu/~gacs/papers/angel.pdf |archive-url=https://web.archive.org/web/20160304030433/http://www.cs.bu.edu/~gacs/papers/angel.pdf |archive-date=2016-03-04 |access-date=2016-03-18}}</ref> ===Geometry=== ====21st century==== * [[Einstein problem]] (David Smith, Joseph Samuel Myers, Craig S. Kaplan, Chaim Goodman-Strauss, 2024)<ref>{{Cite journal |last1=Smith |first1=David |last2=Myers |first2=Joseph Samuel |last3=Kaplan |first3=Craig S. |last4=Goodman-Strauss |first4=Chaim |date=2024 |title=An aperiodic monotile |url=https://escholarship.org/uc/item/3317z9z9 |journal=Combinatorial Theory |language=en |volume=4 |issue=1 |doi=10.5070/C64163843 |issn=2766-1334}}</ref> * [[Maximal rank conjecture]] (Eric Larson, 2018)<ref>{{Cite arXiv| eprint=1711.04906 | last1=Larson | first1=Eric | title=The Maximal Rank Conjecture | year=2017 | class=math.AG }}</ref> * [[Weibel's conjecture]] (Moritz Kerz, Florian Strunk, and Georg Tamme, 2018)<ref>{{citation | first1=Moritz | last1=Kerz | first2=Florian | last2=Strunk | first3=Georg | last3=Tamme | title=Algebraic ''K''-theory and descent for blow-ups | journal=[[Inventiones Mathematicae]] | volume=211 | year=2018 | issue=2 | pages=523–577 | mr=3748313 | doi=10.1007/s00222-017-0752-2 | arxiv=1611.08466| bibcode=2018InMat.211..523K | s2cid=253741858 }} </ref> * [[Yau's conjecture]] ([[Antoine Song]], 2018)<ref>{{cite web | url = https://www.ams.org/amsmtgs/2251_abstracts/1147-53-499.pdf | title = Existence of infinitely many minimal hypersurfaces in closed manifolds. | author = Song, Antoine | work = www.ams.org | quote = "..I will present a solution of the conjecture, which builds on min-max methods developed by F. C. Marques and A. Neves.." | access-date = 19 June 2021}} </ref><ref>{{Cite web | url=https://www.claymath.org/people/antoine-song | title = Antoine Song | Clay Mathematics Institute | quote="...Building on work of Codá Marques and Neves, in 2018 Song proved Yau's conjecture in complete generality"}} </ref> * [[Pentagonal tiling]] (Michaël Rao, 2017)<ref>{{citation|url=https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/|magazine=[[Quanta Magazine]]|title=Pentagon Tiling Proof Solves Century-Old Math Problem|first=Natalie|last=Wolchover|date=July 11, 2017|access-date=July 18, 2017|archive-url=https://web.archive.org/web/20170806093353/https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/|archive-date=August 6, 2017}}</ref> * [[Willmore conjecture]] ([[Fernando Codá Marques]] and [[André Neves]], 2012)<ref>{{cite journal|last1=Marques |first1=Fernando C.|first2=André|last2=Neves|title=Min-max theory and the Willmore conjecture|journal=Annals of Mathematics |year=2013|arxiv=1202.6036|doi=10.4007/annals.2014.179.2.6|volume=179|issue=2|pages=683–782|s2cid=50742102}}</ref> * [[Erdős distinct distances problem]] ([[Larry Guth]], [[Nets Katz|Nets Hawk Katz]], 2011)<ref>{{cite journal | arxiv=1011.4105 | last1=Guth | first1=Larry | last2=Katz | first2=Nets Hawk | title=On the Erdos distinct distance problem in the plane | journal=Annals of Mathematics | pages=155–190 | volume=181 | date=2015 | issue=1 | doi=10.4007/annals.2015.181.1.2 | doi-access=free}}</ref> * [[Squaring the plane|Heterogeneous tiling conjecture (squaring the plane)]] (Frederick V. Henle and James M. Henle, 2008)<ref>{{Cite web |url=http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf |title=Squaring the Plane |first1=Frederick V. |last1=Henle |first2=James M. |last2=Henle |access-date=2016-03-18 |publisher=www.maa.org [[Mathematics Association of America]]|archive-url=https://web.archive.org/web/20160324074609/http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf |archive-date=2016-03-24 |url-status=live }}</ref> * [[Tameness conjecture]] ([[Ian Agol]], 2004)<ref name="Agol"/> * [[Ending lamination theorem]] ([[Jeffrey Brock|Jeffrey F. Brock]], [[Richard Canary|Richard D. Canary]], [[Yair Minsky|Yair N. Minsky]], 2004)<ref>{{Cite journal | arxiv=math/0412006 | last1=Brock | first1=Jeffrey F. | last2=Canary | first2=Richard D. | last3=Minsky | first3=Yair N. | author-link3=Yair Minsky | title=The classification of Kleinian surface groups, II: The Ending Lamination Conjecture | date=2012 | journal=Annals of Mathematics | volume=176 | issue=1 | pages=1–149 | doi=10.4007/annals.2012.176.1.1 | doi-access=free}}</ref> * [[Carpenter's rule problem]] ([[Robert Connelly]], [[Erik Demaine]], Günter Rote, 2003)<ref>{{citation | last1 = Connelly | first1 = Robert | author1-link = Robert Connelly | last2 = Demaine | first2 = Erik D. | author2-link = Erik Demaine | last3 = Rote | first3 = Günter | doi = 10.1007/s00454-003-0006-7 | doi-access = free | issue = 2 | journal = [[Discrete & Computational Geometry]] | mr = 1931840 | pages = 205–239 | title = Straightening polygonal arcs and convexifying polygonal cycles | url = http://page.mi.fu-berlin.de/~rote/Papers/pdf/Straightening+polygonal+arcs+and+convexifying+polygonal+cycles-DCG.pdf | volume = 30 | year = 2003| s2cid = 40382145 }}</ref> * [[Lambda g conjecture]] (Carel Faber and [[Rahul Pandharipande]], 2003)<ref>{{Citation | first1=C. | last1=Faber | first2=R. | last2=Pandharipande | author2-link=Rahul Pandharipande | title=Hodge integrals, partition matrices, and the <math>\lambda_g</math> conjecture | journal=Ann. of Math. | series= 2 | volume=157 | issue=1 | pages=97–124 | year=2003 | arxiv=math.AG/9908052 | doi=10.4007/annals.2003.157.97}} </ref> * [[Nagata's conjecture]] (Ivan Shestakov, Ualbai Umirbaev, 2003)<ref>{{cite journal | last1 = Shestakov | first1 = Ivan P. | last2 = Umirbaev | first2 = Ualbai U. | doi = 10.1090/S0894-0347-03-00440-5 | issue = 1 | journal = Journal of the American Mathematical Society | mr = 2015334 | pages = 197–227 | title = The tame and the wild automorphisms of polynomial rings in three variables | volume = 17 | year = 2004}}</ref> * [[Double bubble conjecture]] ([[Michael Hutchings (mathematician)|Michael Hutchings]], [[Frank Morgan (mathematician)|Frank Morgan]], Manuel Ritoré, Antonio Ros, 2002)<ref>{{cite journal | last1 = Hutchings | first1 = Michael | last2 = Morgan | first2 = Frank | last3 = Ritoré | first3 = Manuel | last4 = Ros | first4 = Antonio | doi = 10.2307/3062123 | issue = 2 | journal = Annals of Mathematics | mr = 1906593 | pages = 459–489 | series = Second Series | title = Proof of the double bubble conjecture | volume = 155 | year = 2002| jstor = 3062123 | arxiv = math/0406017 | hdl = 10481/32449 }}</ref> ====20th century==== * [[Honeycomb theorem]] ([[Thomas Callister Hales]], 1999)<ref>{{Cite journal | arxiv=math/9906042 | last1=Hales | first1=Thomas C. | author-link1=Thomas Callister Hales | title=The Honeycomb Conjecture | journal=[[Discrete & Computational Geometry]] | volume=25 | pages=1–22 | date=2001 | doi=10.1007/s004540010071 | doi-access=free}}</ref> * [[Lange's conjecture]] ([[Montserrat Teixidor i Bigas]] and Barbara Russo, 1999)<ref>{{cite journal | last1=Teixidor i Bigas | first1=Montserrat | author1-link=Montserrat Teixidor i Bigas | first2=Barbara | last2=Russo | title=On a conjecture of Lange | arxiv=alg-geom/9710019 | mr=1689352 | year=1999 | journal=Journal of Algebraic Geometry | issn=1056-3911 | volume=8 | issue=3 | pages=483–496 | bibcode=1997alg.geom.10019R }} </ref> * [[Bogomolov conjecture]] ([[Emmanuel Ullmo]], 1998, [[Shou-Wu Zhang]], 1998)<ref>{{cite journal | last1 = Ullmo | first1 = E | year = 1998 | title = Positivité et Discrétion des Points Algébriques des Courbes | journal = Annals of Mathematics | volume = 147 | issue = 1| pages = 167–179 | doi = 10.2307/120987 | zbl= 0934.14013| jstor = 120987 | arxiv = alg-geom/9606017 | s2cid = 119717506 }}</ref><ref>{{cite journal | last1 = Zhang | first1 = S.-W. | year = 1998 | title = Equidistribution of small points on abelian varieties | journal = Annals of Mathematics | volume = 147 | issue = 1| pages = 159–165 | doi = 10.2307/120986 | jstor = 120986 }}</ref> * [[Kepler conjecture]] (Samuel Ferguson, [[Thomas Callister Hales]], 1998)<ref>{{cite journal | arxiv=1501.02155 | last1=Hales | first1=Thomas | last2=Adams | first2=Mark | last3=Bauer | first3=Gertrud | last4=Dang | first4=Dat Tat | last5=Harrison | first5=John | last6=Hoang | first6=Le Truong | last7=Kaliszyk | first7=Cezary | last8=Magron | first8=Victor | last9=McLaughlin | first9=Sean | last10=Nguyen | first10=Tat Thang | last11=Nguyen | first11=Quang Truong | last12=Nipkow | first12=Tobias | last13=Obua | first13=Steven | last14=Pleso | first14=Joseph | last15=Rute | first15=Jason | last16=Solovyev | first16=Alexey | last17=Ta | first17=Thi Hoai An | last18=Tran | first18=Nam Trung | last19=Trieu | first19=Thi Diep | last20=Urban | first20=Josef | last21=Ky | first21=Vu | last22=Zumkeller | first22=Roland | title=A formal proof of the Kepler conjecture | journal=Forum of Mathematics, Pi | volume=5 | date=2017 | pages=e2 | doi=10.1017/fmp.2017.1 | doi-access=free}}</ref> * [[Dodecahedral conjecture]] ([[Thomas Callister Hales]], Sean McLaughlin, 1998)<ref>{{Cite journal | arxiv=math/9811079 | last1=Hales | first1=Thomas C. | last2=McLaughlin | first2=Sean | title=The dodecahedral conjecture | journal=Journal of the American Mathematical Society | volume=23 | date=2010 | issue=2 | pages=299–344 | doi=10.1090/S0894-0347-09-00647-X | bibcode=2010JAMS...23..299H | doi-access=free}}</ref> ===Graph theory=== * [[Kahn–Kalai conjecture]] ([[Jinyoung Park (mathematician)|Jinyoung Park]] and Huy Tuan Pham, 2022)<ref>{{cite arXiv |last1=Park |first1=Jinyoung |last2=Pham |first2=Huy Tuan |date=2022-03-31 |title=A Proof of the Kahn-Kalai Conjecture |class=math.CO |eprint=2203.17207 }}</ref> * [[Blankenship–Oporowski conjecture]] on the book thickness of subdivisions ([[Vida Dujmović]], [[David Eppstein]], Robert Hickingbotham, [[Pat Morin]], and [[David Wood (mathematician)|David Wood]], 2021)<ref>{{cite journal | last1 = Dujmović | first1 = Vida | author1-link = Vida Dujmović | last2 = Eppstein | first2 = David | author2-link = David Eppstein | last3 = Hickingbotham | first3 = Robert | last4 = Morin | first4 = Pat | author4-link = Pat Morin | last5 = Wood | first5 = David R. | author5-link = David Wood (mathematician) | arxiv = 2011.04195 | date = August 2021 | doi = 10.1007/s00493-021-4585-7 | journal = [[Combinatorica]] | title = Stack-number is not bounded by queue-number| volume = 42 | issue = 2 | pages = 151–164 | s2cid = 226281691 }}</ref> *[[Graceful labeling|Ringel's conjecture]] that the complete graph <math>K_{2n+1}</math> can be decomposed into <math>2n+1</math> copies of any tree with <math>n</math> edges (Richard Montgomery, [[Benny Sudakov]], Alexey Pokrovskiy, 2020)<ref>{{cite journal|last1=Huang |first1=C.|title=Further results on tree labellings |journal=Utilitas Mathematica |volume=21 |pages=31–48 |year=1982|mr=668845|last2=Kotzig|first2=A.|last3=Rosa|first3=A.|author2-link=Anton Kotzig}}.</ref><ref>{{Cite web |url=https://www.quantamagazine.org/mathematicians-prove-ringels-graph-theory-conjecture-20200219/|title=Rainbow Proof Shows Graphs Have Uniform Parts|last=Hartnett |first=Kevin|website=Quanta Magazine|date=19 February 2020|language=en|access-date=2020-02-29}}</ref> *Disproof of [[Hedetniemi's conjecture]] on the chromatic number of tensor products of graphs (Yaroslav Shitov, 2019)<ref>{{cite journal |last1=Shitov |first1=Yaroslav |date=2019-09-01 |df=dmy-all |title=Counterexamples to Hedetniemi's conjecture |journal=Annals of Mathematics |volume=190 |issue=2 |pages=663–667 |arxiv=1905.02167 |doi=10.4007/annals.2019.190.2.6 |jstor=10.4007/annals.2019.190.2.6 |mr= 3997132 |zbl=1451.05087 |s2cid=146120733 |url=https://annals.math.princeton.edu/2019/190-2/p06 |access-date=2021-07-19}}</ref> * [[Kelmans–Seymour conjecture]] (Dawei He, Yan Wang, and Xingxing Yu, 2020)<ref>{{Cite journal | last1=He | first1=Dawei | last2=Wang | first2=Yan | last3=Yu | first3=Xingxing | date=2019-12-11 | title=The Kelmans-Seymour conjecture I: Special separations | url=http://www.sciencedirect.com/science/article/pii/S0095895619301224 | journal=Journal of Combinatorial Theory, Series B | volume=144 | pages=197–224 | doi=10.1016/j.jctb.2019.11.008 | issn=0095-8956 | arxiv=1511.05020 | s2cid=29791394}} </ref><ref>{{Cite journal | last1=He | first1=Dawei | last2=Wang | first2=Yan | last3=Yu | first3=Xingxing | date=2019-12-11 | title=The Kelmans-Seymour conjecture II: 2-Vertices in K4− | url=http://www.sciencedirect.com/science/article/pii/S0095895619301212 | journal=Journal of Combinatorial Theory, Series B | volume=144 | pages=225–264 | doi=10.1016/j.jctb.2019.11.007 | issn=0095-8956 | arxiv=1602.07557| s2cid=220369443 }} </ref><ref>{{Cite journal | last1=He | first1=Dawei | last2=Wang | first2=Yan | last3=Yu | first3=Xingxing | date=2019-12-09 | title=The Kelmans-Seymour conjecture III: 3-vertices in K4− | url=http://www.sciencedirect.com/science/article/pii/S0095895619301200 | journal=Journal of Combinatorial Theory, Series B | volume=144 | pages=265–308 | doi=10.1016/j.jctb.2019.11.006 | issn=0095-8956 | arxiv=1609.05747 | s2cid=119625722}} </ref><ref>{{Cite journal | last1=He | first1=Dawei | last2=Wang | first2=Yan | last3=Yu | first3=Xingxing | date=2019-12-19 | title=The Kelmans-Seymour conjecture IV: A proof | url=http://www.sciencedirect.com/science/article/pii/S0095895619301248 | journal=Journal of Combinatorial Theory, Series B | volume=144 | pages=309–358 | doi=10.1016/j.jctb.2019.12.002 | issn=0095-8956 | arxiv=1612.07189 | s2cid=119175309}} </ref> * [[Goldberg–Seymour conjecture]] (Guantao Chen, Guangming Jing, and Wenan Zang, 2019)<ref>{{Cite arXiv | last1=Zang | first1=Wenan | last2=Jing | first2=Guangming | last3=Chen | first3=Guantao | date=2019-01-29 | title=Proof of the Goldberg–Seymour Conjecture on Edge-Colorings of Multigraphs | class=math.CO | language=en | eprint=1901.10316v1}} </ref> * [[Babai's problem]] (Alireza Abdollahi, Maysam Zallaghi, 2015)<ref>{{cite journal | first= Zallaghi M.