Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logical NOR
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Binary operation that is true if and only if both operands are false}} {{About|NOR in the logical sense|the electronic gate|NOR gate|other uses|Nor (disambiguation){{!}}Nor}} {{Redirect-distinguish|Webb operation|Web operations}} {{Redirect-distinguish-text|Peirce arrow|[[Pierce-Arrow]], an automobile manufacturer}} {{Use dmy dates|date=May 2023|cs1-dates=y}} {{Use list-defined references|date=May 2023}} {{Infobox logical connective | title = Logical NOR | other titles = NOR | wikifunction = Z10231 | Venn diagram = Venn1000.svg | definition = <math>\overline{x + y}</math> | truth table = <math>(0001)</math> | logic gate = NOR_ANSI.svg | DNF = <math>\overline{x} \cdot \overline{y}</math> | CNF = <math>\overline{x} \cdot \overline{y}</math> | Zhegalkin = <math>1 \oplus x \oplus y \oplus xy</math> | 0-preserving = no | 1-preserving = no | monotone = no | affine = no | self-dual = no }} {{Logical connectives sidebar}} {{C. S. Peirce articles}} In [[Boolean logic]], '''logical NOR''','''<ref name=":13">{{Cite book |last=Howson |first=Colin |title=Logic with trees: an introduction to symbolic logic |date=1997 |publisher=Routledge |isbn=978-0-415-13342-5 |location=London; New York |pages=43}}</ref>''' '''non-disjunction''', or '''joint denial<ref name=":13" />''' is a truth-functional operator which produces a result that is the negation of [[logical disjunction|logical or]]. That is, a sentence of the form (''p'' NOR ''q'') is true precisely when neither ''p'' nor ''q'' is true—i.e. when both ''p'' and ''q'' are ''false''. It is logically equivalent to <math>\neg(p \lor q)</math> and <math>\neg p \land \neg q</math>, where the symbol <math>\neg</math> signifies logical [[negation]], <math>\lor</math> signifies [[logical disjunction|OR]], and <math>\land</math> signifies [[logical conjunction|AND]]. Non-disjunction is usually denoted as <math>\downarrow</math> or <math>\overline{\vee}</math> or <math>X</math> (prefix) or <math>\operatorname{NOR}</math>. As with its [[duality (mathematics)|dual]], the [[NAND operator]] (also known as the [[Sheffer stroke]]—symbolized as either <math>\uparrow</math>, <math>\mid</math> or <math>/</math>), NOR can be used by itself, without any other logical operator, to constitute a logical [[formal system]] (making NOR [[functional completeness|functionally complete]]). The [[computer]] used in the spacecraft that first carried humans to the [[moon]], the [[Apollo Guidance Computer]], was constructed entirely using NOR gates with three inputs.<ref name="Hall_1996"/> ==Definition== The '''NOR operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both operands are false. In other words, it produces a value of ''false'' if and only if at least one operand is true. ===Truth table=== The [[truth table]] of <math>A \downarrow B</math> is as follows: {{2-ary truth table|1|0|0|0|<math>A \downarrow B</math>}} ===Logical equivalences=== The logical NOR <math>\downarrow</math> is the negation of the disjunction: {| style="text-align: center; border: 1px solid darkgray;" |- |<math>P \downarrow Q</math> | <math>\Leftrightarrow</math> |<math>\neg (P \lor Q)</math> |- |[[File:Venn1000.svg|50px]] | <math>\Leftrightarrow</math> |<math>\neg</math> [[File:Venn0111.svg|50px]] |} ==Alternative notations and names== [[Charles Sanders Peirce|Peirce]] is the first to show the functional completeness of non-disjunction while he doesn't publish his result.