Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Local class field theory
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]], '''local class field theory''', introduced by [[Helmut Hasse]],<ref>{{Citation | last1=Hasse | first1=H. | author1-link=Helmut Hasse | title=Die Normenresttheorie relativ-Abelscher Zahlkörper als Klassenkörpertheorie im Kleinen. | url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002171171 | language=de | doi=10.1515/crll.1930.162.145 | jfm=56.0165.03 | year=1930 | journal=[[Journal für die reine und angewandte Mathematik]] | issn=0075-4102 | volume=1930 | issue=162 | pages=145–154| s2cid=116860448| url-access=subscription }}</ref> is the study of [[abelian extension]]s of [[local field]]s; here, "local field" means a field which is complete with respect to an [[Absolute value (algebra)|absolute value]] or a [[discrete valuation]] with a finite [[residue field]]: hence every local field is [[isomorphic]] (as a [[topological field]]) to the [[real numbers]] '''R''', the [[complex numbers]] '''C''', a [[finite extension]] of the [[p-adic number|''p''-adic number]]s '''Q'''<sub>''p''</sub> (where ''p'' is any [[prime number]]), or the field of [[formal Laurent series]] '''F'''<sub>''q''</sub>((''T'')) over a [[finite field]] '''F'''<sub>''q''</sub>. ==Approaches to local class field theory== Local class field theory gives a description of the [[Galois group]] ''G'' of the maximal abelian extension of a local field ''K'' via the reciprocity map which acts from the multiplicative group ''K''<sup>×</sup>=''K''\{0}. For a finite abelian extension ''L'' of ''K'' the reciprocity map induces an isomorphism of the quotient group ''K''<sup>×</sup>/''N''(''L''<sup>×</sup>) of ''K''<sup>×</sup> by the [[norm group]] ''N''(''L''<sup>×</sup>) of the extension ''L''<sup>×</sup> to the Galois group Gal(''L''/''K'') of the extension.<ref name="d1xPt">[[Ivan Fesenko|Fesenko, Ivan]] and Vostokov, Sergei, [http://www.maths.nott.ac.uk/personal/ibf/book/book.html ''Local Fields and their Extensions''], 2nd ed., [[American Mathematical Society]], 2002, {{isbn|0-8218-3259-X}}</ref> The existence theorem in local class field theory establishes a one-to-one correspondence between open subgroups of finite [[index of a subgroup|index]] in the multiplicative group ''K''<sup>×</sup> and finite abelian extensions of the field ''K''. For a finite abelian extension ''L'' of ''K'' the corresponding open subgroup of finite index is the norm group ''N''(''L''<sup>×</sup>). The reciprocity map sends higher groups of units to higher ramification subgroups.<ref name="d1xPt" /><sup>Ch. 4</sup> Using the local reciprocity map, one defines the Hilbert symbol and its generalizations. Finding explicit formulas for it is one of subdirections of the theory of local fields, it has a long and rich history, see e.g. [[Sergei Vostokov]]'s review.<ref name="ksS2P">{{cite journal|title=Sergei V Vostokov, Explicit formulas for the Hilbert symbol, In Invitation to higher local fields |journal=Geometry & Topology Monographs |volume=3 |year=2000 |pages=81–90 |doi=10.2140/gtm.2000.3 |url=http://msp.org/gtm/2000/03/ |editor-last1=Fesenko |editor-last2=Kurihara |editor-first1=Ivan |editor-first2=Masato|url-access=subscription }}</ref> There are [[cohomology|cohomological]] approaches and non-cohomological approaches to local class field theory. Cohomological approaches tend to be non-explicit, since they use the [[cup product]] of the first [[Galois cohomology]] groups. For various approaches to local class field theory see Ch. IV and sect. 7 Ch. IV of.<ref name="d1xPt" /> They include the Hasse approach of using the [[Brauer group]], cohomological approaches, the explicit methods of [[Jürgen Neukirch]], [[Michiel Hazewinkel]], the [[Lubin-Tate theory]] and others. ==Generalizations of local class field theory== Generalizations of local class field theory to local fields with quasi-finite residue field were easy extensions of the theory, obtained by G. Whaples in the 1950s.<ref name="ksS2P" /><sup>ch. V</sup> Explicit p-class field theory for local fields with [[perfect field|perfect]] and imperfect residue fields which are not finite has to deal with the new issue of norm groups of infinite index. Appropriate theories were constructed by [[Ivan Fesenko]].