|last= Abdollahi A. | year = 2015 | journal = Communications in Algebra | title = Character sums for Cayley graphs | volume = 43| issue = 12| pages = 5159–5167 | doi = 10.1080/00927872.2014.967398 |s2cid= 117651702 }}</ref> * [[Alspach's conjecture]] (Darryn Bryant, Daniel Horsley, William Pettersson, 2014) * [[Alon–Saks–Seymour conjecture]] (Hao Huang, [[Benny Sudakov]], 2012) * [[Read's conjecture|Read–Hoggar conjecture]] ([[June Huh]], 2009)<ref>{{cite journal | last=Huh | first=June | author-link=June Huh | title=Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs | arxiv=1008.4749 | journal=Journal of the American Mathematical Society | volume=25 | date=2012 | issue=3 | pages=907–927 | doi=10.1090/S0894-0347-2012-00731-0 | doi-access=free}}</ref> * [[Scheinerman's conjecture]] (Jeremie Chalopin and Daniel Gonçalves, 2009)<ref>{{cite conference | last1 = Chalopin | first1 = Jérémie | last2 = Gonçalves | first2 = Daniel | editor-last = Mitzenmacher | editor-first = Michael | contribution = Every planar graph is the intersection graph of segments in the plane: extended abstract | doi = 10.1145/1536414.1536500 | pages = 631–638 | publisher = ACM | title = Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 – June 2, 2009 | year = 2009}}</ref> * [[Erdős–Menger conjecture]] ([[Ron Aharoni]], Eli Berger 2007)<ref>{{Cite journal | arxiv=math/0509397 | last1=Aharoni | first1=Ron | author1-link=Ron Aharoni | last2=Berger | first2=Eli | title = Menger's theorem for infinite graphs | journal=Inventiones Mathematicae | volume=176 | pages=1–62 | date=2009 | issue=1 | doi=10.1007/s00222-008-0157-3 | bibcode=2009InMat.176....1A | doi-access=free}}</ref> * [[Road coloring conjecture]] ([[Avraham Trahtman]], 2007)<ref>{{cite news |last=Seigel-Itzkovich |first=Judy |title=Russian immigrant solves math puzzle |newspaper=The Jerusalem Post |date=2008-02-08 |url=http://www.jpost.com/Home/Article.aspx?id=91431 |access-date=2015-11-12}}</ref> * [[Robertson–Seymour theorem]] ([[Neil Robertson (mathematician)|Neil Robertson]], [[Paul Seymour (mathematician)|Paul Seymour]], 2004)<ref>{{cite book |last=Diestel |first=Reinhard |year=2005 |chapter=Minors, Trees, and WQO |edition=Electronic Edition 2005 |pages=326–367 |publisher=Springer |title=Graph Theory |chapter-url=http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/preview/Ch12.pdf}}</ref> * [[Strong perfect graph conjecture]] ([[Maria Chudnovsky]], [[Neil Robertson (mathematician)|Neil Robertson]], [[Paul Seymour (mathematician)|Paul Seymour]] and [[Robin Thomas (mathematician)|Robin Thomas]], 2002)<ref>{{cite journal |url=https://annals.math.princeton.edu/2006/164-1/p02 |title=The strong perfect graph theorem |last1=Chudnovsky |first1=Maria |last2=Robertson |first2=Neil |last3=Seymour |first3=Paul |last4=Thomas |first4=Robin |journal=Annals of Mathematics |year=2002 |volume=164 |pages=51–229 |arxiv=math/0212070 |doi=10.4007/annals.2006.164.51 |bibcode=2002math.....12070C |s2cid=119151552}}</ref> * [[Toida's conjecture]] (Mikhail Muzychuk, Mikhail Klin, and Reinhard Pöschel, 2001)<ref>Klin, M. H., M. Muzychuk and R. Poschel: The isomorphism problem for circulant graphs via Schur ring theory, Codes and Association Schemes, American Math. Society, 2001.</ref> * Harary's conjecture on the integral sum number of complete graphs (Zhibo Chen, 1996)<ref>{{Cite journal | url=https://www.researchgate.net/publication/220188021 | doi=10.1016/0012-365X(95)00163-Q | doi-access=free | title=Harary's conjectures on integral sum graphs | journal=[[Discrete Mathematics (journal)|Discrete Mathematics]] | volume=160 | issue=1–3 | pages=241–244 | year=1996 | last1=Chen | first1=Zhibo}} </ref> ===Group theory=== * [[Hanna Neumann conjecture]] (Joel Friedman, 2011, Igor Mineyev, 2011)<ref>{{Cite journal |last=Friedman |first=Joel |date=January 2015 |title=Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture: with an Appendix by Warren Dicks |url=https://www.cs.ubc.ca/~jf/pubs/web_stuff/shnc_memoirs.pdf |journal=Memoirs of the American Mathematical Society |language=en |volume=233 |issue=1100 |page=0 |doi=10.1090/memo/1100 |s2cid=117941803 |issn=0065-9266}}</ref><ref>{{cite journal | last = Mineyev | first = Igor | doi = 10.4007/annals.2012.175.1.11 | issue = 1 | journal = Annals of Mathematics | mr = 2874647 | pages = 393–414 | series = Second Series | title = Submultiplicativity and the Hanna Neumann conjecture | volume = 175 | year = 2012}}</ref> * [[Density theorem for Kleinian groups|Density theorem]] (Hossein Namazi, Juan Souto, 2010)<ref>{{Cite journal |url=https://www.researchgate.net/publication/228365532 |doi=10.1007/s11511-012-0088-0|title=Non-realizability and ending laminations: Proof of the density conjecture|journal=Acta Mathematica|volume=209|issue=2|pages=323–395|year=2012|last1=Namazi|first1=Hossein|last2=Souto|first2=Juan|doi-access=free}}</ref> * Full [[classification of finite simple groups]] ([[Koichiro Harada]], [[Ronald Solomon]], 2008) ===Number theory=== ====21st century==== *[[André–Oort conjecture]] ([[Jonathan Pila]], Ananth Shankar, [[Jacob Tsimerman]], 2021)<ref>{{cite arXiv |last1=Pila |first1=Jonathan |last2=Shankar |first2=Ananth |last3=Tsimerman |first3=Jacob |last4=Esnault |first4=Hélène |last5=Groechenig |first5=Michael |date=2021-09-17 |title=Canonical Heights on Shimura Varieties and the André-Oort Conjecture |class=math.NT |eprint=2109.08788}}</ref> *[[Duffin–Schaeffer theorem]] ([[Dimitris Koukoulopoulos]], [[James Maynard (mathematician)|James Maynard]], 2019) * [[Vinogradov's mean-value theorem#The conjectured form|Main conjecture in Vinogradov's mean-value theorem]] ([[Jean Bourgain]], Ciprian Demeter, [[Larry Guth]], 2015)<ref>{{cite journal|last1=Bourgain |first1=Jean|first2=Demeter|last2=Ciprian|first3=Guth|last3=Larry|title=Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three|journal=Annals of Mathematics |year=2015|doi=10.4007/annals.2016.184.2.7|volume=184|issue=2|pages=633–682|hdl=1721.1/115568|bibcode=2015arXiv151201565B|arxiv=1512.01565|s2cid=43929329}}</ref> * [[Goldbach's weak conjecture]] ([[Harald Helfgott]], 2013)<ref>{{cite arXiv |eprint=1305.2897 |title = Major arcs for Goldbach's theorem|last = Helfgott|first = Harald A. |class=math.NT |year=2013}}</ref><ref>{{cite arXiv |eprint=1205.5252 |title = Minor arcs for Goldbach's problem |last = Helfgott|first = Harald A.