<ref name="peirce1880">{{cite encyclopedia |last1=Peirce |first1=C. S. |title=A Boolian Algebra with One Constant |encyclopedia=Collected Papers of Charles Sanders Peirce, Volume IV The Simplest Mathematics |editor1-last=Hartshorne |editor1-first=C. |editor2-last=Weiss |editor2-first=P. |orig-date=1880 |date=1933 |pages=13–18 |location=Massachusetts |publisher=Harvard University Press}}</ref><ref name="peirce1902">{{cite encyclopedia |last1=Peirce |first1=C. S. |title=The Simplest Mathematics |encyclopedia=Collected Papers of Charles Sanders Peirce, Volume IV The Simplest Mathematics |editor1-last=Hartshorne |editor1-first=C. |editor2-last=Weiss |editor2-first=P. |orig-date=1902 |date=1933 |pages=189–262 |location=Massachusetts |publisher=Harvard University Press}}</ref> Peirce used <math>\overline{\curlywedge}</math> for [[Sheffer stroke|non-conjunction]] and <math>\curlywedge</math> for non-disjunction (in fact, what Peirce himself used is <math>\curlywedge</math> and he didn't introduce <math>\overline{\curlywedge}</math> while Peirce's editors made such disambiguated use).<ref name="peirce1902"/> Peirce called <math>\curlywedge</math> the '''{{visible anchor|ampheck}}''' (from Ancient Greek {{lang|grc|ἀμφήκης}}, {{transliteration|grc|amphēkēs}}, "cutting both ways").<ref name="peirce1902"/> In 1911, {{ill|Edward Stamm|lt=Stamm|pl}} was the first to publish a description of both non-conjunction (using <math>\sim</math>, the Stamm hook), and non-disjunction (using <math>*</math>, the Stamm star), and showed their functional completeness.<ref name="Stamm_1911"/><ref>{{cite web |last1=Zach |first1=R. |title=Sheffer stroke before Sheffer: Edward Stamm |url=https://richardzach.org/2023/02/sheffer-stroke-before-sheffer-edward-stamm/ |date=18 February 2023|access-date=2 July 2023}}</ref> Note that most uses in logical notation of <math>\sim</math> use this for negation. In 1913, [[Henry Maurice Sheffer|Sheffer]] described non-disjunction and showed its functional completeness. Sheffer used <math>\mid</math> for non-conjunction, and <math>\wedge</math> for non-disjunction. In 1935, [[Donald L. Webb|Webb]] described non-disjunction for <math>n</math>-valued logic, and use <math>\mid</math> for the operator. So some people call it '''Webb operator''',<ref name="Webb_1935"/> '''Webb operation'''<ref name="Vasyukevich_2011"/> or '''Webb function'''.<ref name="Freimann-Renfro-Webb_2017"/> In 1940, [[Willard Van Orman Quine|Quine]] also described non-disjunction and use <math>\downarrow</math> for the operator.<ref name="quine1940">{{cite book |last1=Quine |first1=W. V |title=Mathematical Logic |date=1981 |orig-date=1940 |publisher=Harvard University Press |location=Cambridge, London, New York, New Rochelle, Melbourne and Sydney |edition=Revised |page=45}}</ref> So some people call the operator '''Peirce arrow''' or '''Quine dagger'''. In 1944, [[Alonzo Church|Church]] also described non-disjunction and use <math>\overline{\vee}</math> for the operator.<ref name="church1944">{{cite book |last1=Church |first1=A. |title=Introduction to Mathematical Logic |orig-date=1944|date=1996 |publisher=Princeton University Press |location=New Jersey |page=37}}</ref> In 1954, [[Józef Maria Bocheński|Bocheński]] used <math>X</math> in <math>Xpq</math> for non-disjunction in [[Polish notation]].<ref name="Bochenski1954">{{cite book |last1=Bocheński |first1=J. M. |title=Précis de logique mathématique |date=1954 |location=Netherlands |publisher=F. G. Kroonder, Bussum, Pays-Bas |language=French |page=11}}</ref> [[APL (programming language)|APL]] uses a glyph {{code|⍱}} that combines a {{code|∨}} with a {{code|~}}.<ref>[https://aplwiki.com/wiki/Nor Nor], ''APL Wiki''.</ref> ==Properties== NOR is commutative but not associative, which means that <math>P \downarrow Q \leftrightarrow Q \downarrow P</math> but <math>(P \downarrow Q) \downarrow R \not\leftrightarrow P \downarrow (Q \downarrow R)</math>.<ref>{{Cite book |last=Rao |first=G. Shanker |url=https://books.google.com/books?id=M-5m_EdvxuIC |title=Mathematical Foundations of Computer Science |date=2006 |publisher=I. K. International Pvt Ltd |isbn=978-81-88237-49-4 |pages=22 |language=en}}</ref> ===Functional completeness=== The logical NOR, taken by itself, is a [[Functional completeness|functionally complete]] set of connectives.