<ref>{{cite journal |title=Local class field theory: perfect residue field case |author=I. Fesenko | publisher=Russian Academy of Sciences |journal=Izvestiya: Mathematics |volume=43 |number=1 |year=1994 |pages=65–81|doi=10.1070/IM1994v043n01ABEH001559 |bibcode=1994IzMat..43...65F}}</ref><ref>{{Cite journal |last=Fesenko |first=I. |title=On general local reciprocity maps|journal=[[Journal für die reine und angewandte Mathematik]] |volume=473 |year=1996 |pages=207–222}}</ref> Fesenko's noncommutative local class field theory for arithmetically profinite Galois extensions of local fields studies appropriate local reciprocity cocycle map and its properties.<ref>{{Cite book |last=Fesenko |first=I. |chapter=Nonabelian local reciprocity maps |title=Class Field Theory – Its Centenary and Prospect, Advanced Studies in Pure Math |year=2001 |pages=63–78 |publisher=Mathematical Society of Japan |isbn = 4-931469-11-6}}</ref> This arithmetic theory can be viewed as an alternative to the [[representation theory|representation-theoretical]] [[local Langlands correspondence]]. ==Higher local class field theory== For a [[Higher local field|higher-dimensional local field]] <math>K</math> there is a higher local reciprocity map which describes abelian extensions of the field in terms of open subgroups of finite index in the [[Milnor K-group]] of the field. Namely, if <math>K</math> is an <math>n</math>-dimensional local field then one uses <math>\mathrm{K}^{\mathrm{M}}_n(K)</math> or its separated quotient endowed with a suitable topology. When <math>n=1</math> the theory becomes the usual local class field theory. Unlike the classical case, Milnor K-groups do not satisfy Galois module descent if <math>n>1</math>. General higher-dimensional local class field theory was developed by [[Kazuya Kato|K. Kato]] and [[Ivan Fesenko|I. Fesenko]]. Higher local class field theory is part of [[higher class field theory]] which studies abelian extensions (resp. abelian covers) of [[Function field (scheme theory)|rational function fields]] of [[proper scheme|proper]] [[Regular scheme|regular]] [[scheme (mathematics)|schemes]] [[flat morphism|flat]] over integers. ==References== {{reflist}} ==Further reading== *{{Citation | last1=Fesenko | first1=Ivan | last2=Vostokov | first2=Sergey |title=Local Fields and their Extensions |edition=2nd | url=https://www.maths.nottingham.ac.uk/personal/ibf/book/book.html | publisher=American Mathematical Society | isbn=978-0-19-504030-2 | year=2002}} * {{Citation| editor-last=Fesenko| editor-first=Ivan B.| editor-link=Ivan Fesenko| editor2-last=Kurihara | editor2-first=Masato| title=Invitation to Higher Local Fields| publisher=[[Mathematical Sciences Publishers]]| location= University of Warwick| year=2000| series=Geometry & Topology Monographs | volume=3| edition=First| doi=10.2140/gtm.2000.3 | issn=1464-8989 | zbl=0954.00026 }} *{{Citation | last1=Iwasawa | first1=Kenkichi | title=Local class field theory | url=https://books.google.com/books?id=iJ7vAAAAMAAJ | publisher=The Clarendon Press Oxford University Press | series=Oxford Science Publications | isbn=978-0-19-504030-2 | mr=863740 | year=1986}} *{{Citation | last1=Neukirch | first1=Jürgen | author1-link=Jürgen Neukirch | title=Class field theory | url=https://books.google.com/books?id=5_vuAAAAMAAJ | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] | isbn=978-3-540-15251-4 | mr=819231 | year=1986 | volume=280}} *{{Citation | last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | editor1-last=Cassels | editor1-first=John William Scott | editor2-last=Fröhlich | editor2-first=Albrecht | title=Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) | url=https://books.google.com/books?id=DQP_RAAACAAJ | publisher=Thompson, Washington, D.C. | isbn=978-0-9502734-2-6 | mr=0220701 | year=1967 | chapter=Local class field theory | pages=128–161}} *{{Citation | last1=Serre | first1=Jean-Pierre | title=Corps Locaux (English translation: Local Fields) | orig-year=1962 | url=https://books.google.com/books?id=DAxlMdw_QloC | publisher=[[Springer-Verlag]] | location=Berlin, New York | series=Graduate Texts in Mathematics | isbn=978-0-387-90424-5 | mr=0150130 | year=1979 | volume=67}} [[Category:Class field theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Isbn
(
edit
)
Template:Reflist
(
edit
)