|class=math.NT |year=2012}}</ref><ref>{{cite arXiv |eprint=1312.7748 |title = The ternary Goldbach conjecture is true|last = Helfgott|first = Harald A. |class=math.NT |year=2013}}</ref> *[[Prime gap#Further results|Existence of bounded gaps between arbitrarily large primes]] ([[Yitang Zhang]], [[Polymath Project|Polymath8]], [[James Maynard (mathematician)|James Maynard]], 2013)<ref>{{Cite journal|last=Zhang|first=Yitang|date=2014-05-01|title=Bounded gaps between primes|journal=Annals of Mathematics|volume=179|issue=3|pages=1121–1174|doi=10.4007/annals.2014.179.3.7|issn=0003-486X}}</ref><ref>{{Cite web|title=Bounded gaps between primes – Polymath Wiki|url=https://asone.ai/polymath/index.php?title=Bounded_gaps_between_primes|access-date=2021-08-27|website=asone.ai|archive-date=2020-12-08|archive-url=https://web.archive.org/web/20201208045925/https://asone.ai/polymath/index.php?title=Bounded_gaps_between_primes}}</ref><ref>{{Cite journal|last=Maynard|first=James|date=2015-01-01|title=Small gaps between primes|journal=Annals of Mathematics|pages=383–413|doi=10.4007/annals.2015.181.1.7|arxiv=1311.4600|s2cid=55175056|issn=0003-486X}}</ref> * [[Sidon sequence|Sidon set problem]] (Javier Cilleruelo, [[Imre Z. Ruzsa]], and Carlos Vinuesa, 2010)<ref>{{cite journal|title=Generalized Sidon sets|doi=10.1016/j.aim.2010.05.010 | volume=225|issue=5|journal=[[Advances in Mathematics]]|pages=2786–2807|year=2010 | last1 = Cilleruelo | first1 = Javier|hdl=10261/31032|s2cid=7385280|doi-access=free|hdl-access=free}}</ref> * [[Serre's modularity conjecture]] ([[Chandrashekhar Khare]] and [[Jean-Pierre Wintenberger]], 2008)<ref>{{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (I) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=485–504 |doi=10.1007/s00222-009-0205-7 |bibcode=2009InMat.178..485K |citeseerx=10.1.1.518.4611 |s2cid=14846347 }}</ref><ref>{{Citation |last1=Khare |first1=Chandrashekhar |last2=Wintenberger |first2=Jean-Pierre |year=2009 |title=Serre's modularity conjecture (II) |journal=Inventiones Mathematicae |volume=178 |issue=3 |pages=505–586 |doi=10.1007/s00222-009-0206-6 |bibcode=2009InMat.178..505K |citeseerx=10.1.1.228.8022 |s2cid=189820189 }}</ref><ref>{{cite journal |author=<!--Staff writer(s); no by-line.--> |title=2011 Cole Prize in Number Theory |url=https://www.ams.org/notices/201104/rtx110400610p.pdf |journal=[[Notices of the AMS]] |volume=58 |issue=4 |pages=610–611 |issn=1088-9477 |oclc=34550461 |access-date=2015-11-12 |archive-url=https://web.archive.org/web/20151106051835/http://www.ams.org/notices/201104/rtx110400610p.pdf |archive-date=2015-11-06 |url-status=live }}</ref> * [[Green–Tao theorem]] ([[Ben J. Green]] and [[Terence Tao]], 2004)<ref>{{cite journal |author=<!--Staff writer(s); no by-line.--> |date=May 2010 |title=Bombieri and Tao Receive King Faisal Prize |url=https://www.ams.org/notices/201005/rtx100500642p.pdf |journal=[[Notices of the AMS]] |volume=57 |issue=5 |pages=642–643 |issn=1088-9477 |oclc=34550461 |quote=Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem. |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160304063504/http://www.ams.org/notices/201005/rtx100500642p.pdf |archive-date=2016-03-04 |url-status=live }}</ref> * [[Mihăilescu's theorem|Catalan's conjecture]] ([[Preda Mihăilescu]], 2002)<ref>{{cite journal |last=Metsänkylä |first=Tauno |date=5 September 2003 |title=Catalan's conjecture: another old diophantine problem solved |url=https://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf |journal=[[Bulletin of the American Mathematical Society]] |volume=41 |issue=1 |pages=43–57 |issn=0273-0979 |quote=The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu. |doi=10.1090/s0273-0979-03-00993-5 |access-date=13 November 2015 |archive-url=https://web.archive.org/web/20160304082755/http://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf |archive-date=4 March 2016 |url-status=live }}</ref> * [[Erdős–Graham problem]] ([[Ernest S. Croot III]], 2000)<ref>{{cite book | last = Croot | first = Ernest S. III | author-link = Ernest S. Croot III | publisher = [[University of Georgia]], Athens | series = Ph.D. thesis | title = Unit Fractions | year = 2000}} {{cite journal | last = Croot | first = Ernest S. III | author-link = Ernest S. Croot III | arxiv = math.NT/0311421 | doi = 10.4007/annals.2003.157.545 | issue = 2 | journal = [[Annals of Mathematics]] | pages = 545–556 | title = On a coloring conjecture about unit fractions | volume = 157 | year = 2003| bibcode = 2003math.....11421C | s2cid = 13514070 }}</ref> ====20th century==== * [[Lafforgue's theorem]] ([[Laurent Lafforgue]], 1998)<ref>{{Citation | last1=Lafforgue | first1=Laurent | title=Chtoucas de Drinfeld et applications | language=fr | trans-title=Drinfelʹd shtukas and applications | url=http://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html | mr=1648105 | year=1998 | journal=Documenta Mathematica | issn=1431-0635 | volume=II | pages=563–570 | access-date=2016-03-18 | archive-url=https://web.archive.org/web/20180427200241/https://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html | archive-date=2018-04-27 | url-status=live }}</ref> * [[Fermat's Last Theorem]] ([[Andrew Wiles]] and [[Richard Taylor (mathematician)|Richard Taylor]], 1995)<ref>{{cite journal|last=Wiles|first=Andrew|author-link=Andrew Wiles|year=1995|title=Modular elliptic curves and Fermat's Last Theorem|url=http://math.stanford.edu/~lekheng/flt/wiles.pdf|journal=Annals of Mathematics|volume=141|issue=3|pages=443–551|oclc=37032255|doi=10.2307/2118559|jstor=2118559|citeseerx=10.1.1.169.9076|access-date=2016-03-06|archive-url=https://web.archive.org/web/20110510062158/http://math.stanford.edu/%7Elekheng/flt/wiles.pdf|archive-date=2011-05-10|url-status=live}}</ref><ref>{{cite journal |author=[[Richard Taylor (mathematician)|Taylor R]], [[Andrew Wiles|Wiles A]] |year=1995 |title=Ring theoretic properties of certain Hecke