<ref name=":29">{{Cite book |last=Smullyan |first=Raymond M. |title=First-order logic |date=1995 |publisher=Dover |isbn=978-0-486-68370-6 |location=New York |pages=5, 11, 14 |language=en}}</ref> This can be proved by first showing, with a [[truth table]], that <math>\neg A</math> is truth-functionally equivalent to <math>A \downarrow A</math>.<ref name=":132">{{Cite book |last=Howson |first=Colin |title=Logic with trees: an introduction to symbolic logic |date=1997 |publisher=Routledge |isbn=978-0-415-13342-5 |location=London; New York |pages=41–43}}</ref> Then, since <math>A \downarrow B</math> is truth-functionally equivalent to <math>\neg (A \lor B)</math>,<ref name=":132" /> and <math>A \lor B</math> is equivalent to <math>\neg(\neg A \land \neg B)</math>,<ref name=":132" /> the logical NOR suffices to define the set of connectives <math>\{\land, \lor, \neg\}</math>,<ref name=":132" /> which is shown to be truth-functionally complete by the [[Disjunctive Normal Form Theorem]].<ref name=":132" /> This may also be seen from the fact that Logical NOR does not possess any of the five qualities (truth-preserving, false-preserving, [[Linear#Boolean functions|linear]], [[Monotonic#In Boolean functions|monotonic]], self-dual) required to be absent from at least one member of a set of [[functionally complete]] operators. ==Other Boolean operations in terms of the logical NOR== NOR has the interesting feature that all other logical operators can be expressed by interlaced NOR operations. The [[logical NAND]] operator also has this ability. Expressed in terms of NOR <math>\downarrow</math>, the usual operators of propositional logic are: {| |- |<!--- not ---> {| style="text-align: center; border: 1px solid darkgray;" |- |<math>\neg P</math> | <math>\Leftrightarrow</math> |<math>P \downarrow P</math> |- |<math>\neg</math> [[File:Venn01.svg|36px]] | <math>\Leftrightarrow</math> |[[File:Venn10.svg|36px]] |}<!--- end not---> | |<!--- arrow ---> {| style="text-align: center; border: 1px solid darkgray;" |- |<math>P \rightarrow Q</math> | <math>\Leftrightarrow</math> |<math>\Big( (P \downarrow P) \downarrow Q \Big)</math> |<math>\downarrow</math> |<math>\Big( (P \downarrow P) \downarrow Q \Big)</math> |- |[[File:Venn1011.svg|50px]] | <math>\Leftrightarrow</math> |[[File:Venn0100.svg|50px]] |<math>\downarrow</math> |[[File:Venn0100.svg|50px]] |}<!--- end arrow ---> |- | |- |<!--- and ---> {| style="text-align: center; border: 1px solid darkgray;" |- |<math>P \land Q</math> | <math>\Leftrightarrow</math> |<math>(P \downarrow P)</math> |<math>\downarrow</math> |<math>(Q \downarrow Q)</math> |- |[[File:Venn0001.svg|50px]] | <math>\Leftrightarrow</math> |[[File:Venn1010.svg|50px]] |<math>\downarrow</math> |[[File:Venn1100.svg|50px]] |}<!--- end and ---> | |<!--- or ---> {| style="text-align: center; border: 1px solid darkgray;" |- |<math>P \lor Q</math> | <math>\Leftrightarrow</math> |<math>(P \downarrow Q)</math> |<math>\downarrow</math> |<math>(P \downarrow Q)</math> |- |[[File:Venn0111.svg|50px]] | <math>\Leftrightarrow</math> |[[File:Venn1000.svg|50px]] |<math>\downarrow</math> |[[File:Venn1000.svg|50px]] |}<!--- end or ---> |} ==See also== * [[Bitwise NOR]] * [[Boolean algebra (logic)|Boolean algebra]] * [[Boolean domain]] * [[Boolean function]] * [[Functional completeness]] * [[NOR gate]] * [[Propositional logic]] * [[Sole sufficient operator]] * [[Sheffer stroke]] as symbol for the logical NAND ==References== {{reflist|refs= <ref name="Webb_1935">{{cite journal |title=Generation of any n-valued logic by one binary operation |author-first=Donald Loomis |author-last=Webb |date=May 1935 |journal=[[Proceedings of the National Academy of Sciences]] |volume=21 |issue=5 |pages=252–254 |publisher=[[National Academy of Sciences]] |location=USA|doi=10.1073/pnas.21.5.252 |doi-access=free |pmid=16577665 |bibcode=1935PNAS...21..252W |pmc=1076579 }}</ref> <ref name="Freimann-Renfro-Webb_2017">{{cite web |title=Who is Donald L. Webb? |author-first1=Michael |author-last1=Freimann |author-first2=Dave L. |author-last2=Renfro |author-first3=Norman |author-last3=Webb |date=2018-05-24 |orig-date=2017-02-10 |website=[[Stack Exchange]] |department=History of Science and Mathematics |url=https://hsm.stackexchange.com/questions/5680/who-is-donald-l-webb |access-date=2023-05-18 |url-status=live |archive-url=https://web.archive.org/web/20230518155850/https://hsm.stackexchange.com/questions/5680/who-is-donald-l-webb |archive-date=2023-05-18}}</ref> <ref name="Vasyukevich_2011">{{cite book |author-first=Vadim O. |author-last=Vasyukevich |title=Asynchronous Operators of Sequential Logic: Venjunction & Sequention — Digital Circuits Analysis and Design |chapter=1.10 Venjunctive Properties (Basic Formulae) |publisher=[[Springer-Verlag]] |publication-place=Berlin / Heidelberg, Germany |location=Riga, Latvia |date=2011 |edition=1st |series=Lecture Notes in Electrical Engineering (LNEE) |volume=101 |isbn=978-3-642-21610-7 |doi=10.1007/978-3-642-21611-4 |issn=1876-1100 |lccn=2011929655 |page=20 |quote-page=20 |quote=Historical background […] Logical operator NOR named Peirce arrow and also known as Webb-operation.}} (xiii+1+123+7 pages) (NB. The back cover of this book erroneously states volume 4, whereas it actually is volume 101.)</ref> <ref name="Stamm_1911">{{cite journal |title=Beitrag zur Algebra der Logik |language=de |trans-title= |author-last=Stamm |author-first=Edward Bronisław |author-link=:pl:Edward Bronisław Stamm |journal=[[Monatshefte für Mathematik und Physik]] |date=1911 |volume=22 |issue=1 |doi=10.1007/BF01742795 |pages=137–149|s2cid=119816758 }}</ref> <!--<ref name="Sheffer_1913">{{cite journal |title=A set of five independent postulates for Boolean algebras, with application to logical constants |author-last=Sheffer |author-first=Henry Maurice |author-link=Henry Maurice Sheffer |journal=[[Transactions of the American Mathematical Society]] |date=1913 |doi=10.1090/S0002-9947-1913-1500960-1 |doi-access=free |volume=14 |issue=4 |pages=481–488}}</ref> <ref name="Nicod_1917">{{cite journal |title=A reduction in the number of the primitive propositions of logic |author-last=Nicod |author-first=Jean George Pierre |author-link=Jean George Pierre Nicod |journal=Proceedings of the Cambridge Philosophical Society, Mathematical and Physical Sciences |date=1917 |volume=19 |pages=32–41}}</ref> <ref name="Quine_1940">{{cite book |title=Mathematical logic |author-last=Quine |author-first=Willard Van Orman |author-link=Willard Van Orman Quine |edition=1 |publisher=[[W. W. Norton & Co.]] |location=New York, USA |date=1940 |url=http://archive.org/details/mathematicallogi00quin}}</ref> <ref name="Peirce">{{cite book |author-first=Charles Sanders |author-last=Peirce |author-link=Charles Sanders Peirce |title=Charles Sanders Peirce Bibliography |title-link=Charles Sanders Peirce bibliography#CP |id=4.264 |date=}}</ref> --> <ref name="Hall_1996">{{cite book |title=Journey to the Moon: The History of the Apollo Guidance Computer |author-first=Eldon C. |author-last=Hall |author-link=Eldon C. Hall |place=Reston, Virginia, USA |publisher=[[American Institute of Aeronautics and Astronautics]] |date=1996 |isbn=1-56347-185-X |page=196}}</ref> }} ==External links== * {{Commons category-inline}} {{Logical connectives}} [[Category:Logical connectives|NOR]] [[Category:Charles Sanders Peirce]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:2-ary truth table
(
edit
)
Template:About
(
edit
)
Template:C. S. Peirce articles
(
edit
)
Template:Cite book
(
edit
)
Template:Cite encyclopedia
(
edit
)
Template:Cite web
(
edit
)
Template:Code
(
edit
)
Template:Commons category-inline
(
edit
)
Template:Ill
(
edit
)
Template:Infobox logical connective
(
edit
)
Template:Lang
(
edit
)
Template:Logical connectives
(
edit
)
Template:Logical connectives sidebar
(
edit
)
Template:Redirect-distinguish
(
edit
)
Template:Redirect-distinguish-text
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Transliteration
(
edit
)
Template:Use dmy dates
(
edit
)
Template:Use list-defined references
(
edit
)
Template:Visible anchor
(
edit
)