algebras |url=http://www.math.harvard.edu/~rtaylor/hecke.ps |journal=Annals of Mathematics |volume=141 |issue=3 |pages=553–572 |citeseerx=10.1.1.128.531 |doi=10.2307/2118560 |jstor=2118560 |oclc=37032255 |archive-url=https://web.archive.org/web/20000916161311/http://www.math.harvard.edu/~rtaylor/hecke.ps |archive-date=16 September 2000}}</ref> ===Ramsey theory=== * [[Burr–Erdős conjecture]] (Choongbum Lee, 2017)<ref>{{cite journal | last1 = Lee | first1 = Choongbum | year = 2017 | title = Ramsey numbers of degenerate graphs | journal = Annals of Mathematics | volume = 185 | issue = 3| pages = 791–829 | doi = 10.4007/annals.2017.185.3.2 | arxiv = 1505.04773 | s2cid = 7974973 }}</ref> * [[Boolean Pythagorean triples problem]] ([[Marijn Heule]], Oliver Kullmann, [[Victor W. Marek]], 2016)<ref>{{cite journal |last=Lamb |first=Evelyn |date=26 May 2016 |title=Two-hundred-terabyte maths proof is largest ever |journal=Nature |doi=10.1038/nature.2016.19990 |volume=534 |issue=7605 |pages=17–18 |pmid=27251254 |bibcode=2016Natur.534...17L|doi-access=free }}</ref><ref>{{cite book | last1 = Heule | first1 = Marijn J. H. | author1-link=Marijn Heule | last2 = Kullmann | first2 = Oliver | last3 = Marek | first3 = Victor W. | author3-link=Victor W. Marek | editor-last1 = Creignou | editor-first1 = N. | editor-last2 = Le Berre | editor-first2 = D. | arxiv = 1605.00723 | chapter = Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer | doi = 10.1007/978-3-319-40970-2_15 | mr = 3534782 | pages = 228–245 | publisher = Springer, [Cham] | series = Lecture Notes in Computer Science | title = Theory and Applications of Satisfiability Testing – SAT 2016 | volume = 9710 | year = 2016| isbn = 978-3-319-40969-6 | s2cid = 7912943 }}</ref> ===Theoretical computer science=== *[[Decision tree model#Sensitivity conjecture|Sensitivity conjecture]] for Boolean functions ([[Hao Huang (mathematician)|Hao Huang]], 2019)<ref>{{cite web |author=Linkletter, David |date=27 December 2019 |title=The 10 Biggest Math Breakthroughs of 2019 |url=https://www.popularmechanics.com/science/math/g30346822/biggest-math-breakthroughs-2019/ |access-date=20 June 2021 |work=[[Popular Mechanics]]}}</ref> ===Topology=== *Deciding whether the [[Conway knot]] is a [[slice knot]] ([[Lisa Piccirillo]], 2020)<ref>{{Cite journal |last=Piccirillo |first=Lisa |date=2020 |title=The Conway knot is not slice |url=https://annals.math.princeton.edu/2020/191-2/p05 |journal=[[Annals of Mathematics]] |volume=191 |issue=2 |pages=581–591 |doi=10.4007/annals.2020.191.2.5|s2cid=52398890 }}</ref><ref>{{Cite web |last=Klarreich |first=Erica |author-link=Erica Klarreich |date=2020-05-19 |title=Graduate Student Solves Decades-Old Conway Knot Problem |url=https://www.quantamagazine.org/graduate-student-solves-decades-old-conway-knot-problem-20200519/ |access-date=2022-08-17 |website=[[Quanta Magazine]] |language=en}}</ref> * [[Virtual Haken conjecture]] ([[Ian Agol]], Daniel Groves, Jason Manning, 2012)<ref>{{Cite journal | arxiv = 1204.2810v1 | last1 = Agol | first1 = Ian | title = The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves, and Jason Manning) | journal=Documenta Mathematica | volume=18 | date=2013 | pages=1045–1087 | doi = 10.4171/dm/421 | doi-access = free | s2cid = 255586740 | url=https://www.math.uni-bielefeld.de/documenta/vol-18/33.pdf}}</ref> (and by work of [[Daniel Wise (mathematician)|Daniel Wise]] also [[virtually fibered conjecture]]) * [[Hsiang–Lawson's conjecture]] ([[Simon Brendle]], 2012)<ref>{{Cite journal | arxiv=1203.6597 | last1 = Brendle | first1 = Simon | author1-link=Simon Brendle | title = Embedded minimal tori in <math>S^3</math> and the Lawson conjecture | journal=Acta Mathematica | volume=211 | issue=2 | pages=177–190 | date=2013 | doi=10.1007/s11511-013-0101-2 | doi-access=free}}</ref> * [[Ehrenpreis conjecture]] ([[Jeremy Kahn]], [[Vladimir Markovic]], 2011)<ref>{{Cite journal | arxiv=1101.1330 | last1=Kahn | first1=Jeremy | author1-link=Jeremy Kahn | last2=Markovic | first2=Vladimir | author2-link=Vladimir Markovic | title=The good pants homology and the Ehrenpreis conjecture | journal=Annals of Mathematics | pages=1–72 | volume=182 | date=2015 | issue=1 | doi=10.4007/annals.2015.182.1.1 | doi-access=free}}</ref> * [[Atiyah conjecture]] for groups with finite subgroups of unbounded order (Austin, 2009)<ref>{{cite journal | arxiv = 0909.2360 | last1 = Austin |first1 = Tim | title = Rational group ring elements with kernels having irrational dimension | journal = Proceedings of the London Mathematical Society | volume = 107 | issue = 6 | pages = 1424–1448 | date = December 2013 | doi = 10.1112/plms/pdt029 | bibcode = 2009arXiv0909.2360A|s2cid = 115160094}}</ref> * [[Cobordism hypothesis]] ([[Jacob Lurie]], 2008)<ref>{{cite journal | last1 = Lurie | first1 = Jacob | year = 2009 | title = On the classification of topological field theories | journal = Current Developments in Mathematics | volume = 2008 | pages = 129–280 | doi=10.4310/cdm.2008.v2008.n1.a3| bibcode = 2009arXiv0905.0465L | arxiv = 0905.0465 | s2cid = 115162503 }}</ref> * [[Spherical space form conjecture]] ([[Grigori Perelman]], 2006) * [[Poincaré conjecture]] ([[Grigori Perelman]], 2002)<ref name="auto">{{cite press release | publisher=[[Clay Mathematics Institute]] | date=March 18, 2010 | title=Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman | url=http://www.claymath.org/sites/default/files/millenniumprizefull.pdf | access-date=November 13, 2015 | quote=The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. | archive-url=https://web.archive.org/web/20100322192115/http://www.claymath.org/poincare/ | archive-date=March 22, 2010 | url-status=live }}</ref> * [[Geometrization conjecture]], ([[Grigori Perelman]],<ref name="auto" /> series of preprints in 2002–2003)<ref>{{Cite arXiv |eprint = 0809.4040|last1 = Morgan |first1 = John |title = Completion of the Proof of the Geometrization Conjecture|last2 = Tian|first2 = Gang|class = math.DG|year = 2008}}</ref> * [[Nikiel's conjecture]] ([[Mary Ellen Rudin]], 1999)<ref>{{cite journal | first1=M.E. | last1=Rudin | author-link1=Mary Ellen Rudin | title=Nikiel's Conjecture | journal=Topology and Its Applications | volume=116 | year=2001 | issue=3 | pages=305–331 | doi=10.1016/S0166-8641(01)00218-8 | doi-access=free}}</ref> * Disproof of the [[Ganea conjecture]] (Iwase, 1997)<ref>{{cite web|url=https://www.researchgate.net/publication/220032558|title=Ganea's Conjecture on Lusternik-Schnirelmann Category|author=Norio Iwase|date=1 November 1998|work=ResearchGate}}</ref> ===Uncategorised=== ====2010s==== * [[Erdős discrepancy problem]] ([[Terence Tao]], 2015)<ref>{{Cite arXiv |eprint = 1509.05363v5|last1 = Tao|first1 = Terence | author-link1=Terence Tao|title = The Erdős discrepancy problem|class = math.CO|year = 2015}}</ref> * [[Umbral moonshine]] conjecture (John F. R. Duncan, Michael J. Griffin, [[Ken Ono]], 2015)<ref>{{cite journal|title=Proof of the umbral moonshine conjecture|first1=John F. R.|last1=Duncan|first2=Michael J.|last2=Griffin|first3=Ken|last3=Ono|date=1 December 2015|journal=Research in the Mathematical Sciences|volume=2|issue=1|page=26|doi=10.1186/s40687-015-0044-7|bibcode=2015arXiv150301472D|arxiv=1503.01472|s2cid=43589605 |doi-access=free }}</ref> * Anderson conjecture on the finite number of diffeomorphism classes of the collection of 4-manifolds satisfying certain properties ([[Jeff Cheeger]], Aaron Naber, 2014)<ref>{{cite journal | arxiv=1406.6534 | last1=Cheeger | first1=Jeff | last2=Naber | first2=Aaron | title=Regularity of Einstein Manifolds and the Codimension 4 Conjecture | journal=Annals of Mathematics | pages=1093–1165 | volume=182 | issue=3 | date=2015 | doi=10.4007/annals.2015.182.3.5 | doi-access=free}}</ref> * [[Gaussian correlation inequality]] ([[Thomas Royen]], 2014)<ref>{{Cite magazine |last=Wolchover |first=Natalie |date=March 28, 2017 |title=A Long-Sought Proof, Found and Almost Lost |url=https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/ |url-status=live |magazine=[[Quanta Magazine]] |archive-url=https://web.archive.org/web/20170424133433/https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/ |archive-date=April 24, 2017 |access-date=May 2, 2017}}</ref> * Beck's conjecture on discrepancies of set systems constructed from three permutations (Alantha Newman, [[Aleksandar Nikolov (computer scientist)|Aleksandar Nikolov]], 2011)<ref>{{Cite arXiv |eprint = 1104.2922|last1=Newman |first1=Alantha | last2=Nikolov | first2=Aleksandar |title = A counterexample to Beck's conjecture on the discrepancy of three permutations|class = cs.DM|year = 2011}}</ref> * [[Bloch–Kato conjecture]] ([[Vladimir Voevodsky]], 2011)<ref>{{Cite web |url=https://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf |title=On motivic cohomology with Z/''l''-coefficients |last=Voevodsky |first=Vladimir |access-date=2016-03-18 |archive-url=https://web.archive.org/web/20160327035457/http://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf |location=Princeton, NJ |website=annals.math.princeton.edu |publisher=[[Princeton University]] |date=1 July 2011|volume=174|issue=1|pages=401–438|archive-date=2016-03-27 |url-status=live }}</ref> (and [[Quillen–Lichtenbaum conjecture]] and by work of [[Thomas Geisser (mathematician)|Thomas Geisser]] and [[Marc Levine (mathematician)|Marc Levine]] (2001) also [[Norm residue isomorphism theorem#Beilinson–Lichtenbaum conjecture|Beilinson–Lichtenbaum conjecture]]<ref>{{cite journal | last1 = Geisser | first1 = Thomas | last2 = Levine | first2 = Marc | doi = 10.1515/crll.2001.006 | journal = Journal für die Reine und Angewandte Mathematik | mr = 1807268 | pages = 55–103 | title = The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky | volume = 2001 | year = 2001| issue = 530 }}</ref><ref>{{cite web |last=Kahn |first=Bruno |title=Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry |url=https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf |url-status=live |archive-url=https://web.archive.org/web/20160327035553/https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf |archive-date=2016-03-27 |access-date=2016-03-18 |website=webusers.imj-prg.fr}}</ref>{{Rp|page=359}}<ref>{{cite web|url=https://mathoverflow.net/q/87162 |title=motivic cohomology – Milnor–Bloch–Kato conjecture implies the Beilinson-Lichtenbaum conjecture – MathOverflow|access-date=2016-03-18 }}</ref>) ====2000s==== * [[Kauffman–Harary conjecture]] (Thomas Mattman, Pablo Solis, 2009)<ref>{{Cite journal | arxiv = 0906.1612 | last1 = Mattman |first1 = Thomas W. | last2 = Solis | first2 = Pablo | title = A proof of the Kauffman-Harary Conjecture | journal = Algebraic & Geometric Topology | volume = 9 | issue = 4 | pages = 2027–2039 | year = 2009 | doi = 10.2140/agt.2009.9.2027 | bibcode = 2009arXiv0906.1612M | s2cid = 8447495}}</ref> * [[Surface subgroup conjecture]] ([[Jeremy Kahn]], [[Vladimir Markovic]], 2009)<ref>{{cite journal | arxiv=0910.5501 | last1 = Kahn | first1 = Jeremy | last2 = Markovic | first2 = Vladimir | title = Immersing almost geodesic surfaces in a closed hyperbolic three manifold | journal = Annals of Mathematics | pages=1127–1190 | volume=175 | issue=3 | year=2012 | doi=10.4007/annals.2012.175.3.4 | doi-access=free}}</ref> * [[Normal scalar curvature conjecture]] and the [[Böttcher–Wenzel conjecture]] (Zhiqin Lu, 2007)<ref>{{cite journal | first=Zhiqin | last=Lu | orig-date=2007 | title=Normal Scalar Curvature Conjecture and its applications | arxiv=0711.3510 | journal=Journal of Functional Analysis | volume=261 | issue=5 | date=September 2011 | pages=1284–1308 | doi=10.1016/j.jfa.2011.05.002 | doi-access=free}}</ref> * [[Nirenberg–Treves conjecture]] ([[Nils Dencker]], 2005)<ref>{{citation |last=Dencker |first=Nils |author-link=Nils Dencker |title=The resolution of the Nirenberg–Treves conjecture |journal=[[Annals of Mathematics]] |volume=163 |issue=2 |year=2006 |pages=405–444 |url=https://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf |doi=10.4007/annals.2006.163.405 |s2cid=16630732 |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20180720145723/http://annals.math.princeton.edu/wp-content/uploads/annals-v163-n2-p02.pdf |archive-date=2018-07-20 |url-status=live }}</ref><ref>{{cite web |url=https://www.claymath.org/research |title=Research Awards |website=[[Clay Mathematics Institute]] |access-date=2019-04-07 |archive-url=https://web.archive.org/web/20190407160116/https://www.claymath.org/research |archive-date=2019-04-07 |url-status=live }}</ref> * [[Peter Lax|Lax conjecture]] ([[Adrian Lewis (mathematician)|Adrian Lewis]], [[Pablo Parrilo]], Motakuri Ramana, 2005)<ref>{{cite journal | last1 = Lewis | first1 = A. S. | last2 = Parrilo | first2 = P. A. | last3 = Ramana | first3 = M. V. | doi = 10.1090/S0002-9939-05-07752-X | issue = 9 | journal = Proceedings of the American Mathematical Society | mr = 2146191 | pages = 2495–2499 | title = The Lax conjecture is true | volume = 133 | year = 2005| s2cid = 17436983 }}</ref> * The [[Langlands–Shelstad fundamental lemma]] ([[Ngô Bảo Châu]] and [[Gérard Laumon]], 2004)<ref>{{cite web |url=http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau |title=Fields Medal – Ngô Bảo Châu |author=<!--Staff writer(s); no by-line.--> |date=19 August 2010 |website=International Congress of Mathematicians 2010 |publisher=ICM |access-date=2015-11-12 |quote=Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods. |archive-url=https://web.archive.org/web/20150924032610/http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau |archive-date=24 September 2015 |url-status=live }}</ref> * [[Milnor conjecture (K-theory)|Milnor conjecture]] ([[Vladimir Voevodsky]], 2003)<ref>{{cite journal |title=Reduced power operations in motivic cohomology |pages=1–57|journal=Publications Mathématiques de l'IHÉS |volume=98 |year=2003 |last1=Voevodsky |first1=Vladimir |doi=10.1007/s10240-003-0009-z |citeseerx=10.1.1.170.4427 |url=http://archive.numdam.org/item/PMIHES_2003__98__1_0/ |access-date=2016-03-18 |url-status=live |archive-url=https://web.archive.org/web/20170728114725/http://archive.numdam.org/item/PMIHES_2003__98__1_0 |archive-date=2017-07-28 |arxiv=math/0107109 |s2cid=8172797}}</ref> * [[Kirillov's conjecture]] (Ehud Baruch, 2003)<ref>{{cite journal | last = Baruch | first = Ehud Moshe | doi = 10.4007/annals.2003.158.207 | issue = 1 | journal = Annals of Mathematics | mr = 1999922 | pages = 207–252 | series = Second Series | title = A proof of Kirillov's conjecture | volume = 158 | year = 2003}}</ref> * [[Kouchnirenko's conjecture]] (Bertrand Haas, 2002)<ref>{{Cite journal |last=Haas |first=Bertrand |date=2002 |title=A Simple Counterexample to Kouchnirenko's Conjecture |url=https://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf |url-status=live |journal=Beiträge zur Algebra und Geometrie |volume=43 |issue=1 |pages=1–8 |archive-url=https://web.archive.org/web/20161007091417/http://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf |archive-date=2016-10-07 |access-date=2016-03-18}}</ref> * [[n! conjecture|''n''! conjecture]] ([[Mark Haiman]], 2001)<ref>{{cite journal | last = Haiman | first = Mark | doi = 10.1090/S0894-0347-01-00373-3 | issue = 4 | journal = Journal of the American Mathematical Society | mr = 1839919 | pages = 941–1006 | title = Hilbert schemes, polygraphs and the Macdonald positivity conjecture | volume = 14 | year = 2001| s2cid = 9253880 }}</ref> (and also [[Macdonald polynomials#The Macdonald positivity conjecture|Macdonald positivity conjecture]]) * [[Kato's conjecture]] ([[Pascal Auscher]], [[Steve Hofmann]], [[Michael Lacey (mathematician)|Michael Lacey]], [[Alan Gaius Ramsay McIntosh|Alan McIntosh]], and Philipp Tchamitchian, 2001)<ref>{{cite journal | last1 = Auscher | first1 = Pascal | last2 = Hofmann | first2 = Steve | last3 = Lacey | first3 = Michael | last4 = McIntosh | first4 = Alan | last5 = Tchamitchian | first5 = Ph. | doi = 10.2307/3597201 | issue = 2 | journal = Annals of Mathematics | mr = 1933726 | pages = 633–654 | series = Second Series | title = The solution of the Kato square root problem for second order elliptic operators on <math>\mathbb{R}^n</math> | volume = 156 | year = 2002| jstor = 3597201 }}</ref> * [[Deligne's conjecture on 1-motives]] (Luca Barbieri-Viale, Andreas Rosenschon, [[Morihiko Saito]], 2001)<ref>{{cite journal | arxiv=math/0102150 | last1=Barbieri-Viale |first1=Luca | last2=Rosenschon | first2=Andreas | last3=Saito | first3=Morihiko | title = Deligne's Conjecture on 1-Motives | journal=Annals of Mathematics | pages=593–633 | volume=158 | date=2003 | issue=2 | doi=10.4007/annals.2003.158.593 | doi-access=free}}</ref> * [[Modularity theorem]] ([[Christophe Breuil]], [[Brian Conrad]], [[Fred Diamond]], and [[Richard Taylor (mathematician)|Richard Taylor]], 2001)<ref>{{Citation | last1=Breuil | first1=Christophe | last2=Conrad | first2=Brian | last3=Diamond | first3=Fred | last4=Taylor | first4=Richard | title=On the modularity of elliptic curves over '''Q''': wild 3-adic exercises | doi=10.1090/S0894-0347-01-00370-8 | mr=1839918 | year=2001 | journal=[[Journal of the American Mathematical Society]] | issn=0894-0347 | volume=14 | issue=4 | pages=843–939| doi-access=free }}</ref> * [[Erdős–Stewart conjecture]] ([[Florian Luca]], 2001)<ref>{{Cite journal|url=https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf|doi=10.1090/s0025-5718-00-01178-9|title=On a conjecture of Erdős and Stewart|journal=Mathematics of Computation|volume=70|issue=234|pages=893–897|year=2000|last1=Luca|first1=Florian|access-date=2016-03-18|archive-url=https://web.archive.org/web/20160402030443/http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf|archive-date=2016-04-02|url-status=live|bibcode=2001MaCom..70..893L}}</ref> * [[Berry–Robbins problem]] ([[Michael Atiyah]], 2000)<ref>{{cite book | last = Atiyah | first = Michael | author-link = Michael Atiyah | editor-last = Yau | editor-first = Shing-Tung | editor-link = Shing-Tung Yau | contribution = The geometry of classical particles | doi = 10.4310/SDG.2002.v7.n1.a1 | mr = 1919420 | pages = 1–15 | publisher = International Press | location = Somerville, Massachusetts | series = Surveys in Differential Geometry | title = Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer | volume = 7 | year = 2000}} </ref> == See also == * [[List of conjectures]] * [[List of unsolved problems in statistics]] * [[List of unsolved problems in computer science]] * [[List of unsolved problems in physics]] * [[Lists of unsolved problems]] * ''[[Open Problems in Mathematics]]'' * ''[[The Great Mathematical Problems]]'' *[[Scottish Book]] ==Notes== {{notelist}} == References == {{reflist|colwidth=30em}} == Further reading == === Books discussing problems solved since 1995 === * {{cite book |last=Singh |first=Simon |author-link=Simon Singh |date=2002 |title=Fermat's Last Theorem |publisher=Fourth Estate |isbn=978-1-84115-791-7|title-link=Fermat's Last Theorem (book) }} * {{cite book |last=O'Shea |first=Donal |author-link=Donal O'Shea| date=2007 |title=The Poincaré Conjecture |publisher=Penguin |isbn=978-1-84614-012-9}} * {{cite book |last=Szpiro |first=George G. |author-link=George Szpiro| date=2003 |title=Kepler's Conjecture |publisher=Wiley |isbn=978-0-471-08601-7}} * {{cite book |last=Ronan |first=Mark |author-link=Mark Ronan| date=2006 |title=Symmetry and the Monster |publisher=Oxford |isbn=978-0-19-280722-9}} === Books discussing unsolved problems === * {{cite book |first1=Fan|last1= Chung|author-link1=Fan Chung |last2=Graham |first2=Ron |author-link2=Ronald Graham| title=Erdös on Graphs: His Legacy of Unsolved Problems|title-link= Erdős on Graphs |publisher=AK Peters |year=1999 |isbn=978-1-56881-111-6}} * {{cite book |last1=Croft |first1=Hallard T. |last2=Falconer |first2=Kenneth J. |last3=Guy |first3=Richard K. |author-link2=Kenneth Falconer (mathematician) |author-link3=Richard K. Guy |date=1994 |title=Unsolved Problems in Geometry |publisher=Springer |isbn=978-0-387-97506-1 |url-access=registration |url=https://archive.org/details/unsolvedproblems0000crof }} * {{cite book |last=Guy |first=Richard K. |author-link=Richard K. Guy |date=2004 |title=Unsolved Problems in Number Theory |publisher=Springer |isbn=978-0-387-20860-2}} * {{cite book |last1=Klee |first1=Victor |author-link1=Victor Klee |last2=Wagon |first2=Stan |author-link2=Stan Wagon |date=1996 |title=Old and New Unsolved Problems in Plane Geometry and Number Theory |url=https://archive.org/details/oldnewunsolvedpr0000klee |url-access=registration |publisher=The Mathematical Association of America |isbn=978-0-88385-315-3}} * {{cite book |last=du Sautoy |first=Marcus |author-link=Marcus du Sautoy |date=2003 |title=The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics |publisher=Harper Collins |isbn=978-0-06-093558-0 |url-access=registration |url=https://archive.org/details/musicofprimes00marc }} * {{cite book |last=Derbyshire |first=John |author-link=John Derbyshire |date=2003 |title=Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics |publisher=Joseph Henry Press |isbn=978-0-309-08549-6 |url-access=registration |url=https://archive.org/details/primeobsessionbe00derb_0 }} * {{cite book |last=Devlin |first=Keith |author-link=Keith Devlin |date=2006 |title=The Millennium Problems – The Seven Greatest Unsolved* Mathematical Puzzles Of Our Time |publisher=Barnes & Noble |isbn=978-0-7607-8659-8}} * {{cite book |last1=Blondel |first1=Vincent D. |last2=Megrestski |first2=Alexandre |author-link1=Vincent Blondel |date=2004 |title=Unsolved problems in mathematical systems and control theory |publisher=Princeton University Press |isbn=978-0-691-11748-5}} * {{cite book |first1=Lizhen|last1= Ji|author-link1=Lizhen Ji |first2=Yat-Sun|last2= Poon |first3=Shing-Tung|last3= Yau|author-link3=Shing-Tung Yau |date=2013 |title=Open Problems and Surveys of Contemporary Mathematics (volume 6 in the Surveys in Modern Mathematics series) (Surveys of Modern Mathematics) |publisher=International Press of Boston |isbn=978-1-57146-278-7}} * {{cite journal |last=Waldschmidt |first=Michel |author-link=Michel Waldschmidt |date=2004 |title=Open Diophantine Problems |journal=Moscow Mathematical Journal |issn=1609-3321 |zbl=1066.11030 |volume=4 |number=1 |pages=245–305 |url=http://www.math.jussieu.fr/~miw/articles/pdf/odp.pdf |doi=10.17323/1609-4514-2004-4-1-245-305 |arxiv=math/0312440 |s2cid=11845578 }} * {{cite arXiv |last1=Mazurov |first1=V. D. |author-link1=Victor Mazurov |last2=Khukhro |first2=E. I. |eprint=1401.0300v6 |title= Unsolved Problems in Group Theory. The Kourovka Notebook. No. 18 (English version) |date= 1 Jun 2015|class=math.GR }} == External links == * [http://faculty.evansville.edu/ck6/integer/unsolved.html 24 Unsolved Problems and Rewards for them] * [http://www.openproblems.net/ List of links to unsolved problems in mathematics, prizes and research] * [http://garden.irmacs.sfu.ca/ Open Problem Garden] * [http://aimpl.org/ AIM Problem Lists] * [http://cage.ugent.be/~hvernaev/problems/archive.html Unsolved Problem of the Week Archive]. MathPro Press. * {{cite web|last1=Ball|first1=John M.|author-link=John M. Ball|title=Some Open Problems in Elasticity|url=https://people.maths.ox.ac.uk/ball/Articles%20in%20Conference%20Proceedings%20and%20Books/JMB%202002%20re%20Marsden%2060th.pdf}} * {{cite web|last1=Constantin|first1=Peter|author-link=Peter Constantin|title=Some open problems and research directions in the mathematical study of fluid dynamics|url=https://web.math.princeton.edu/~const/2k.pdf}} * {{cite web|last1=Serre|first1=Denis|author-link=Denis Serre|title=Five Open Problems in Compressible Mathematical Fluid Dynamics|url=http://www.umpa.ens-lyon.fr/~serre/DPF/Ouverts.pdf}} * [http://unsolvedproblems.org/ Unsolved Problems in Number Theory, Logic and Cryptography] * [http://www.sci.ccny.cuny.edu/~shpil/gworld/problems/oproblems.html 200 open problems in graph theory] {{Webarchive|url=https://web.archive.org/web/20170515145908/http://www.sci.ccny.cuny.edu/~shpil/gworld/problems/oproblems.html |date=2017-05-15 }} * [http://cs.smith.edu/~orourke/TOPP/ The Open Problems Project (TOPP)], discrete and computational geometry problems * [http://math.berkeley.edu/~kirby/problems.ps.gz Kirby's list of unsolved problems in low-dimensional topology] * [http://www.math.ucsd.edu/~erdosproblems/ Erdös' Problems on Graphs] * [https://arxiv.org/abs/1409.2823 Unsolved Problems in Virtual Knot Theory and Combinatorial Knot Theory] * [http://www.sciencedirect.com/science/article/pii/S0165011414003194 Open problems from the 12th International Conference on Fuzzy Set Theory and Its Applications] * [http://wwwmath.uni-muenster.de/logik/Personen/rds/list.html List of open problems in inner model theory] * {{cite web|last1=Aizenman|first1=Michael|author-link=Michael Aizenman|title=Open Problems in Mathematical Physics|url=https://web.math.princeton.edu/~aizenman/OpenProblems_MathPhys/OPlist.html}} * [[Barry Simon]]'s [http://math.caltech.edu/SimonPapers/R27.pdf 15 Problems in Mathematical Physics] * [[Alexandre Eremenko]]. [https://www.math.purdue.edu/~eremenko/uns1.html Unsolved problems in Function Theory] * [https://www.erdosproblems.com/start Erdos Problems collection] {{unsolved problems}} {{DEFAULTSORT:Unsolved problems in mathematics}} [[Category:Unsolved problems in mathematics| ]] <!--Keep at start of list (eponymous category) --> [[Category:Conjectures| ]] [[Category:Lists of unsolved problems|Mathematics]] [[Category:Lists of problems]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:CS1 config
(
edit
)
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite magazine
(
edit
)
Template:Cite news
(
edit
)
Template:Cite press release
(
edit
)
Template:Cite web
(
edit
)
Template:Dynamic list
(
edit
)
Template:Efn
(
edit
)
Template:Further
(
edit
)
Template:Hatnote
(
edit
)
Template:Langx
(
edit
)
Template:Main
(
edit
)
Template:Main articles
(
edit
)
Template:Mvar
(
edit
)
Template:Notelist
(
edit
)
Template:Nowrap
(
edit
)
Template:Pp
(
edit
)
Template:Prime number conjectures
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:SpringerEOM
(
edit
)
Template:Unsolved problems
(
edit
)
Template:Webarchive
(
edit
)